The Impact of High-Density Airborne Observations and Atmospheric Motion Vector Observation Assimilation on the Prediction of Rapid Intensification of Hurricane Matthew (2016)
<p>(<b>a</b>) The best track maximum sustained surface wind (blue, unit: m/s) and minimum central pressure curve (red, unit: hPa) for Hurricane Matthew; (<b>b</b>) the magnitude (blue line) and direction (red line) of the environmental vertical wind shear between 200 and 850 mb (the data are from SHIPs).</p> "> Figure 2
<p>The distribution of HODB (FL: green; SFMR: brown) and AMV (blue) observations assimilated, valid at 1800 UTC 29 Sep 2016 during Hurricane Matthew. (<b>a</b>) Horizontal distribution; (<b>b</b>) vertical distribution.</p> "> Figure 3
<p>Hurricane Matthew’s maximum wind forecasts for experiments 3DEV (blue line) and 4DEV (red line, described in <a href="#atmosphere-15-00395-t001" class="html-table">Table 1</a>) initialized from 18 UTC on 29 September 2016; the black line is for the intensity change of the best track.</p> "> Figure 4
<p>The height–distance (with TC center) profile of radial wind (contour: unit: m/s) and tangential wind (shaded, unit: m/s) for the experiments of 3DEV (<b>a</b>,<b>c</b>) and 4DEV (<b>b</b>,<b>d</b>). (<b>a</b>,<b>b</b>) Are the analysis, (<b>c</b>,<b>d</b>) are the 6 h forecast.</p> "> Figure 5
<p>Vmax forecasts for experiments 4DEV-thin (blue line) and 4DEV-sob (red line, described in <a href="#atmosphere-15-00395-t001" class="html-table">Table 1</a>) initialized from 18 UTC 29 September 2016 during Hurricane Matthew; the black line is for the intensity change of the best track.</p> "> Figure 6
<p>The height–distance (with TC center) profile of radial wind (contour: unit: m/s) and tangential wind (shaded, unit: m/s) for the experiment of 4DEV-sob. (<b>a</b>) Analysis; (<b>b</b>) 6 h forecast.</p> "> Figure 7
<p>The comparison between Baseline (blue line) and 4DEV-sob (red line): (<b>a</b>) the strength of upper-level outflow (unit: 10<sup>−5</sup>/s) (averaged over 500 km radius); (<b>b</b>) the strength of low-level moisture inflow (unit: 10<sup>−4</sup> g/kg.s, averaged over 500 km radius); (<b>c</b>) the number of CBs (w > 3 m/s, in 200 km × 200 km × 14 km within 100 km radius). The blue line presents the experiment Baseline and the red presents the experiment 4DEV-sob.</p> "> Figure 8
<p>Difference of 200 hPa wind field and Vr (radial wind, shaded, unit: m/s) between the experiments 4DEV and Baseline. (<b>a</b>) Analyses (0 h); (<b>b</b>) 6 h; (<b>c</b>) 12 h.</p> "> Figure 9
<p>The radial wind for the experiment Baseline (<b>a</b>,<b>c</b>) and the difference of radial wind between experiments 4DEV-sob and Baseline, (<b>b</b>,<b>d</b>) in USL and DSL.</p> "> Figure 9 Cont.
<p>The radial wind for the experiment Baseline (<b>a</b>,<b>c</b>) and the difference of radial wind between experiments 4DEV-sob and Baseline, (<b>b</b>,<b>d</b>) in USL and DSL.</p> "> Figure 10
<p>The moisture distribution for the experiment Baseline (<b>a</b>,<b>c</b>) and the difference of moisture between experiments 4DEV and Baseline (<b>b</b>,<b>d</b>) in USL and DSL.</p> "> Figure 10 Cont.
