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Abstract: Lightning is a hazardous weather phenomenon, characterized by sudden occurrences
and complex local distributions. It poses significant challenges for accurate forecasting, which
is crucial for public safety and economic stability. Deep learning methods are often better than
traditional numerical weather prediction (NWP) models at capturing the spatiotemporal predictors of
lightning events. However, these methods struggle to integrate predictors from diverse data sources,
which leads to lower accuracy and interpretability. To address these challenges, the Multi-Scale
Spatial–Channel-Enhanced Recurrent Convolutional Neural Network (SCE-RCNN) is proposed to
improve forecasting accuracy and timeliness by utilizing multi-source data and enhanced attention
mechanisms. The proposed model incorporates a multi-scale spatial–channel attention module and
a cross-scale fusion module, which facilitates the integration of data from diverse sources. The
multi-scale spatial–channel attention module utilizes a multi-scale convolutional network to extract
spatial features at different spatial scales and employs a spatial–channel attention mechanism to focus
on the most relevant regions for lightning prediction. Experimental results show that the SCE-RCNN
model achieved a critical success index (CSI) of 0.83, a probability of detection (POD) of 0.991, and a
false alarm rate (FAR) reduced to 0.351, outperforming conventional deep learning models across
multiple prediction metrics. This research provides reliable lightning forecasts to support real-time
decision-making, making significant contributions to aviation safety, outdoor event planning, and
disaster risk management. The model’s high accuracy and low false alarm rate highlight its value in
both academic research and practical applications.

Keywords: lightning forecasting; recurrent convolutional neural network; multi-scale feature extraction;
spatial–channel attention mechanism; hazardous weather events

1. Introduction

Lightning is a critical atmospheric phenomenon with widespread impacts on public
safety, transportation, agriculture, aviation, and energy infrastructure. Its sudden and
intense nature necessitates accurate forecasting to mitigate risks since lightning strikes
can lead to wildfires, infrastructure damage, service disruptions, and significant economic
losses [1–4]. Precise and timely lightning forecasts enable emergency response teams,
aviation operators, and utility companies to implement proactive measures that reduce
potential damages, protect human life, and improve public safety [5–8].

Traditional lightning forecasting methods generally include NWP models and data-
driven machine learning approaches [9–12]. NWP models rely on complex physical simula-
tions to provide large-scale atmospheric predictions that capture general weather patterns
reliably. However, these models face challenges in delivering high-resolution, short-term
forecasts essential for capturing lightning’s localized and transient nature, given their
computational requirements [13,14]. Operational constraints further limit NWP models in
real-time applications due to the substantial computational resources they demand.

In contrast, data-driven machine learning methods, especially deep learning meth-
ods, has shown promise in using large historical datasets to identify complex patterns
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and facilitate near-term predictions. Architectures such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) are effective in modeling the spatiotemporal
dependencies inherent in weather systems, making them suitable for lightning nowcast-
ing [15–19]. However, traditional deep learning models often emphasize temporal over
spatial features, limiting their ability to predict localized phenomena such as lightning.
Additionally, integrating features from heterogeneous data sources remains challenging,
like radar, satellite, and environmental sensors, thus impacting both model performance
and interpretability.

To overcome these limitations, the Multi-Scale Spatial–Channel-Enhanced Recurrent
Convolutional Neural Network (SCE-RCNN) is introduced to improve both the accuracy
and timeliness of lightning forecasting. The model utilizes spatial and channel attention
mechanisms [20–23], which enhance its ability to represent spatial distributions and tem-
poral evolution in regions prone to lightning. By effectively integrating radar data with
NWP-derived predictions, the SCE-RCNN extracts multi-scale spatial features and em-
ploys a dynamic gating mechanism to fuse them, enabling precise localization of target
areas and improving training efficiency. This model is effective at capturing subtle spatial
variations and addressing imbalances in multi-source data through its unique multi-scale
spatial–channel attention mechanism.

The SCE-RCNN provides several key contributions that address current challenges in
lightning forecasting. First, the model provides localized prediction capability by using
multi-scale convolutional kernels (e.g., 3 × 3, 5 × 5, 7 × 7), which are specifically designed
to capture different spatial features in the data. Smaller kernels, such as 3 × 3, capture
fine-grained local changes and high-frequency details, while larger kernels, like 7× 7, focus
on broader spatial dynamics and low-frequency global patterns. The intermediate size,
5 × 5, bridges the gap by capturing mid-range spatial dependencies, enabling the model to
understand both local and global interactions. This multi-scale approach balances compu-
tational efficiency and spatial coverage, allowing the model to fully utilize complementary
spatial information. This capability is essential for modeling the sudden and spatially con-
fined nature of lightning. Additionally, the cross-scale cooperative fusion (CSCF) module
integrates features across different spatial scales, facilitating complementary interactions
among features at various resolutions. This integration enhances the model’s ability to
accurately capture complex spatial patterns, further improving its performance in local
and large-scale forecasting. Second, it incorporates an enhanced feature fusion mechanism,
where a spatial–channel attention mechanism dynamically prioritizes critical features from
diverse data sources. This not only enhances the model’s interpretability but also enables
it to focus on the most relevant information, improving prediction quality. Finally, the
model achieves improved predictive accuracy by combining spatial and channel attention
mechanisms. This approach results in superior predictive performance, particularly under
complex and rapidly evolving weather conditions, where the model is better able to focus
on the most critical features for accurate forecasting.

