A Novel Approach for Cloud Detection in Scenes with Snow/Ice Using High Resolution Sentinel-2 Images
<p>Proposed method framework.</p> "> Figure 2
<p>High resolution Sentinel-2 images of the study area (cropping the region of interest, false color composite to help the reader visually differentiate between snow/ice and clouds [<a href="#B32-atmosphere-10-00044" class="html-bibr">32</a>]. Bands 4, 10, and 11 for Red, Green, and Blue, respectively), with the (<b>a</b>) original image, (<b>b</b>) cloud detection results using the traditional maximum-likelihood method.</p> "> Figure 3
<p>Results of the matched filtering (MF) method: (<b>a</b>) The MF result for ROI 1, and (<b>b</b>) the MF result for ROI 2.</p> "> Figure 4
<p>Fractal schema for ln(DN) versus ln(N) of (<b>a</b>) region of interest (ROI) 1 and (<b>b</b>) ROI 2; B<span class="html-italic">i</span> (<span class="html-italic">i</span> = 1, 2, 3...) represents a fractal dimension of each segment, N<span class="html-italic">i</span> (<span class="html-italic">i</span> = 1, 2, 3...) means the pixel size and frequency of a certain DN threshold, and T<span class="html-italic">i</span> (<span class="html-italic">i</span> = 1, 2, 3...) represents the DN value.</p> "> Figure 5
<p>Cloud detection based on the DN-N fractal model. (<b>a</b>) Results of the DN-N fractal model for ROI 1, (<b>b</b>) results of the DN-N fractal model for ROI 2.</p> "> Figure 6
<p>Output image of the anomaly-overlaying between ROI 1 and ROI 2.</p> "> Figure 7
<p>Output image of hotspot analysis based on the anomaly-overlaying between ROI 1 and ROI 2.</p> "> Figure 8
<p>Output image of cloud detection. Red colored areas represent clouds; a 100 m one-sided buffer zone around patches of thick cloud could include thinner clouds that were not detected previously. (<b>a</b>) Original image; (<b>b</b>) final cloud detection result.</p> "> Figure 9
<p>Comparison of the proposed technique against other methods, using imageries in different areas (cropping the regions of interest).</p> "> Figure 10
<p>Proposed method results of 25 Sentinel-2 scenes. Composited images with bands 4, 10, and 11 in red, green and blue, respectively, are shown on the left, and cloud masks are shown on the right with white color (cropping 6 regions of interest).</p> "> Figure 11
<p>Enlarged view of the six indicated areas of detail in <a href="#atmosphere-10-00044-f010" class="html-fig">Figure 10</a>, (<b>a</b>–<b>f</b>) correspond to the six regions of interest in <a href="#atmosphere-10-00044-f010" class="html-fig">Figure 10</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed Method Framework
2.2. Study Area and Data Source
2.3. Methods
2.3.1. Matched Filtering (MF)
2.3.2. Digital Number-Frequency (DN-N) fractal
2.3.3. Spatial Analysis of Anomaly Patterns
3. Results and Discussion
4. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Bunting, J.T.; d’Entremont, R.P. Improved cloud Detection Utilizing Defense Meteorological Satellite Program Near Infrared Measurements; Air Force Geophysics Lab Hanscom Afb Ma: Bedford, MA, USA, 1982. [Google Scholar]
- Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Homan, J.W.; Luce, C.H.; McNamara, J.P.; Glenn, N.F. Improvement of distributed snowmelt energy balance modeling with MODIS-based NDSI-derived fractional snow-covered area data. Hydrol. Process. 2011, 25, 650–660. [Google Scholar] [CrossRef]
- Bertrand, C.; Gonzalez, L.; Ipe, A.; Clerbaux, N.; Dewitte, S. Improvement in the GERB short wave flux estimations over snow covered surfaces. Adv. Space Res. 2008, 41, 1894–1905. [Google Scholar] [CrossRef]
- Burtonjohnson, A.; Black, M.; Fretwell, P.T.; Kaluzagilbert, J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: A new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 2016, 10, 1665–1677. [Google Scholar] [CrossRef]
- Beaudoin, L.; Nicolas, J.M.; Tupin, F.; Hueckel, M. Introducing Spatial Information in k-Means Algorithm for Cloud Detection in Optical Satellite Images. In Proceedings of the Europto Remote Sensing, Barcelona, Spain, 31 January 2001. [Google Scholar]
- Wang, W.; Song, W.G.; Liu, S.X.; Zhang, Y.; Zheng, H.Y. A Cloud Detection Algorithm for MODIS Images Combining Kmeans Clustering and Multi-Spectral Threshold Method. Spectrosc. Spectr. Anal. 2011, 31, 1061–1064. [Google Scholar]
- Le Hégarat-Mascle, S.; André, C. Use of Markov random fields for automatic cloud/shadow detection on high resolution optical images. ISPRS J. Photogramm. Remote Sens. 2009, 64, 351–366. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Candra, D.; Phinn, S.; Scarth, P. Cloud and cloud shadow masking using multi-temporal cloud masking algorithm in tropical environmental. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41. [Google Scholar] [CrossRef]
- Smith, A.; Wooster, M.; Powell, A.; Usher, D. Texture based feature extraction: Application to burn scar detection in Earth observation satellite sensor imagery. Int. J. Remote Sens. 2002, 23, 1733–1739. [Google Scholar] [CrossRef]
- Yu, W.; Cao, X.; Xu, L.; Mohamed, B. Automatic cloud detection for remote sensing image. Chin. J. Sci. Instrum. 2006, 27, 2184–2186. [Google Scholar] [CrossRef]
- Li, P.; Dong, L.; Xiao, H.; Xu, M. A cloud image detection method based on SVM vector machine. Neurocomputing 2015, 169, 34–42. [Google Scholar] [CrossRef]
- Vasquez, R.E.; Manian, V.B. Texture-based cloud detection in MODIS images. In Proceedings of the Remote Sensing of Clouds and the Atmosphere VII, Crete, Greece, 18 April 2003; pp. 259–268. [Google Scholar] [CrossRef]
- Zhu, L.; Xiao, P.; Feng, X.; Zhang, X.; Wang, Z.; Jiang, L. Support vector machine-based decision tree for snow cover extraction in mountain areas using high spatial resolution remote sensing image. J. Appl. Remote Sens. 2014, 8, 084698. [Google Scholar] [CrossRef]
- Racoviteanu, A.; Williams, M.W. Decision tree and texture analysis for mapping debris-covered glaciers in the Kangchenjunga area, Eastern Himalaya. Remote Sens. 2012, 4, 3078–3109. [Google Scholar] [CrossRef]
- Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef]
- Bian, J.; Li, A.; Liu, Q.; Huang, C. Cloud and snow discrimination for CCD images of HJ-1A/B constellation based on spectral signature and spatio-temporal context. Remote Sens. 2016, 8, 31. [Google Scholar] [CrossRef]
- Müller-Wilm, U.; Devignot, O.; Pessiot, L. Sen2Cor Configuration and User Manual; ESA: Paris, France, 2016. [Google Scholar]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–14 September 2017. [Google Scholar] [CrossRef]
- Kukawska, E.; Lewinski, S.; Krupinski, M.; Malinowski, R.; Nowakowski, A.; Rybicki, M.; Kotarba, A. Multitemporal Sentinel-2 data–remarks and observations. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), Brugge, Belgium, 27–29 June 2017. [Google Scholar] [CrossRef]
- Coluzzi, R.; Imbrenda, V.; Lanfredi, M.; Simoniello, T. A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses. Remote Sens. Environ. 2018, 217, 426–443. [Google Scholar] [CrossRef]
- Van der Valk, D. Remote Sensing of Japanese WWII Airstrips in the Papua Province Republic of Indonesia; Delft University of Technology: Delft, The Netherlands, 2017. [Google Scholar]
- Roy, D.P.; Li, J.; Zhang, H.K.; Yan, L. Best practices for the reprojection and resampling of Sentinel-2 Multi Spectral Instrument Level 1C data. Remote Sens. Lett. 2016, 7, 1023–1032. [Google Scholar] [CrossRef] [Green Version]
- ESA (European Space Agency). Sentinel-2 User Handbook, Issue 1, Rev 2, Revision 2; ESA Standard Document; ESA: Paris, France, 24 July 2015. [Google Scholar]
- Crane, R.G.; Anderson, M.R. Satellite discrimination of snow/cloud surfaces. Int. J. Remote Sens. 1984, 5, 213–223. [Google Scholar] [CrossRef]
- Yokoya, N.; Chan, J.C.-W.; Segl, K. Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. Remote Sens. 2016, 8, 172. [Google Scholar] [CrossRef]
- Strahler, A.H. The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sens. Environ. 1980, 10, 135–163. [Google Scholar] [CrossRef]
- Hogland, J.; Billor, N.; Anderson, N. Comparison of standard maximum likelihood classification and polytomous logistic regression used in remote sensing. Eur. J. Remote Sens. 2013, 46, 623–640. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Cracknell, A.P. Visible Infrared Imager Radiometer Suite: A New Operational Cloud Imager; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Molan, Y.E.; Refahi, D.; Tarashti, A.H. Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 117–127. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Lim, J.S. The importance of phase in signals. Proc. IEEE 1981, 69, 529–541. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.-s.; Defrise, M.; Deconinck, F. Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 1156–1168. [Google Scholar] [CrossRef]
- Harsanyi, J.C.; Chang, C.-I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779–785. [Google Scholar] [CrossRef]