<p>The moisture distribution for the experiment Baseline (<b>a</b>,<b>c</b>) and the difference of moisture between experiments 4DEV and Baseline (<b>b</b>,<b>d</b>) in USL and DSL.</p> "> Figure 11
<p>Vmax forecasts (<b>a</b>) and Vmax change (<b>b</b>) for 6 h intervals for 4DEV-sob (red) and Baseline (blue) initialized from 18 UTC 29 September 2016; the black line is for the best track.</p> "> Figure 12
<p>The vertical wind of DSL (shaded, unit: 0.1 m/s), the first row is Baseline (<b>a</b>–<b>d</b>), the second row is 4DEV-sob (<b>e</b>–<b>h</b>).</p> "> Figure 13
<p>The vertical wind of USL (shaded), the first row is Baseline (<b>a</b>–<b>d</b>), the second row is. 4DEV-sob (<b>e</b>–<b>h</b>).</p> "> Figure 14
<p>The distribution of average vertical wind (averaged over 100 km radius) in the shear-relative quadrants of experiment Baseline (<b>a</b>) and 4DEV-sob (<b>b</b>).</p> "> Figure 15
<p>Potential temperature (unit: K, averaged over 40 km radius) in the shear-relative quadrants of experiment Baseline (black line) and 4DEV-sob (blue line). (<b>a</b>) DSL quadrant, (<b>b</b>) DSR quadrant, (<b>c</b>) USL quadrant, (<b>d</b>) USR quadrant.</p> "> Figure 16
<p>The maximum wind (unit: m/s) in the shear-relative quadrants of experiment Baseline (blue line) and 4DEV-sob (red line). (<b>a</b>) DSL quadrant, (<b>b</b>) DSR quadrant, (<b>c</b>) USL quadrant, (<b>d</b>) USR quadrant.</p> ">
Abstract
:1. Introduction
2. Overview of Hurricane Matthew
3. Model, Observational Data, and Experimental Design
3.1. HWRF Model Configurations and the Assimilation System
3.2. The Observational Data
3.3. Experimental Design
4. Results of Experiments
4.1. Impact of DA Methods (3DEnVar vs. 4DEnVar)
4.2. Impacts of Pre-Processing (Thinning vs. Superobbing)
5. Impact of Assimilating HDOB and AMV on RI Prediction
5.1. The Impact of Assimilating HDOB and AMV on Inner-Core and Outflow Structures in Analysis Fields (Shear-Relative Distribution)
5.2. The Impact of Assimilating HDOB and AMV on the RI forecast
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaplan, J.; DeMaria, M.; Knaff, J.A. A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Weather Forecast. 2010, 25, 220–241. [Google Scholar] [CrossRef]
- DeMaria, M.; Sampson, C.R.; Knaff, J.A.; Musgrave, K.D. Is tropical cyclone intensity guidance improving? Bull. Am. Meteorol. Soc. 2014, 95, 387–398. [Google Scholar] [CrossRef]
- Magnusson, L.; Bidlot, J.R.; Bonavita, M.; Brown, A.R.; Browne, P.A.; Chiara, D.G.; Dahoui, M.; Lang, S.T.K.; McNally, T.; Mogensen, K.S.; et al. ECMWF activities for improved hurricane forecasts. Bull. Am. Meteorol. Soc. 2019, 100, 445–458. [Google Scholar] [CrossRef]
- Wei, N.; McBride, J.L.; Zhang, X.; Duan, Y. Understanding Biases in Tropical Cyclone Intensity Forecast Error. Weather Forecast. 2018, 33, 129–138. [Google Scholar]
- Poyer, A.; Komaromi, W.; Gopalakrishnan, S.; Wolf, L.; Marks, F.; Alaka, G., Jr.; Anderson, J.; Tallapragada, V.; Brennan, M.; Mehra, A.; et al. 2021–2022 HFIP R&D Activities Summary: Recent Results and Operational Implementation; HFIP Technical Report; NOAA: Silver Spring, MD, USA, 2023. [Google Scholar]
- Li, Y.; Tang, Y.; Wang, S.; Toumi, R.; Song, X.; Wang, Q. Recent increases in tropical cyclone rapid intensification events in global offshore regions. Nat. Commun. 2023, 14, 5167. [Google Scholar] [CrossRef]
- Demaria, M.; Kaplan, J. An Updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North Pacific Basins. Weather Forecast. 1999, 14, 326–337. [Google Scholar] [CrossRef]