In summary, our focus is on how to better address the challenge of weather and climate
prediction, and we hope that our work can contribute to improving lightning prediction. By
addressing limitations of existing forecasting approaches, this model provides an effective
solution for improving public safety and mitigating the economic impacts of lightning-
related events.

2. Related Work

Lightning forecasting has traditionally relied on NWP models, such as the European
Centre for Medium-Range Weather Forecasts (ECMWF) and the Weather Research and
Forecasting (WRF) model developed by the U.S. National Center for Atmospheric Research
(NCAR) [24]. These models are effective at capturing large-scale atmospheric phenomena,
such as frontal systems and tropical cyclones, providing essential meteorological context for
lightning prediction [25,26]. However, their coarse spatial resolution, typically several kilo-
meters, limits their ability to accurately represent the localized and transient characteristics
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of lightning events. For example, Lynn et al. [27] enhanced the Lightning Potential Index
(LPI) within the WRF model to predict hourly lightning flash density at a grid resolution of
1.33 km, demonstrating its applicability in high-resolution scenarios. Despite these efforts,
simulated flash counts showed a weak correlation with observational data, highlighting
challenges in operational real-time applications due to computational demands and data
quality limitations. These constraints point to the need for alternative methods capable of
improving both the precision and efficiency of lightning forecasting.

To address the limitations of NWP models, data-driven approaches, particularly deep
learning, have gained attention for their ability to leverage extensive historical datasets
to identify complex meteorological patterns and enable near-real-time predictions [28,29].
Deep learning models, such as CNNs and RNNs, are frequently used due to their comple-
mentary strengths in capturing spatial and temporal dependencies within meteorological
data [30–32]. CNNs, for instance, excel at extracting spatial features from grid-based
datasets, such as radar or satellite observations. For example, Sebastian Brodehl et al. [33]
developed a CNN lightning prediction framework utilizing geostationary satellite images.
Inspired by U-Net [34] and enhanced with ResNet-v2 [35] residual blocks, their model
effectively captured spatial lightning patterns across three-dimensional datasets, including
temporal sequences, leading to an improvement in prediction accuracy. However, CNNs
primarily focus on spatial features and are less effective in modeling the temporal evolution
of lightning events.

RNNs, particularly long short-term memory (LSTM) networks, complement CNNs
by excelling at modeling temporal sequences [36–38]. For instance, Geng et al. (2019) [39]
introduced a hybrid model, LightNet, combining CNNs and LSTM to predict lightning
occurrences. In this framework, the CNNs extracted spatial features, while LSTM modeled
temporal dependencies based on radar observations. This hybrid approach showed better
performance than standalone CNNs or RNNs. However, traditional RNN architectures
often encounter issues such as vanishing or exploding gradients when processing large-
scale spatiotemporal datasets, which limits their scalability and robustness.

To overcome these challenges, recent studies have explored advanced hybrid models
that integrate multi-scale feature extraction and attention mechanisms [40,41]. For example,
U-Net architectures embedded within recurrent convolutional neural networks (RCNNs)
mitigate gradient issues and enhance temporal modeling capabilities. However, these
RCNNs often rely on ResNet structures for spatial feature extraction, which lack effective
mechanisms for multi-scale feature interaction and fail to comprehensively capture the
complex spatiotemporal patterns required for lightning forecasting [10].

Building on these advancements, we propose a novel model, the SCE-RCNN, to ad-
dress these limitations. At its core, SCE-RCNN introduces a multi-scale spatial–channel
attention mechanism, which is designed to enhance the model’s ability to capture com-
plex spatiotemporal patterns in lightning forecasting. This mechanism comprises two key
components: the Intra-Scale Joint Attention (ISJA) module and the CSCF module. The
ISJA module operates within individual scales by integrating spatial and channel atten-
tion to refine feature representations. It dynamically identifies critical spatial regions and
assigns adaptive weights to feature channels, allowing the model to prioritize relevant
aspects of meteorological data efficiently. On the other hand, the CSCF module facilitates
interactions across multiple scales, enabling the integration of fine-grained local features
with broader global context. By using a query-key-value attention framework, the CSCF
module balances contributions from different scales, capturing both localized lightning
activity and large-scale atmospheric patterns. Together, these modules form the unified
multi-scale spatial–channel attention mechanism, which equips SCE-RCNN with the capac-
ity to model hierarchical meteorological phenomena more effectively, offering incremental
improvements in the accuracy of lightning forecasting.
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3. Lightning Forecasting System

This section provides a comprehensive overview of the lightning forecasting system,
designed to harness multi-source data through a structured workflow, from data acquisition
to forecast generation. The system utilizes diverse datasets to capture various atmospheric
factors contributing to lightning formation, enhancing the depth and precision of predic-
tions. As shown in Figure 1, the system operates in four main stages, creating a pipeline
for real-time lightning forecasting: data preprocessing, model training, feature extraction,
and prediction generation. The forecasting system relies on a range of data inputs that each
capture essential aspects of atmospheric behavior. The Digital Elevation Model (DEM) pro-
vides critical topographical information, helping the model to understand how landscape
variations influence storm behavior. Complex terrains, such as mountains or coastal areas,
can affect weather patterns significantly, impacting both storm intensity and movement.
These topographical data are complemented by radar reflectivity measurements, which
capture precipitation patterns and intensity, providing insight into storm cell structures.
Radar data are crucial for identifying convective activity, a key factor in lightning prediction,
as increased precipitation reflectivity often correlates with thunderstorm formation.

