Compact Non-Dispersive Infrared Multi-Gas Sensing Platform for Large Scale Deployment with Sub-ppm Resolution
<p>Absorption bands of carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O) and water vapor (H<sub>2</sub>O). Spectra are simulated using data from HITRAN (<a href="http://hitran.iao.ru/" target="_blank">http://hitran.iao.ru/</a> accessed on 13 March 2022) for an optical length of 1 m and gas species mole fractions set to 1 ppm.</p> "> Figure 2
<p>Schematic illustration of the K96 sensor multi-gas sensing principle. The patented multi-spectral sensor fuses three individual NDIR White Cell configurations. The two opposing spherical mirrors define the length of the individual optical propagation paths. One of the mirrors houses the IR emitter and the three wavelength selective detectors.</p> "> Figure 3
<p>CAD drawing of the Sensor Core containing the optical cell and the complete readout electronics to digitize the reading of the three detectors from the Long-, Medium- and Short-Pass Length. To avoid contamination from dust or particles, a filter is installed on top of the optical cell.</p> "> Figure 4
<p>Transmission curves, as established experimentally at a temperature of 25 °C, for multiple K96 sensing channels against the target gas concentration in ppm.</p> "> Figure 5
<p>Allan deviation log plots as derived experimentally for CO<sub>2</sub> (measured in both LPL and SPL channels), H<sub>2</sub>O (MPL channel), and for CH<sub>4</sub> and N<sub>2</sub>O (LPL channel) by measuring a dry ‘zero gas’ (Nitrogen) over a 60 h period in stable lab conditions (temperature kept constant at 20 °C).</p> "> Figure 6
<p>CO<sub>2</sub> measured by one K96 sensor during the ‘fall’ response time experiment. At t = 0 s, the exposition chamber was lifted and the sensor, previously flushed with a high CO<sub>2</sub> concentration from a cylinder, became exposed to room air.</p> "> Figure 7
<p>Left: N<sub>2</sub>O transmission signal as measured in function of the N<sub>2</sub>O concentration in the sample (with no CO<sub>2</sub>) and in function of the CO<sub>2</sub> concentration (with no N<sub>2</sub>O). Right: CH<sub>4</sub> transmission signal as measured in function of the CH<sub>4</sub> concentration in the sample (with no H<sub>2</sub>O) and in function of the H<sub>2</sub>O concentration (with no CH<sub>4</sub>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. NDIR Sensing Principle
2.2. K96 NDIR Sensor Core
2.3. Experimental Sensor Characterization
- CO2: LPL channel 400–3000 ppm,
- CO2: SPL channel 400–8500 ppm,
- CH4: LPL channel 0–2500 ppm,
- N2O: LPL channel 0–1000 ppm
- H2O: MPL channel 0.2–3 vol%.
2.3.1. Sensor Stability Using Allan Deviation
2.3.2. Response Time of the Sensor
3. Results
3.1. Multi-Gas Absorption Spectra
3.2. Noise-Level Using Allan Deviation
3.3. Response Time
3.4. Cross-Sensitivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Jha, R.K. Non-dispersive infrared gas sensing technology: A review. IEEE Sens. J. 2022, 22, 6–15. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A survey on gas sensing technology. Sensors 2012, 12, 9635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hummelgård, C.; Bryntse, I.; Bryzgalov, M.; Henning, J.-Å.; Martin, H.; Norén, M.; Rödjegård, H. Low-cost NDIR based sensor platform for sub-ppm gas detection. Urban Clim. 2015, 14, 342–350. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Bernard, P.; Labranche, B. Modified NDIR technique for HF monitoring in an industrial environment. In Proceedings of the Lasers and Materials in Industry and Opto-Contact Workshop, Quebec, Canada, 13–16 July 1998. [Google Scholar] [CrossRef]