- Paterson, L.A.; Hanstrum, B.N.; Davidson, N.E.; Weber, H.C. Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Weather Rev. 2005, 133, 3644–3660. [Google Scholar] [CrossRef]
- Hendricks, E.A.; Peng, M.S.; Fu, B.; Li, T. Quantifying Environmental Control on Tropical Cyclone Intensity Change. Mon. Weather Rev. 2010, 138, 3243–3271. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, Y.; Tan, Z.M.; Schönemann, D. A Statistical Analysis of the Effects of Vertical Wind Shear on Tropical Cyclone Intensity Change over the Western North Pacific. Mon. Weather Rev. 2015, 143, 3434–3453. [Google Scholar] [CrossRef]
- Lyu, X.Y.; Wang, X.; Leslie, L.M. The Dependence of Tropical Cyclone Intensification Rates on the Environmental Factors in the Northwest Pacific Basin. Adv. Meteorol. 2019, 2019, 9456873. [Google Scholar] [CrossRef]
- Gray, W.M. Global View of the Origin of Tropical Disturbances and Storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C. Current understanding of tropical cyclone structure and intensity changes-A review. Meteor. Atmos. Phys. 2004, 87, 257–278. [Google Scholar] [CrossRef]
- Cram, T.A.; Persing, J.; Montgomery, M.T.; Braun, S.A. A Lagrangian Trajectory View on Transport and Mixing Processes between the Eye, Eyewall, and Environment Using a High-Resolution Simulation of Hurricane Bonnie (1998). J. Atmos. Sci. 2007, 64, 1835–1856. [Google Scholar] [CrossRef]
- Tang, B.; Emanuel, K. Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci. 2012, 69, 2394–2413. [Google Scholar] [CrossRef]
- Riemer, M.; Montgomery, M.T.; Nicholls, M.E. A New Paradigm for Intensity Modification of Tropical Cyclones: Thermodynamic Impact of Vertical Wind Shear on the Inflow Layer. Atmos. Chem. Phys. 2010, 10, 3163–3188. [Google Scholar] [CrossRef]
- Chen, H.; Gopalakrishnan, S.G. A Study on the Asymmetric Rapid Intensification of Hurricane Earl (2010) Using the HWRF System. J. Atmos. Sci. 2015, 72, 531–550. [Google Scholar] [CrossRef]
- Rios-Berrios, R.; Torn, R.D.; Davis, C.A. An Ensemble Approach to Investigate Tropical Cyclone Intensification in Sheared Environments. Part I: Katia (2011). J. Atmos. Sci. 2016, 73, 71–93. [Google Scholar] [CrossRef]
- Rios-Berrios, R.; Torn, R.D.; Davis, C.A. An Ensemble Approach to Investigate Tropical Cyclone Intensification in Sheared Environments. Part II: Ophelia (2011). J. Atmos. Sci. 2016, 73, 1555–1575. [Google Scholar] [CrossRef]
- Rios-Berrios, R.; Torn, R. Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Weather Rev. 2017, 145, 1717–1738. [Google Scholar] [CrossRef]
- Emanuel, K.; Desautels, C.; Holloway, C.; Korty, R. Environmental Control of Tropical Cyclone Intensity. J. Atmos. Sci. 2004, 61, 843–858. [Google Scholar] [CrossRef]
- Zhang, F.; Tao, D. Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci. 2013, 70, 975–983. [Google Scholar] [CrossRef]
- Tao, D.; Zhang, F. Effects of vertical wind shear on the predictability of tropical cyclones: Practical versus intrinsic limit. J. Adv. Model. Earth Syst. 2015, 7, 1534–1553. [Google Scholar] [CrossRef]
- Bhatia, K.T.; Nolan, D.S. Relating the skill of tropical cyclone intensity forecasts to the synoptic environment. Weather Forecast. 2013, 28, 961–980. [Google Scholar] [CrossRef]
- Gu, J.F.; Tan, Z.M.; Qiu, X. Quadrant-Dependent Evolution of Low-Level Tangential Wind of a Tropical Cyclone in the Shear Flow. J. Atmos. Sci. 2016, 73, 1159–1177. [Google Scholar] [CrossRef]
- Gu, J.F.; Tan, Z.M.; Qiu, X. The evolution of vortex tilt and vertical motion of tropical cyclones in directional shear flows. J. Atmos. Sci. 2018, 75, 3565–3578. [Google Scholar] [CrossRef]