Figure 1. Model workflow diagram.

Satellite observations further enhance the system by supplying high-resolution data on
cloud properties. Using instruments like Spinning Enhanced Visible and Infrared Imager
(SEVIRI), which provide visible and infrared data, the model receives details on cloud-
top height and thickness, both of which are strong indicators of the vigor of convective
processes within the atmosphere. Taller, denser clouds generally signal stronger convective
activity, suggesting a higher probability of lightning. Additionally, NWP data from models
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such as Consortium for Small-scale Modeling (COSMO) add predictive power by supplying
variables related to atmospheric instability, such as Convective Available Potential Energy
(CAPE) and Convective Inhibition (CIN). CAPE quantifies the energy available for storm
growth, while CIN represents the resistance to convection, helping the model to gauge the
likelihood of thunderstorm development.

Ground-truth data from the European Cooperation for Lightning Detection (EUCLID)
network, which records the timing and precise location of lightning events, plays a critical
role in supervising the model during training. This dataset serves as a reliable benchmark,
ensuring that the model aligns with observed lightning occurrences and thus improves the
accuracy of future predictions. Utilizing such a diverse set of data sources poses challenges
in terms of spatial and temporal consistency. Therefore, to ensure uniformity, all data are
resampled to a common grid resolution of 1 km and aligned to a standardized temporal
scale. This preprocessing step is essential for allowing the model to process the data
coherently, enhancing feature compatibility across datasets.

Feature extraction is a pivotal part of the system, transforming raw data into mean-
ingful inputs that capture the complexities of atmospheric conditions associated with
lightning. From the DEM, the system derives topographic indicators to account for terrain
impacts on storm formation and movement. Radar data contribute dynamic features such
as reflectivity gradients and storm growth rates, capturing the evolving nature of storms
linked to lightning events. Satellite data provide cloud characteristics, such as changes in
cloud-top height and optical thickness, which are critical for assessing storm intensity and
identifying the likelihood of convective lightning activity. Additionally, NWP data offer
indices of atmospheric instability, helping the model to better understand environmental
factors that may trigger lightning.

Following feature extraction, the system enters the model training phase, where a
deep learning framework, such as an SCE-RCNN, is applied. During training, the model
learns patterns within the extracted features, identifying correlations that are predictive of
lightning events. The training process includes hyperparameter tuning, where parameters
like learning rate, batch size, and network depth are optimized for maximum predictive
accuracy and model stability. Attention mechanisms within the model dynamically focus
on essential features, such as localized convective patterns, ensuring that critical aspects of
each dataset are emphasized in predictions.

To capture complex spatial and temporal relationships, the SCE-RCNN employs
multi-scale convolutional kernels that allow it to detect both local, fine-grained features
and broader atmospheric trends. This cross-scale capability is crucial for recognizing the
multi-dimensional characteristics of lightning, enabling the model to make more accurate
predictions under varying weather conditions. By utilizing a cross-scale cooperative fusion
module, the model facilitates feature interactions across scales, allowing information at
each level to complement and reinforce predictions.

The final stage in the workflow involves generating real-time predictions based on the
trained model. Outputs include the probability of lightning within specific time frames
and geographic locations, providing actionable insights for stakeholders like emergency
response teams, aviation operators, and utility companies. These forecasts empower
decision-makers to implement timely precautions, minimizing the risks and damages
associated with lightning.

System performance is evaluated through key metrics, including POD, FAR, and CSI.
These metrics are used to assess the accuracy and reliability of the system, ensuring that it
provides meaningful and actionable predictions. Extensive validation against historical
lightning events enables a robust evaluation, allowing for ongoing refinements that further
enhance the system’s predictive capabilities and reliability.

In summary, this lightning forecasting system represents an advancement in predic-
tive meteorology. By integrating multi-source data and using advanced deep learning
techniques, it delivers high-resolution and timely forecasts. This system offers substan-
tial improvements in forecast accuracy and interpretability, especially in diverse terrains
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and complex atmospheric conditions, making it a valuable tool for proactive lightning
risk management.

4. Multi-Scale Spatial–Channel Attention Mechanism

The recurrent convolutional model extracts spatial features via convolutional layers
while capturing the temporal dynamics of lightning activity with RNN layers. Inspired by
the U-Net architecture, it incorporates shortcut connections that enable efficient integration
of spatial and temporal information. This design allows the model to process multi-source
data, including radar, satellite remote sensing, ground-based lightning detection, and NWP
data, facilitating accurate lightning forecasting. By combining local and global information
across multiple resolutions, this architecture proves highly effective for multi-scale feature
extraction in lightning prediction tasks.

To address the complexity of lightning activity and fully leverage multi-scale feature
extraction, a multi-scale spatial–channel attention mechanism was developed and inte-
grated into the base model. This module enhances the model’s ability to capture intricate
spatiotemporal features, thereby improving both interpretability and processing efficiency.
The workflow of this module is illustrated in Figure 2.