- Frodl, R.; Tille, T. A high-precision NDIR CO2 gas sensor for automotive applications. IEEE Sens. J. 2006, 6, 1697–1705. [Google Scholar] [CrossRef]
- Russi, L.; Guidorzi, P.; Pulvirenti, B.; Semprini, G.; Aguiari, D.; Pau, G. Air quality and comfort characterisation within an electric vehicle cabin. In Proceedings of the 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), Bologna, Italy, 1–2 July 2021. [Google Scholar] [CrossRef]
- Hok, B.; Pettersson, H.; Andersson, A.K.; Haasl, S.; Akerlund, P. Breath analyzer for alcolocks and screening devices. IEEE Sens. J. 2010, 10, 10–15. [Google Scholar] [CrossRef]
- Schröder, S.; Briano, F.O.; Rödjegård, H.; Bryzgalov, M.; Orelund, J.; Gylfason, K.B.; Stemme, G.; Niklaus, F. A large-area single-filament infrared emitter and its application in a spectroscopic ethanol gas sensing system. Microsyst. Nanoeng. 2021, 7, 87. [Google Scholar] [CrossRef]
- Turner, A.J.; Shusterman, A.A.; McDonald, B.C.; Teige, V.; Harley, R.A.; Cohen, R.C. Network design for quantifying urban CO2 emissions: Assessing trade-offs between precision and network density. Atmos. Chem. Phys. 2016, 16, 13465–13475. [Google Scholar] [CrossRef] [Green Version]
- Arzoumanian, E.; Vogel, F.R.; Bastos, A.; Gaynullin, B.; Laurent, O.; Ramonet, M.; Ciais, P. Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for atmospheric CO2 monitoring in urban areas. Atmos. Meas. Tech. 2019, 12, 2665–2677. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Graf, P.; Meyer, J.; Pentina, A.; Brunner, D.; Pérez-Cruz, F.; Hüglin, C.; Emmenegger, L. Integration and calibration of non-dispersive infrared (NDIR) CO2 low-cost sensors and their operation in a sensor network covering Switzerland. Atmos. Meas. Tech. 2020, 13, 3815–3834. [Google Scholar] [CrossRef]
- Shusterman, A.A.; Kim, J.; Lieschke, K.J.; Newman, C.; Wooldridge, P.J.; Cohen, R.C. Observing local CO2 sources using low-cost, near-surface urban monitors. Atmos. Chem. Phys. 2018, 18, 13773–13785. [Google Scholar] [CrossRef] [Green Version]
- Delaria, E.R.; Kim, J.; Fitzmaurice, H.L.; Newman, C.; Wooldridge, P.J.; Worthington, K.; Cohen, R.C. The Berkeley environmental air-quality and CO2 network: Field calibrations of sensor temperature dependence and assessment of network scale CO2 accuracy. Atmos. Meas. Tech. 2021, 14, 5487–5500. [Google Scholar] [CrossRef]
- Shusterman, A.A.; Teige, V.E.; Turner, A.J.; Newman, C.; Kim, J.; Cohen, R.C. The Berkeley Atmospheric CO2 Observation Network: Initial evaluation. Atmos. Chem. Phys. 2016, 16, 13449–13463. [Google Scholar] [CrossRef] [Green Version]
- Skea, J.; Shuklaand, P.R.; Reisinger, A.; Slade, R.; Pathak, M.; Khourdajie, A.A.; Abdulla, K.A.R.v.D.A. IPCC: Summary for Policymakers, In: Climate Change 2022, Mitigation of Climate Change. Contribution of Working Group III to the IPCC Sixth Assessment Report. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf (accessed on 22 August 2022).