- Hazelton, A.; Alaka, G.J., Jr.; Cowan, L.; Fischer, M.; Gopalakrishnan, S. Understanding the Processes Causing the Early Intensification of Hurricane Dorian through an Ensemble of the Hurricane Analysis and Forecast System (HAFS). Atmosphere 2021, 12, 93. [Google Scholar] [CrossRef]
- Zawislak, J.; Jiang, H.; Alvey, G.R.; Zipser, E.J.; Rogers, R.F.; Zhang, J.A.; Stevenson, S.N. Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Weather Rev. 2016, 144, 3333–3354. [Google Scholar] [CrossRef]
- Leighton, H.; Gopalakrishnan, S.; Zhang, J.A.; Rogers, R.F.; Zhang, Z.; Tallapragada, V. Azimuthal Distribution of Deep Convection, Environmental Factors, and Tropical Cyclone Rapid Intensification: A Perspective from HWRF Ensemble Forecasts of Hurricane Edouard (2014). J. Atmos. Sci. 2018, 75, 275–295. [Google Scholar] [CrossRef]
- Shu, S.; Wu, L. Analysis of the influence of Saharan air layer on tropical cyclone intensity using AIRS/Aqua data. Geophys. Res. Lett. 2009, 36, L09809. [Google Scholar] [CrossRef]
- Wu, T.C.; Liu, H.; Majumdar, S.J.; Velden, C.S.; Anderson, J.L. Influence of assimilating satellite-derived atmospheric motion vector observations on numerical analyses and forecasts of tropical cyclone track and intensity. Mon. Weather Rev. 2014, 142, 49–71. [Google Scholar] [CrossRef]
- Wu, T.C.; Velden, C.S.; Majumdar, S.J.; Liu, H.; Anderson, J.L. Understanding the influence of assimilating subsets of enhanced atmospheric motion vectors on numerical analyses and forecasts of tropical cyclone track and intensity with an ensemble Kalman filter. Mon. Weather Rev. 2015, 143, 2506–2531. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Molinari, J. Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon. Weather Rev. 2012, 140, 3361–3378. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rogers, R.F.; Reasor, P.D.; Uhlhorn, E.W.; Marks, F.D. Asymmetric Hurricane Boundary Layer Structure from Dropsonde Composites in Relation to the Environmental Vertical Wind Shear. Mon. Weather Rev. 2013, 141, 3968–3984. [Google Scholar] [CrossRef]
- Stevenson, S.N.; Corbosiero, K.L.; Demaria, M.; Vigh, J.L. A 10-Year Survey of Tropical Cyclone Inner-Core Lightning Bursts and Their Relationship to Intensity Change. Weather Forecast. 2018, 33, 23–36. [Google Scholar] [CrossRef]
- Molinari, J.; Vollaro, D. Rapid Intensification of a Sheared Tropical Storm. Mon. Weather Rev. 2010, 138, 3869–3885. [Google Scholar] [CrossRef]
- Chen, B.F.; Davis, C.A.; Kuo, Y.H. Effects of Low-Level Flow Orientation and Vertical Shear on the Structure and Intensity of Tropical Cyclones. Mon. Weather Rev. 2018, 146, 2447–2467. [Google Scholar] [CrossRef]
- Wadler, J.B.; Rogers, R.F.; Reasor, P.D. The relationship between spatial variations in the structure of convective bursts and tropical cyclone intensification as determined by airborne Doppler radar. Mon. Weather Rev. 2018, 146, 761–780. [Google Scholar] [CrossRef]
- Fischer, M.S.; Tang, B.H.; Corbosiero, K.L.; Rozoff, C.M. Normalized convective characteristics of tropical cyclone rapid intensification events in the North Atlantic and eastern North Pacific. Mon. Weather Rev. 2018, 146, 1133–1155. [Google Scholar] [CrossRef]
- Weng, Y.; Zhang, F. Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Weather Rev. 2012, 140, 841–859. [Google Scholar] [CrossRef]
- Rogers, R.; Uhlhorn, E. Observations of the structure and evolution of surface and flight-level wind asymmetries in Hurricane Rita (2005). Geophys. Res. Lett. 2008, 35, L22811. [Google Scholar] [CrossRef]