Figure 2. The workflow of the multi-scale spatial–channel attention mechanism.

This mechanism applies spatial and channel attention to convolutional features with
kernel sizes of 3 × 3, 5 × 5, 7 × 7, enhancing the model’s sensitivity to spatial and channel
information across different scales. By allowing flexible weighting of multi-dimensional
meteorological data, the model can prioritize key features more effectively. Recognizing
the inherent relationships between spatial and channel dimensions, we designed an ISJA
module to fuse spatial and channel features at the same scale, producing an initial fused
feature representation. This approach promotes a deeper interaction of channel information
within each scale, further refining feature accuracy.

To strengthen multi-scale fusion, we introduced a CSCF module that consolidates
joint attention outputs from various scales. This preserves critical features at each level,
reduces information loss, and supports a balanced fusion of global and local information.
The progressive fusion approach enables the model to better adapt to complex terrains and
diverse weather conditions, improving the precision and robustness of lightning forecasting.
This multi-scale spatial–channel attention mechanism is a key innovation in our approach,
highlighting its strong potential for practical lightning prediction applications.
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4.1. Intra-Scale Joint Attention

The ISJA module integrates spatial and channel information within a single scale to
enhance lightning prediction accuracy. The channel attention component dynamically
assigns weights to each channel, identifying the most relevant meteorological data channels
associated with lightning events. Recognizing that each type of meteorological datum
represents distinct physical characteristics, this module automatically prioritizes channels
that offer the most valuable insights for lightning prediction.

The spatial attention component, in contrast, emphasizes spatial regions linked to
lightning activity by analyzing the spatial distribution within the input feature map. Given
that lightning often follows specific regional patterns, this module enables the model to
focus selectively on these critical areas while filtering out irrelevant information. The
workflow of this module is shown in Figure 3.

Figure 3. Intra-scale joint attention module.

4.1.1. Compressed Features

In the intra-scale joint attention module, the primary function of the compression oper-
ation is to perform global pooling on the input feature map, capturing global information in
the form of channel and spatial descriptors. By compressing along different dimensions, the
model extracts essential features related to both channels and spatial structure, providing
effective global context information for subsequent attention mechanisms.

To generate global spatial features, we apply Global Average Pooling (GAP) and
Global Max Pooling (GMP) along the spatial dimension of the input feature map. Let the
input feature map be X ∈ RH×W×C, where H and W represent the height and width of
the feature map, respectively, and C represents the number of channels. The calculation
formula of average value is listed as follows:
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Xc
avg =

1
H × W

H

∑
i=1

W

∑
j=1

Xi,j,c (1)

where, Xc
avg ∈ R1×1×C represents the average value of the c-th channel, reflecting the mean

activation strength of that channel across the entire spatial extent. The calculation formula
of maximum value is listed as follows:

Xc
max = max

i=1,...,H;j=1,...,W
Xi,j,c (2)

where, Xc
max ∈ R1×1×C represents the maximum value of the c-th channel, capturing

the most significant activation strength within that channel. In the multi-scale spatial–
channel attention mechanism, to meet the real-time requirements and computational
constraints of lightning nowcasting, we use a 1 × 1 convolution in place of the traditional
multilayer perceptron (MLP) for processing global spatial features Xavg and Xmax. The
1 × 1 convolution effectively generates channel weights while reducing computational
complexity, making it more suitable for real-time applications. The global spatial features
Xavg and Xmax are each passed through 1 × 1 convolutions to obtain the corresponding
weight matrices Wavg and Wmax:

Wavg = Conv1 × 1(Xavg) (3)

Wmax = Conv1 × 1(Xmax) (4)

The weight matrices Wavg and Wmax are combined through element-wise addition to
obtain the final channel attention weight matrix Xchannel:

Xchannel = Wavg + Wmax (5)

In the intra-scale joint attention module, global channel features are generated by
applying global pooling operations along the channel dimension of the input feature
map. This process extracts global feature information for each spatial location across all
channels, which is then used to generate attention weights for the subsequent spatial
attention step. Specifically, global average pooling and global max pooling are applied
to compress the input feature map, producing the global channel features. Let the input
feature map be X ∈ RH×W×C, where H and W represent the height and width of the feature
map, respectively, and C denotes the number of channels. The global channel features are
calculated as follows:

X(i,j)
avg =

1
C

C

∑
c=1

Xi,j,c (6)

where X(i,j)
avg represents the average activation value of all channels at each spatial location

(i, j). This average value represents the overall channel response at that spatial position.

X(i,j)
max = max

c=1,...,C
Xi,j,c (7)

where X(i,j)
max represents the maximum activation value across all channels at each spatial

location. This value highlights the strongest activation signal for each spatial position,
thereby capturing significant spatial regions.