- Ferrier, G. Application of imaging spectrometer data in identifying environmental pollution caused by mining at Rodaquilar, Spain. Remote Sens. Environ. 1999, 68, 125–137. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A. Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4138–4152. [Google Scholar] [CrossRef]
- Gan, F.P.; Wang, R.S.; Ai nai, M.A.; University, P. Beijing, Alteration Extracting Based on Spectral Match Filter(SMF). J. Image Gr. 2003. [Google Scholar] [CrossRef]
- Liu, Y.H.; Liu, S.F.; Zhang, C.; Pei, X.Y. The Weight Information Extraction of Clay Minerals Based on Hyperion Data: A Case Study of Ganzhou Area, Jiangxi Province. Remote Sens. Land Resour. 2010, 25, 26–30. [Google Scholar] [CrossRef]
- Williams, A.P.; Hunt, E.R., Jr. Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sens. Environ. 2002, 82, 446–456. [Google Scholar] [CrossRef]
- Han, L.; Zhao, B.; Wu, J.-J.; Wu, T.-T.; Feng, M. A new method for extraction of alteration information using the Landsat 8 imagery in a heavily vegetated and sediments-covered region: A case study from Zhejiang Province, E. China. Geol. J. 2018, 53, 33–43. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, Q. A fractal concentration–area method for assigning a color palette for image representation. Comput. Geosci. 2002, 28, 567–575. [Google Scholar] [CrossRef]
- Shahriari, H.; Ranjbar, H. Image Segmentation for Hydrothermal Alteration Mapping Using PCA and Concentration–Area Fractal Model. Nat. Resour. Res. 2013, 22, 191–206. [Google Scholar] [CrossRef]
- Han, L.; Zhao, B.; Wu, J.J.; Zhang, S.Y.; Pilz, J.; Yang, F. An integrated approach for extraction of lithology information using the SPOT 6 imagery in a heavily Quaternary-covered region—North Baoji District of China. Geol. J. 2017. [Google Scholar] [CrossRef]
- Zhao, B.; Lei, Y.; Qiu, J.; Shi, C.; Zhang, D. Internal structural analysis of geochemical anomaly based on the content arrangement method: A case study of copper stream sediment survey in northwestern Zhejiang province. Geophys. Geochem. Explor. 2015, 39, 297–305. [Google Scholar]
- Liu, L.; Zhou, J.; Han, L.; Xu, X. Mineral mapping and ore prospecting using Landsat TM and Hyperion data, Wushitala, Xinjiang, northwestern China. Ore Geol. Rev. 2017, 81, 280–295. [Google Scholar] [CrossRef]
- Mitchel, A. The ESRI Guide to GIS analysis, Volume 2: Spartial measurements and statistics; ESRI Press: Redlands, CA, USA, 2005. [Google Scholar]
- Yunus, A.P.; Dou, J.; Sravanthi, N. Remote sensing of chlorophyll-a as a measure of red tide in Tokyo Bay using hotspot analysis. Remote Sens. Appl. Soc. Environ. 2015, 2, 11–25. [Google Scholar] [CrossRef]
- Arora, P.; Varshney, S. Analysis of k-means and k-medoids algorithm for big data. Procedia Comput. Sci. 2016, 78, 507–512. [Google Scholar] [CrossRef]
- Bruzzone, L.; Prieto, D.F. A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1179–1184. [Google Scholar] [CrossRef] [Green Version]
- Schowengerdt, R.A. Techniques for Image Processing and Classifications in Remote Sensing; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
Algorithm | Producer’s Accuracy | User’s Accuracy | Overall Accuracy | |
---|---|---|---|---|
1 | K-Means | 53.33% | 80.00% | 80.85% |
FMask | 97.33% | 64.60% | 82.12% | |
Sen2Cor | 94.67% | 78.02% | 89.79% | |
Proposed | 96.00% | 96.06% | 97.45% | |
2 | K-Means | 92.01% | 47.92% | 77.02% |
FMask | 90.06% | 75.37% | 91.49% | |
Sen2Cor | 98.28% | 44.95% | 74.04% | |
Proposed | 96.10% | 90.57% | 97.02% | |
3 | K-Means | 90.06% | 81.82% | 87.23% |
FMask | 93.21% | 81.58% | 88.09% | |
Sen2Cor | 95.46% | 73.08% | 82.98% | |
Proposed | 93.06% | 96.90% | 95.48% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Wu, T.; Liu, Q.; Liu, Z. A Novel Approach for Cloud Detection in Scenes with Snow/Ice Using High Resolution Sentinel-2 Images. Atmosphere 2019, 10, 44. https://doi.org/10.3390/atmos10020044
Han L, Wu T, Liu Q, Liu Z. A Novel Approach for Cloud Detection in Scenes with Snow/Ice Using High Resolution Sentinel-2 Images. Atmosphere. 2019; 10(2):44. https://doi.org/10.3390/atmos10020044
Chicago/Turabian StyleHan, Ling, Tingting Wu, Qing Liu, and Zhiheng Liu. 2019. "A Novel Approach for Cloud Detection in Scenes with Snow/Ice Using High Resolution Sentinel-2 Images" Atmosphere 10, no. 2: 44. https://doi.org/10.3390/atmos10020044
APA StyleHan, L., Wu, T., Liu, Q., & Liu, Z. (2019). A Novel Approach for Cloud Detection in Scenes with Snow/Ice Using High Resolution Sentinel-2 Images. Atmosphere, 10(2), 44. https://doi.org/10.3390/atmos10020044