- Uhlhorn, E.W.; Black, P.G.; Franklin, J.L.; Goodberlet, M.; Carswell, J.; Goldstein, A.S. Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Weather Rev. 2007, 135, 3070–3085. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X. Improving hurricane analyses and predictions with TCI, IFEX field campaign observations, and CIMSS AMVs using the advanced hybrid data assimilation system for HWRF. Part I: What is missing to capture the rapid intensification of Hurricane Patricia (2015) when HWRF is already initialized with a more realistic analysis? Mon. Weather Rev. 2019, 147, 1351–1373. [Google Scholar]
- Lu, X.; Wang, X. Improving hurricane analyses and predictions with TCI, IFEX field campaign observations, and CIMSS AMVs using the advanced hybrid data assimilation system for HWRF. Part II: Observation impacts on the analyses and predictions of Patricia (2015). Mon. Weather Rev. 2020, 148, 1407–1430. [Google Scholar] [CrossRef]
- Willoughby, H.E.; Chelmow, M.B. Objective determination of hurricane tracks from aircraft observations. Mon. Weather Rev. 1982, 110, 1298–1305. [Google Scholar] [CrossRef]
- Willoughby, H.E.; Rahn, M.E. Parametric representation of the primary Hurricane Vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Weather Rev. 2004, 132, 3033–3048. [Google Scholar] [CrossRef]
- Aksoy, A.; Aberson, S.D.; Vukicevic, T.; Sellwood, K.J.; Lorsolo, S.; Zhang, X. Assimilation of high-resolution tropical cyclone observations with an ensemble Kalman filter using NOAA/AOML/HRD’s HEDAS: Evaluation of the 2008–11 vortex-scale Analyses. Mon. Weather Rev. 2013, 141, 1842–1865. [Google Scholar] [CrossRef]
- Velden, C.; Lewis, W.E.; Bresky, W.; Stettner, D.; Daniels, J.; Wanzong, S. Assimilation of high-resolution satellite-derived atmospheric motion vectors: Impact on HWRF forecasts of tropical cyclone track and intensity. Mon. Weather Rev. 2017, 145, 1107–1125. [Google Scholar] [CrossRef]
- Velden, C.S.; Olander, T.L.; Wanzong, S. The Impact of Multispectral GOES-8 Wind Information on Atlantic Tropical Cyclone Track Forecasts in 1995. Part I: Dataset Methodology, Description, and Case Analysis. Mon. Weather Rev. 1998, 126, 1202–1218. [Google Scholar] [CrossRef]
- Elsberry, R.L.; Buholzer, N.; Velden, C.S.; Jordan, M.S. Satellite-Based Observations of Nonlinear Relationships between Vertical Wind Shear and Intensity Changes during the Life Cycle of Hurricane Joaquin (2015). Weather Forecast. 2020, 35, 939–958. [Google Scholar] [CrossRef]
- Cherubini, T.; Businger, S.; Velden, C.; Ogasawara, R. The Impact of Satellite-Derived Atmospheric Motion Vectors on Mesoscale Forecasts over Hawaii. Mon. Weather Rev. 2006, 134, 2009–2020. [Google Scholar] [CrossRef]
- Langland, R.H.; Velden, C.; Pauley, P.M.; Berger, H. Impact of satellite-derived rapid-scan wind observations on numerical model forecasts of Hurricane Katrina. Mon. Weather Rev. 2009, 137, 1615–1622. [Google Scholar] [CrossRef]
- Berger, H.; Langland, R.; Velden, C.S.; Reynolds, C.A.; Pauley, P.M. Impact of Enhanced Satellite-Derived Atmospheric Motion Vector Observations on Numerical Tropical Cyclone Track Forecasts in the Western North Pacific during TPARC/TCS-08. J. Appl. Meteor. Climatol. 2011, 50, 2309–2318. [Google Scholar] [CrossRef]
- Wang, X.; Barker, D.; Snyder, C.; Hamill, T.M. A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev. 2008, 136, 5116–5131. [Google Scholar] [CrossRef]
- Wang, X.; Barker, D.; Snyder, C.; Hamill, T.M. A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Wea. Rev. 2008, 136, 5132–5147. [Google Scholar] [CrossRef]
- Wang, X. Incorporating ensemble covariance in the Gridpoint Statistical Interpolation variational minimization: A mathematical framework. Mon. Wea. Rev. 2010, 138, 2990–2995. [Google Scholar] [CrossRef]
- Wang, X.; Parrish, D.; Kleist, D.; Whitaker J., S. GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev. 2013, 141, 4098–4117. [Google Scholar] [CrossRef]
- Wang, X.; Lei, T. GSI-based four dimensional ensemble-variational (4DEnsVar) data assimilation: Formulation and single resolution experiments with real data for NCEP Global Forecast System. Mon. Wea. Rev. 2014, 142, 3303–3325. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X.; Tong, M.; Tallapragada, V. GSI-based, continuously cycled, dual-resolution hybrid ensemble-variational data assimilation system for HWRF: System description and experiments with Edouard (2014). Mon. Wea. Rev. 2017, 145, 4877–4898. [Google Scholar] [CrossRef]
- Lorenc, A.C.; Rawlins, F. Why does 4D-Var beat 3D-Var? Q. J. R. Meteorol. Soc. 2010, 131, 3247–3257. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, F. E4DVar: Coupling an Ensemble Kalman Filter with Four-Dimensional Variational Data Assimilation in a Limited-Area Weather Prediction Model. Mon. Weather Rev. 2011, 140, 587–600. [Google Scholar] [CrossRef]
- Stewart, S.R. National Hurricane Center Tropical Cyclone Report: Hurricane Matthew (AL 142016). 2017. Available online: https://www.nhc.noaa.gov/data/tcr/AL142016_Matthew.pdf (accessed on 24 December 2023).
- Liu, Z.; Rabier, F. The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Q. J. R. Meteorol. Soc. 2002, 128, 1367–1386. [Google Scholar] [CrossRef]
Exp. Name | General Information | DA Method | Pre-Pro | Additional Obs Assimilated |
---|---|---|---|---|
Baseline | Background: 6-h control forecast initialized from the GSI-based, continuously cycled, dual-resolution hybrid ensemble-variational (EnVar) DA system for HWRF valid at 1800 UTC 29 September 2016. Physics: H216 Physics + Modified turbulent mixing parameterization Observations: Operational HWRF observations (conventional obs., satellite radiances, et al.) | 4DEnVar | No | No |
3DEV | 3DEnVar | No | FL and SFMR CIMSS AMV | |
4DEV | 4DEnVar | No | ||
4DEV-thin | 4DEnVar | Thinning | ||
4DEV-sob | 4DEnVar | Sob |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, X.; Wang, X. The Impact of High-Density Airborne Observations and Atmospheric Motion Vector Observation Assimilation on the Prediction of Rapid Intensification of Hurricane Matthew (2016). Atmosphere 2024, 15, 395. https://doi.org/10.3390/atmos15040395
Lyu X, Wang X. The Impact of High-Density Airborne Observations and Atmospheric Motion Vector Observation Assimilation on the Prediction of Rapid Intensification of Hurricane Matthew (2016). Atmosphere. 2024; 15(4):395. https://doi.org/10.3390/atmos15040395
Chicago/Turabian StyleLyu, Xinyan, and Xuguang Wang. 2024. "The Impact of High-Density Airborne Observations and Atmospheric Motion Vector Observation Assimilation on the Prediction of Rapid Intensification of Hurricane Matthew (2016)" Atmosphere 15, no. 4: 395. https://doi.org/10.3390/atmos15040395
APA StyleLyu, X., & Wang, X. (2024). The Impact of High-Density Airborne Observations and Atmospheric Motion Vector Observation Assimilation on the Prediction of Rapid Intensification of Hurricane Matthew (2016). Atmosphere, 15(4), 395. https://doi.org/10.3390/atmos15040395