Through global average pooling and max pooling, the resulting global channel features
Xavg and Xmax represent the average and maximum channel activations for each spatial
location, respectively, providing global information for each position. This helps the
attention mechanism focus on spatial regions with key roles.
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Similar to the treatment of global spatial features, we use 1 × 1 convolution to process
the features here as well. We input Xavg and Xmax into 1 × 1 convolution to obtain the

corresponding weight matrices Wspatial
avg and Wspatial

max :

Wspatial
avg = Conv1 × 1(Xavg) (8)

Wspatial
max = Conv1 × 1(Xmax) (9)

In the intra-scale joint attention module, the weight matrices Wspatial
avg and Wspatial

max are
also element-wise added to generate the final global spatial feature:

Xspatial = Wspatial
avg + Wspatial

max (10)

This combined feature effectively captures the critical spatial characteristics derived
from both the average and maximum activations, helping to guide the attention mechanism
in highlighting the most relevant regions for the model’s prediction.

4.1.2. Intra-Scale Fusion

In the intra-scale fusion module, we designed a gating mechanism to dynamically
balance the contribution between the global spatial and global channel features. Since
spatial and channel features often express different levels of information, simply concate-
nating them may amplify irrelevant features, introducing noise—especially in complex
or unevenly distributed data. The gating mechanism allows us to balance these two
types of information, ensuring the model simultaneously focuses on both without being
overwhelmed by noise.

The gating mechanism also enhances model interpretability by dynamically adjusting
the weights of channel and spatial features, making the decision-making process more
transparent. This helps us understand if the model is focusing more on channel or spa-
tial features in different scenarios. Given that the global spatial feature has dimensions
1 × 1 × C, while the global channel feature has dimensions H × W × 1, they cannot be
directly concatenated. To solve this issue, we broadcast both descriptors to the same shape
of H × W × C:

Xchannel_expanded = Xchannel (broadcasted to) H × W × C (11)

Xspatial_expanded = Xspatial (broadcasted to) H × W × C (12)

To fuse the expanded global spatial and channel features, we designed a gating weight
matrix G to control their contributions. Specifically, the expanded features are concatenated
and passed through an MLP, followed by a Sigmoid activation function to generate the
gating weights in the range [0, 1]:

G = σ(MLP(Concat(Xchannel_expanded, Xspatial_expanded))) (13)

where G ∈ RH×W×C represents the contribution ratio for each spatial position and channel.
The Sigmoid activation ensures that G values are between 0 and 1, allowing the model to
automatically adjust the balance between channel and spatial features. We then generate
the fused feature Xfused:

Xfused = G · Xchannel_expanded + (1 − G) · Xspatial_expanded (14)

Finally, the fused feature Xfused is applied as an attention weight to the original input
feature map X, producing the final output Xoutput:

Xoutput = X ⊙ Xfused (15)
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This approach effectively fuses spatial and channel information, ensuring that the
most relevant features are highlighted, leading to more accurate predictions.

4.2. Cross-Scale Cooperative Fusion

The complexity of lightning forecasting tasks stems primarily from the highly dynamic
spatiotemporal characteristics of lightning, which cannot be effectively captured by a
single scale capable of handling both local details and global features simultaneously.
Existing multi-scale approaches, such as multi-branch inception networks and bilateral
information exchange modules, have made progress in multi-scale feature extraction and
interaction. However, these methods often either concatenate multi-scale features along the
channel dimension or restrict feature exchange within a single scale, limiting their ability
to fully exploit interactions between features across scales. To address these limitations, we
propose the CSCF module, which introduces a novel mechanism for cooperative fusion
between features at different scales. This module dynamically adjusts and fuses global
and local information, thereby enhancing the model’s capability to capture the complex
spatiotemporal patterns of weather phenomena. The core concept of the CSCF module is
to enable cooperative fusion across multiple scales, allowing features to mutually enhance
each other and progressively fuse into a unified representation. The workflow of this
module is illustrated in Figure 4.

Figure 4. Cross-scale cooperative fusion module.

Through the intra-scale joint attention module, we obtain spatial–channel-fused fea-
tures at three different scales, denoted as Xs1

f used, Xs2
f used, and Xs3

f used. We map the features of
each scale into query, key, and value spaces using an attention mechanism to compute the
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similarity and feature reconstruction between different scales. For scale s1, we define the
following linear transformations to generate the query, key, and value:

Q1 = WQXs1
f used, K1 = WKXs1

f used, V1 = WV Xs1
f used (16)

Here, Qs1 is the query vector for scale s1, representing the information that small-
scale features seek to obtain from other scales; Ks1 is the key vector at the corresponding
scale, representing the information it can provide; and Vs1 is the value vector at this scale,
representing the actual features provided. Similarly, we can perform the same operations
for the remaining scales s2 and s3.

After obtaining the query, key, and value representations, we perform cross-scale dot-
product attention to compute the similarity and exchange information between different
scales. For interaction between scales si and sj, the attention calculation is given by

Xsi,sj
inter = Attention(Xsi

f used, Xsj
f used) = Softmax

(
QiKT

j√
dk

)
Vj (17)

This fusion mechanism allows features from different scales to exchange information.
Through this mechanism, each scale can acquire complementary information from others,
such as small scales obtaining global information from large scales and vice versa. After
completing cross-scale interaction, we need to combine the interaction results of each
scale to generate enhanced features for each scale. For scale s1, the enhanced feature is
expressed as

Xs1
enhanced = αs1Xs1

f used + βs1,s2Xs1,s2
inter + γs1,s3Xs1,s3

inter (18)

Here, αs1, βs1,s2, and γs1,s3 are learnable weight parameters used to control the contri-
bution of each scale to the final feature.

Similarly, the enhanced representations for scales s2 and s3 are

Xs2
enhanced = αs2Xs2

f used + βs2,s1Xs2,s1
inter + γs2,s3Xs2,s3

inter (19)

Xs3
enhanced = αs3Xs3

f used + βs3,s1Xs3,s1
inter + γs3,s2Xs3,s2

inter (20)

Subsequently, we perform global average pooling on the enhanced features of the three
scales to obtain global feature representations, then model the inter-channel correlations
through a 1 × 1 convolution, and generate global spatial features through a Sigmoid
activation function:

Fsi = Sigmoid(Conv(GAP(Xsi
enhanced))) (21)

After obtaining the three global spatial features, we concatenate them along the second
dimension to obtain Fconcat, apply the Softmax function along the second dimension to
obtain their respective weight representations, and finally perform element-wise multipli-
cation with the corresponding inputs and sum them to obtain the final Xoutput:

Fconcat = Concat(Fs1, Fs2, Fs3) (22)

W = Softmax(Fconcat) (23)

Xoutput = W[: 0 :]⊙ Xs1
enhanced + W[: 1 :]⊙ Xs2

enhanced + W[: 2 :]⊙ Xs3
enhanced (24)

5. Experiment
5.1. Experimental Setup

Following the setup of the baseline model, we configure model training to predict the
next N f = 12 time steps using past Np = 6 time steps and NWP data. Specifically, our
training scheme is designed to forecast lightning occurrences over the next N f = 12 time
steps based on Np = 6 historical time steps and NWP data. With a time resolution of 5 min,
this setup uses data from the past 30 min to predict lightning activity over the next 60 min.
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During each training epoch, the data generator randomly traverses the starting time points
of all training sequences. For each starting point, only one training sample is generated
per epoch, selected at random from all possible options. This approach minimizes overlap
between training samples, reducing the risk of model overfitting to specific large-scale
convective patterns.

The model training was conducted on a server equipped with NVIDIA Tesla V100
GPUs, meeting our computational requirements. Under this hardware environment, each
training epoch takes approximately 60 min. To manage the training duration, we employed
an early stopping strategy: if validation loss shows no significant improvement over three
consecutive epochs, the learning rate is reduced to one-fifth of its current value; if no
improvement occurs over six consecutive epochs, training is stopped, and the model
parameters with the lowest validation loss are saved. Although each training epoch is
lengthy, loading the model on the same device for testing and generating results takes only
about 20 s, excluding dataset loading time.

5.2. Datasets and Models

The dataset used in this study was sourced from the Swiss Meteorological Office (Me-
teoSwiss) and the EUCLID. It includes various data types such as lightning observations,
radar reflectivity, satellite remote sensing imagery, NWP data, and topographic data. The
dataset covers Central and Western Europe, with a particular focus on Switzerland and the
surrounding regions, spanning approximately 710 km east–west and 640 km north–south.
Data collection occurred between April and September of 2020, during which time the
data were selectively downsampled to prioritize areas and periods with active convective
weather, ensuring the dataset’s relevance and effectiveness for studying dynamic weather
patterns. The selection of this region for the study was based on the high frequency of
thunderstorms, particularly in the Alpine and Central European regions, where lightning
occurrence rates are among the highest in Europe. The most intense thunderstorm activity
typically occurs between April and August each year [42]. Additionally, the peak thunder-
storm season in northern, eastern, and central Europe occurs in July and August, while
the peak in western and southeastern Europe is observed in May and June. These char-
acteristics make this region particularly suitable for studying thunderstorms and related
convective weather processes.

The lightning observation data consist of ground-based measurements from the EU-
CLID network, and a high-precision detection system with a temporal resolution of 5 min
and a spatial resolution of 1 km, capturing lightning density and intensity in the target area.
The radar data, sourced from C-band dual-polarization Doppler radar, provide reflectivity
information that details precipitation intensity and spatial distribution within the region.
These radar data have been standardized and horizontally projected to align with the
other data sources. Satellite remote sensing data include meteorological observations over
Central and Western Europe, primarily from the SEVIRI instrument on the Meteosat Second
Generation-3 (MSG-3) satellite, covering multiple visible and infrared bands. The NWP
data come from the COSMO model, offering meteorological predictors such as CAPE and
CIN. Additionally, topographic data, in the form of high-resolution DEM data, are used to
account for the impact of terrain on convective processes. All data were resampled to a
1-km grid and normalized for consistency, with the detailed data selection and processing
methods described in [10].

For model validation, we compared the proposed method with baseline models
selected from [10]. The Eulerian Persistence Model serves as the simplest baseline, assuming
that the spatial distribution and location of lightning activity remain constant over time
steps. In other words, it assumes that lightning positions and intensities observed in one
time step will persist into the next, without accounting for the movement or evolution of
the lightning systems. The Lagrangian Persistence Model, an extension of the Eulerian
model, updates the lightning field’s position by extrapolating its motion. This is achieved
through the Lucas–Kanade method using RZC radar data, which estimates the movement
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of the lightning field and applies it to the previous time step’s lightning distribution to
predict activity in the subsequent time step.

Additionally, to demonstrate the superiority of our model, we included a state-of-the-
art model for lightning forecasting as a comparison. This model combines CNNs and RNNs
to capture the spatiotemporal characteristics of lightning by processing multi-source data
and incorporates shortcut connections, similar to a U-Net structure, between the encoder
and decoder.

These models were used as baselines in our experiments to evaluate the improvements
offered by the proposed model in lightning forecasting tasks.

5.3. Experiment Results

Figure 5 presents the short-term forecast results of lightning activity within the next
hour, generated using the SCE-RCNN model.

Figure 5. Predicted lightning for the next hour across regions and intensities.

Figure 5 comprises three sub-figures illustrating distinct spatial scenarios: (a) no
lightning occurrence, (b) localized lightning occurrences, and (c) widespread lightning
events. Each sub-figure demonstrates changes in rain rate, lightning, high-resolution visible
(HRV) imagery, and cloud-top height (CTH) across multiple time points (from −15 min
to +60 min). By jointly predicting these variables, the model effectively simulates the
development and progression of thunderstorms and related meteorological phenomena
under varying conditions.

Sub-figure (a) showcases the model’s ability to predict the absence of lightning activity
accurately, confirming its reliability in stable weather conditions. Sub-figure (b) highlights
the model’s capability to capture the spatial distribution and intensity of localized lightning
occurrences, aligning well with observed data. This includes identifying changes such
as gradual increases in rain rate and shifts in cloud structures, as depicted in the HRV
imagery. Sub-figure (c) demonstrates the model’s performance under a more complex
scenario involving widespread lightning activity. The forecast maps effectively reflect
both the spatial extent and intensity of lightning, emphasizing the model’s robustness in
dynamic and challenging weather situations.

By incorporating multi-scale convolutional kernels and spatial–channel attention
mechanisms, the model captures key features at different spatial scales, effectively pre-
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dicting the probability of lightning occurrence. Additionally, the cross-scale cooperative
fusion module facilitates information exchange across different scales, ensuring high pre-
diction accuracy and reliability under complex weather conditions. In the forecast map,
the probability of lightning occurrence is indicated by color intensity, with brighter areas
corresponding to higher probabilities. The model dynamically adjusts these probability
outputs to achieve more accurate short-term lightning forecasts.

However, the model’s predictive performance declines noticeably as forecast time
increases. We use the CSI as the evaluation metric, as it effectively reflects the model’s
ability to accurately predict lightning events. Detailed CSI data are shown in Figure 6.

Figure 6. Critical success index (CSI) over time for different models.

This phenomenon indicates that although the SCE-RCNN model performs well in
the short term (e.g., +5 min and +15 min), its accuracy faces challenges over longer time
frames (e.g., +30 min and +60 min). However, compared to other models, the rate of
decline is slightly mitigated, primarily due to the highly random and complex nature
of convective weather phenomena like lightning. As time progresses, the uncertainty of
weather systems increases, leading to a decline in predictive performance. Nonetheless,
due to more comprehensive feature extraction and an emphasis on potential correlations
across various data sources, our model experiences a less pronounced decline in accuracy
over extended forecasts. Maintaining prediction accuracy at longer time scales remains a
challenge that requires further research.

The performance of the SCE-RNN model was compared with the baseline models
RCNN, Lagrangian, and Eulerian on the same test dataset to evaluate the effectiveness of
the proposed model in lightning event prediction. The specific results are shown in Table 1,
listing various performance metrics, including POD, FAR, CSI, Equitable Threat Score (ETS),
Heidke Skill Score (HSS), Pierce Skill Score (PSS), Receiver Operating Characteristic–Area
Under the Curve (ROC AUC), and Precision–Recall–Area Under the Curve (PR AUC).

Table 1. Performance metrics comparison of different models.

Model T POD FAR CSI ETS HSS PSS ROC AUC PR AUC

RCNN 0.426 0.61 0.362 0.453 0.449 0.62 0.607 0.989 0.688
Lagrangian nan 0.473 0.509 0.317 0.313 0.476 0.468 nan nan

Eulerian nan 0.439 0.581 0.273 0.268 0.422 0.432 nan nan
SCE-RCNN 0.426 0.629 0.351 0.467 0.472 0.64 0.618 0.991 0.697

Using a consistent event occurrence threshold (T = 0.426), all models were trained to
achieve their best possible performance. The SCE-RCNN model performed better than the
baseline models across multiple evaluation metrics, including POD, FAR, CSI, and Area
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Under the Curve (AUC). For example, compared to the RCNN model, the SCE-RCNN
model improved the POD from 0.610 to 0.629, i.e., an increase of 3.1%, while the FAR
decreased from 0.362 to 0.351, i.e., a reduction of 3.0%. These results show that the model is
better at detecting lightning events and reducing false alarms, making it more reliable and
stable in practical applications.

The improved performance of the SCE-RCNN model is mainly due to its updated
architecture. The use of multi-scale convolutional kernels allows the model to extract
features at different spatial levels. This helps it to identify both small local details and
larger atmospheric patterns, leading to better detection accuracy. Additionally, the spatial–
channel attention mechanism helps the model focus on key features for lightning prediction
by dynamically assigning importance to different data channels and regions, which reduces
the impact of noise and lowers the FAR.

Further improvements are reflected in metrics such as the ETS and CSI, which in-
creased from 0.449 and 0.453 to 0.472 and 0.467, respectively. These scores indicate that the
model has better overall predictive accuracy and reliability. The CSCF module plays an
important role here, helping the model combine information from both global and local
scales, improving its ability to understand complex weather patterns.

The robustness of the SCE-RCNN model is also evident in its higher HSS and PSS,
which increased from 0.620 and 0.607 to 0.640 and 0.618, respectively. These metrics high-
light the model’s stronger classification accuracy under challenging weather conditions.
Additionally, the ROC AUC and PR AUC metrics saw slight improvements, increasing
from 0.989 to 0.991 and from 0.688 to 0.697, respectively. These gains show the model’s
improved ability to differentiate between lightning and non-lightning events across vari-
ous thresholds.

Although the SCE-RCNN model has 15% more parameters than the RCNN model, it
is more efficient during training. The SCE-RCNN model reached its best performance by
epoch 21, while the RCNN model required 28 epochs. This efficiency is due to the SCE-
RCNN’s advanced feature extraction and integration strategies, which make the learning
process faster and more effective.

In summary, the SCE-RCNN model shows clear advantages in lightning forecasting.
It improves the accuracy and timeliness of predictions for localized and short-term weather
events like lightning. By using multi-scale feature extraction, spatial–channel attention
mechanism, and cross-scale fusion, the model achieves better detection rates and fewer
false alarms, while maintaining reliability across different weather scenarios. These im-
provements demonstrate the model’s potential for use in disaster prevention and weather
forecasting, providing valuable support for risk management and emergency response.

5.4. Ablation Study

To evaluate the specific contributions of the proposed modules in enhancing the
lightning forecasting model, we conducted detailed ablation experiments. The experimental
design included three versions of the model: the baseline model (original RCNN), the
baseline model augmented with the multi-scale spatial–channel attention mechanism (SC-
RCNN), and the complete SCE-RCNN model. The results of the ablation experiments
are summarized in Table 1, and the performance metrics of each model version were
quantitatively analyzed using the POD, FAR, CSI, and ROC AUC. The specific results are
shown in Figure 7.

To assess the specific contributions of the proposed modules in enhancing the per-
formance of the lightning forecasting model, we performed a comprehensive ablation
study. The experimental design included three model versions: the baseline model (original
RCNN), the SC-RCNN model with the addition of the multi-scale spatial–channel attention
mechanism to the baseline model, and the complete SCE-RCNN model. We used key
metrics such as POD, FAR, CSI, and ROC AUC to quantitatively analyze the performance
of each model version.
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Figure 7. Performance metrics comparison among different model versions.

The experimental results show that the addition of the multi-scale spatial–channel
attention mechanism improved the model’s performance. Specifically, the POD of the SC-
RCNN model increased from 0.610 in the baseline model to 0.620, indicating an enhanced
capability of the model in accurately identifying lightning events. This improvement may
be attributed to the attention module’s ability to highlight key features and enhance the
model’s focus on important regions. However, the FAR slightly increased by 0.003 (from
0.362 to 0.365), possibly because the attention mechanism amplified some noise signals
while emphasizing target features. The CSI improved from 0.453 to 0.460, indicating an
overall increase in the model’s predictive accuracy, and the ROC AUC increased from
0.989 to 0.990, suggesting an enhanced ability of the model to distinguish positive and
negative samples.

Furthermore, the complete SCE-RCNN model achieved improvements across all
metrics. The POD increased to 0.629, a 3.1% improvement over the baseline model, demon-
strating the model’s superior performance in capturing lightning events. This enhancement
is attributed to the introduction of feature enhancement and multi-scale fusion strategies,
which allow the model to extract and utilize multi-scale features more comprehensively.
The FAR decreased to 0.351, indicating a noticeable reduction in false alarms and more
reliable prediction results, likely due to the effective suppression of noise by the multi-scale
fusion. The CSI improved to 0.467, reflecting an enhancement in the model’s overall predic-
tive capability. The ROC AUC reached 0.991, approaching an ideal state, further validating
the model’s discriminative power. These results demonstrate that the complete model,
incorporating multi-scale attention, feature enhancement, and multi-scale fusion strate-
gies, has an advantage in improving the accuracy and reliability of lightning forecasting,
thus validating the practical value and superiority of the proposed method in lightning
forecasting tasks.

6. Conclusions

The SCE-RCNN model improves the spatial and temporal resolution of lightning
forecasts while reducing false alarm rates. By integrating multi-scale feature extraction,
spatial–channel attention mechanism, and cross-scale fusion modules, the model captures
spatiotemporal patterns and enhances detection performance. These improvements con-
tribute to better stability and accuracy in lightning prediction, making the model applicable
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to scenarios such as emergency management, aviation, and power systems. Experimental
results indicate that the model provides measurable improvements over traditional deep
learning models, demonstrating its potential for practical applications.

However, there is room for improvement. First, the multi-scale attention and fusion
modules increase computational complexity, posing challenges for real-time deployment.
Future work could focus on optimizing these modules to reduce redundant features and
enhance efficiency. Second, the current model evaluation relies on specific meteorologi-
cal datasets. Expanding validation to include globally diverse datasets across different
climatic and regional conditions would help to improve the model’s generalization and
practical applicability.
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