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Karakurt, I.; Aydin, G.; Aydiner, K. Sources and mitigation of methane emissions by sectors: A critical review. Renew. Energy 2012, 39, 40–48. [Google Scholar] [CrossRef]
- Dangal, S.; Tian, H.; Zhang, B.; Pan, S.; Lu, C.; Yang, J. Methane emission from global livestock sector during 1890–2014: Magnitude, trends and spatiotemporal patterns. Glob. Change Biol. 2017, 23, 4147–4161. [Google Scholar] [CrossRef]
- Pétron, G.; Karion, A.; Sweeney, C.; Miller, B.; Montzka, S.; Frost, G.J.; Trainer, M.; Tans, P.; Andrews, A.; Kofler, J.; et al. A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin. J. Geophys. Res. Atmos. 2014, 119, 6836–6852. [Google Scholar] [CrossRef]
- Gaalfalk, M.; Nilsson Påledal, S.; Sehlen, R.; Bastviken, D. Ground-based remote sensing of CH4 and N2O fluxes from a wastewater treatment plant and nearby biogas production with discoveries of unexpected sources. Environ. Res. 2021, 204, 111978. [Google Scholar] [CrossRef]
- Sonderfeld, H.; Bösch, H.; Jeanjean, A.; Riddick, S.; Allen, G.; Ars, S.; Davies, S.; Harris, N.; Humpage, N.; Leigh, R.; et al. CH4 emission estimates from an active landfill site inferred from a combined approach of CFD modelling and in situ FTIR measurements. Atmos. Meas. Tech. 2017, 10, 3931–3946. [Google Scholar] [CrossRef] [Green Version]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.; Barchyn, T.; Risk, D.; Ravikumar, A.; Hugenholtz, C. A review of close-range and screening technologies for measuring fugitive methane emissions in upstream oil and gas. Environ. Res. Lett. 2019, 14, 053002. [Google Scholar] [CrossRef]
- Ravikumar, A.P.; Brandt, A.R. Designing better methane mitigation policies: The challenge of distributed small sources in the natural gas sector. Environ. Res. Lett. 2017, 12, 044023. [Google Scholar] [CrossRef] [Green Version]
- Nisbet, E.G.; Fisher, R.E.; Lowry, D.; France, J.L.; Allen, G.; Bakkaloglu, S.; Broderick, T.J.; Cain, M.; Coleman, M.; Fernandez, J.; et al. Methane mitigation: Methods to reduce emissions, on the path to the Paris Agreement. Rev. Geophys. 2020, 58, e2019RG000675. [Google Scholar] [CrossRef]
- Mønster, J.; Kjeldsen, P.; Scheutz, C. Methodologies for measuring fugitive methane emissions from landfills—A review. Waste Manag. 2019, 87, 835–859. [Google Scholar] [CrossRef]
- Bastviken, D.; Nygren, J.; Schenk, J.; Massana, R.P.; Duc, N.T. Technical note: Facilitating the use of low-cost methane (ch4) sensors in flux chambers-calibration, data processing, and an open-source make-it-yourself loggerTechnical note: Facilitating the use of low-cost methane (ch4) sensors in flux chambers-calibration, data processing, and an open-source make-it-yourself logger. Biogeosciences 2020, 17, 3659–3667. [Google Scholar] [CrossRef]
- Collier-Oxandale, A.; Casey, J.G.; Piedrahita, R.; Ortega, J.; Halliday, H.; Johnston, J.; Hannigan, M.P. Assessing a low-cost methane sensor quantification system for use in complex rural and urban environments. Atmos. Meas. Tech. 2018, 11, 3569–3594. [Google Scholar] [CrossRef] [Green Version]
- Mahbub, P.; Noori, A.; Parry, J.; Davis, J.; Lucieer, A.; Macka, M. Continuous and real-time indoor and outdoor methane sensing with portable optical sensor using rapidly pulsed IR LEDs. Talanta 2020, 218, 121144. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Y.; Jiang, B. A one ppm NDIR methane gas sensor with single frequency filter denoising algorithm. Sensors 2012, 12, 12729–12740. [Google Scholar] [CrossRef] [Green Version]
- Schröder, S.; Wastine, B.; Bryzgalov, M.; Hummelgård, C.; Rödjegård, H.; Martin, H. Highly compact multi-spectral non-dispersive infrared gas sensor for large-scale deployment. Presented at the IEEE Sensors 2022 conference, Dallas, TX, USA, 30 October–2 November 2022. Paper 2402. [Google Scholar]
- Beer. Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Der Phys. Und Chem. 1852, 162, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.; Rödjegård, H. Multi-Channel Gas Sensor. Patent No. WO2020263155A1, 2020. [Google Scholar]
- White, J.U. Long Optical Paths of Large Aperture. J. Opt. Soc. Am. 1942, 32, 285. [Google Scholar] [CrossRef]
- Werle, P.; Muecke, R.; Slemr, F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B Photophys. Laser Chem. 1993, 57, 131–139. [Google Scholar] [CrossRef]
- Land, D.V.; Levick, A.P.; Hand, J.W. The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers. Meas. Sci. Technol. 2007, 18, 1917–1928. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.R.; Zeng, N.; Karion, A.; Dickerson, R.R.; Ren, X.; Turpie, B.N.; Weber, K.J. Evaluation and environmental correction of ambient CO2 measurements from a low-cost NDIR sensor. Atmos. Meas. Tech. 2017, 10, 2383–2395. [Google Scholar] [CrossRef] [PubMed]
- IEC 60079-29-1:2016; TC 31—Equipment for Explosive Atmospheres—Part 29-1: Gas Detectors—Performance Requirements of Detectors for Flammable Gases. IEC: Geneva, Switzerland, 2016.
- TS 17660-1:2021; Air Quality—Performance Evaluation of Air Quality Sensor Systems—Part 1: Gaseous Pollutants in Ambient Air. CEN: Brussels, Belgium, 2022.
- Senseair, A.B. Unpublished datasheet of K96. Senseair, 2022.
- US EPA. Standards of Performance for New, Reconstructed, and Modified Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review. Available online: https://www.federalregister.gov/documents/2021/11/15/2021-24202/standards-of-performance-for-new-reconstructed-and-modified-sources-and-emissions-guidelines-for (accessed on 23 August 2022).
LPL Channel 0.1 ppm Resolution | MPL Channel 1 ppm Resolution | SPL Channel 1 ppm Resolution |
---|---|---|
CO2 | H2O | - |
CH4 | H2O | CO2 |
N2O | H2O | CO2 |
Integration Time [s] | Allan Deviation [ppm] | ||||
---|---|---|---|---|---|
CO2-LPL | N2O-LPL | CH4-LPL | H2O-MPL | CO2-SPL | |
0.8 | 0.06 | 0.07 | 0.39 | 2.12 | 0.20 |
10 | 0.03 | 0.03 | 0.21 | 1.42 | 0.09 |
60 | 0.02 | 0.02 | 0.16 | 1.17 | 0.05 |
900 | 0.02 | 0.01 | 0.14 | 1.02 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wastine, B.; Hummelgård, C.; Bryzgalov, M.; Rödjegård, H.; Martin, H.; Schröder, S. Compact Non-Dispersive Infrared Multi-Gas Sensing Platform for Large Scale Deployment with Sub-ppm Resolution. Atmosphere 2022, 13, 1789. https://doi.org/10.3390/atmos13111789
Wastine B, Hummelgård C, Bryzgalov M, Rödjegård H, Martin H, Schröder S. Compact Non-Dispersive Infrared Multi-Gas Sensing Platform for Large Scale Deployment with Sub-ppm Resolution. Atmosphere. 2022; 13(11):1789. https://doi.org/10.3390/atmos13111789
Chicago/Turabian StyleWastine, Benoit, Christine Hummelgård, Maksym Bryzgalov, Henrik Rödjegård, Hans Martin, and Stephan Schröder. 2022. "Compact Non-Dispersive Infrared Multi-Gas Sensing Platform for Large Scale Deployment with Sub-ppm Resolution" Atmosphere 13, no. 11: 1789. https://doi.org/10.3390/atmos13111789
APA StyleWastine, B., Hummelgård, C., Bryzgalov, M., Rödjegård, H., Martin, H., & Schröder, S. (2022). Compact Non-Dispersive Infrared Multi-Gas Sensing Platform for Large Scale Deployment with Sub-ppm Resolution. Atmosphere, 13(11), 1789. https://doi.org/10.3390/atmos13111789