[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Next Article in Journal
A Comparison of Physical-Based and Statistical-Based Radiative Transfer Models in Retrieving Atmospheric Temperature Profiles from the Microwave Temperature Sounder-II Onboard the Feng-Yun-3 Satellite
Previous Article in Journal
Multi-Sensor Instrument for Aerosol In Situ Measurements
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

Trends and Spatiotemporal Patterns of the Meteorological Drought in the Ili River Valley from 1961 to 2023: An SPEI-Based Study

1
College of Resources and Environment, Yili Normal University, Yili 83500, China
2
College of Resources and Environment, Xinjiang Agriculture University, Urumqi 830052, China
3
Institute of Ecology and Environment, Yili Normal University, Yili 83500, China
*
Author to whom correspondence should be addressed.
Atmosphere 2025, 16(1), 43; https://doi.org/10.3390/atmos16010043
Submission received: 31 October 2024 / Revised: 22 December 2024 / Accepted: 27 December 2024 / Published: 2 January 2025
(This article belongs to the Section Meteorology)

Abstract

Drought presents significant challenges in arid regions, influencing local climate and environmental dynamics. While the large-scale climatic phenomena in Xinjiang, northwest China, are well-documented, the finer-scale climatic variability in subregions such as the Ili River Valley (IRV) remains insufficiently studied. This knowledge gap impedes effective regional planning and environmental management in this ecologically sensitive area. In this study, we analyze the spatiotemporal evolution of drought in the IRV from 1961 to 2023, using data from ten meteorological stations. The SPEI drought index, along with Sen’s trend analysis, the Mann–Kendall test, the cumulative departure method, and wavelet analysis, were employed to assess drought patterns. Results show a significant drying trend in the IRV, starting in 1995, with frequent drought events from 2018 onwards, and no notable transition year observed from wet to dry conditions. The overall drought rate was −0.09 per decade, indicating milder drought severity in the IRV compared to broader Xinjiang. Seasonally, the IRV experiences drier summers and wetter winters compared to regional averages, with negligible changes in autumn and milder drought conditions in spring. Abrupt changes in the drying seasons occurred later in the IRV than in Xinjiang, with delays of 21 years for summer, and over 17 and 35 years for spring and autumn, respectively, indicating a lagged response. Spatially, the western plains are more prone to aridification than the central and eastern mountainous regions. The study also reveals significant differences in drought cycles, which are longer than those in Xinjiang, with distinct wet–dry phases observed across multiple time scales and seasons, emphasizing the complexity of drought variability in the IRV. In conclusion, the valley exhibits unique drought characteristics, including milder intensity, pronounced seasonal variation, spatial heterogeneity, and notable resilience to climate change. These findings underscore the need for region-specific drought management strategies, as broader approaches may not be effective at the subregional scale.
Keywords: Ili River Valley; climate change; meteorological drought; spatiotemporal evolution Ili River Valley; climate change; meteorological drought; spatiotemporal evolution

Share and Cite

MDPI and ACS Style

Hang, S.; Abbas, A.; Imin, B.; Kasim, N.; Zunun, Z. Trends and Spatiotemporal Patterns of the Meteorological Drought in the Ili River Valley from 1961 to 2023: An SPEI-Based Study. Atmosphere 2025, 16, 43. https://doi.org/10.3390/atmos16010043

AMA Style

Hang S, Abbas A, Imin B, Kasim N, Zunun Z. Trends and Spatiotemporal Patterns of the Meteorological Drought in the Ili River Valley from 1961 to 2023: An SPEI-Based Study. Atmosphere. 2025; 16(1):43. https://doi.org/10.3390/atmos16010043

Chicago/Turabian Style

Hang, Su, Alim Abbas, Bilal Imin, Nijat Kasim, and Zinhar Zunun. 2025. "Trends and Spatiotemporal Patterns of the Meteorological Drought in the Ili River Valley from 1961 to 2023: An SPEI-Based Study" Atmosphere 16, no. 1: 43. https://doi.org/10.3390/atmos16010043

APA Style

Hang, S., Abbas, A., Imin, B., Kasim, N., & Zunun, Z. (2025). Trends and Spatiotemporal Patterns of the Meteorological Drought in the Ili River Valley from 1961 to 2023: An SPEI-Based Study. Atmosphere, 16(1), 43. https://doi.org/10.3390/atmos16010043

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop