Statistical Seismo-Ionospheric Influence with the Focal Mechanism under Consideration
<p>Fluctuations in electron density registered by the CSES satellite on 28 December 2021, 11 days before the Menyuan <span class="html-italic">M</span><sub>S</sub> 6.9 EQ, Qinghai Province, China. Obvious perturbations related to this Menyuan event are labeled with a black arrow [<a href="#B55-atmosphere-14-00455" class="html-bibr">55</a>].</p> "> Figure 2
<p>Histogram of averaged perturbation number <span class="html-italic">n</span> derived from different datasets of PAP-3s, LAP-3s, IAP-4s, and ISL-4s for different types of real EQs: rupture EQs (light grey bar) and strike-slip EQs (light purple bar).</p> "> Figure 3
<p>Histogram of the detection rate <span class="html-italic">r</span> gained by different datasets of PAP-3s, LAP-3s, IAP-4s, and ISL-4s for different types of real EQs: rupture EQs (light grey bar) and strike-slip EQs (light purple bar).</p> "> Figure 4
<p>Histogram of averaged ionospheric number <span class="html-italic">n</span> derived from different datasets of PAP-3s, LAP-3s, IAP-4s, and ISL-4s for different types of randomly generated EQs: rupture EQs (light grey bar) and strike-slip EQs (light purple bar).</p> "> Figure 5
<p>Histogram of the detection rate <span class="html-italic">r</span> derived from different datasets of PAP-3s, LAP-3s, IAP-4s, and ISL-4s for different types of randomly generated EQs: rupture EQs (light grey bar) and strike-slip EQs (light purple bar).</p> "> Figure 6
<p>Histogram of averaged perturbation number <span class="html-italic">n</span> determined using different datasets of PAP-3s, LAP-3s, IAP-4s, and ISL-4s for commonly detected EQs: rupture EQs (light grey bar) and strike-slip EQs (light purple bar), detected by the CSES satellite and DEMETER satellite, respectively.</p> ">
Abstract
:1. Introduction
2. Description of the Data Processing Method
2.1. Dataset
2.2. Data Processing Method
3. Statistical Seismo-Ionospheric Influence
4. To Confirm the Results
4.1. Comparison with Randomly Generated EQs
4.2. Results for Commonly Detected EQs
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, G.W. Magnetic disturbances preceding the 1964 Alaska earthquake. Nature 1964, 203, 508–509. Available online: http://www.nature.com/articles/203508b0 (accessed on 1 January 2022). [CrossRef]
- Fraser-Smith, A.C.; Bernardi, A.; McGill, P.R.; Ladd, M.E.; Helliwell, R.A.; Villard, O.G., Jr. Low-frequency magnetic measurements near the epicenter of the MS 7.1 Loma Prieta earthquake. Geophys. Res. Lett. 1990, 17, 1465–1468. [Google Scholar] [CrossRef]
- Bernardi, A.; Fraser-Smith, A.C.; McGill, P.R.; Villard, O.G., Jr. Magnetic field measurements near the epicenter of the MS 7.1 Loma Prieta earthquake. Phys. Earth Planet. Int. 1991, 68, 45–63. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Kopytenko, Y.A.; Voronov, P.M.; Kopytenko, E.A.; Matiashvili, T.G.; Fraser-Smith, A.C.; Bernardi, A. Results of ULF Magnetic field measurements near the epicenters of the Spitak (MS 6.9) and Loma Prieta (MS 7.1) earthquakes: Comparative analysis. Geophys. Res. Lett. 1992, 19, 1495–1498. [Google Scholar] [CrossRef]
- Kopytenko, Y.A.; Matiashvili, T.G.; Voronov, P.M.; Kopytenko, E.A.; Molchanov, O.A. Detection of ultra-low frequency emissions connected with the Spitak earthquake and its aftershock activity, based on solar pulsations data at Dusheti and Vardzia observatories. Phys. Earth Planet. Int. 1993, 77, 85–95. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kawate, R.; Molchanov, O.A.; Yumoto, K. Results of ultra-low frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. 1996, 23, 241–244. [Google Scholar] [CrossRef]
- Kawate, R.; Molchanov, O.A.; Hayakawa, M. Ultra-low frequency magnetic fields during the Guam earthquake of 8 August 1993 and their interpretation. Phys. Earth Planet. Int. 1998, 105, 229–238. [Google Scholar] [CrossRef]
- Li, M.; Parrot, M. Statistical analysis of an ionospheric parameter as a base for earthquake prediction. J. Geophys. Res. Space Physics 2013, 118, 3731–3739. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Tan, H.; Cao, M. Ionospheric influence on the seismo-telluric current related to electromagnetic signals observed before the Wenchuan MS 8.0 earthquake. Solid Earth 2016, 7, 1405–1415. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yao, L.; Wang, Y.L.; Parrot, M.; Hayakawa, M.; Lu, J.; Tan, H.; Xie, T. Anomalous phenomena in DC–ULF solar daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake. Earth Planet. Phys. 2019, 3, 330–341. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. (Eds.) Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; AGU Geophysical Monograph; Wiley: New York, NY, USA, 2018; 365p. [Google Scholar]
- Akhoondzadeh, M.; Parrot, M.; Saradjian, M.R. Electron and ion density variations before strong earthquakes (M > 6.0) using DEMETER and GPS data. Nat. Hazards Earth Syst. Sci. 2010, 10, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Yu, T.; Wang, M.; Wan, W.; Lei, J.; Liu, L.; Ning, B. Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake? J. Geophys. Res. 2008, 113, A11304. [Google Scholar] [CrossRef]
- Ding, Z.H.; Wu, J.; Sun, S.J.; Chen, J.S.; Ban, P.P. The variation of ionosphere on some days before the Wenchuan Earthquake. Chin. J. Geophys. 2010, 53, 30–38. [Google Scholar] [CrossRef]
- Xu, T.; Hu, Y.L.; Wu, J.; Wu, Z.S.; Suo, Y.C.; Feng, J. Giant disturbance in the ionospheric F2 region prior to the M 8.0Wenchuan earthquake on 12 May 2008. Ann. Geophys. 2010, 28, 1533–1538. [Google Scholar] [CrossRef] [Green Version]
- Píša, D.; Němec, F.; Parrot, M.; Santolík, O. Attenuation of electromagnetic waves at the frequency ~1.7 kHz in the upper ionosphere observed by the DEMETER satellite in the vicinity of earthquakes. Ann. Geophys. 2012, 55, 157–163. [Google Scholar] [CrossRef]
- Píša, D.; Němec, F.; Santolík, O.; Parrot, M.; Rycroft, M. Additional attenuation of natural VLF electromagnetic waves observed by the DEMETER spacecraft resulting from preseismic activity. J. Geophys. Res. 2013, 118, 5286–5295. [Google Scholar] [CrossRef] [Green Version]
- Parrot, M. Statistical analysis of the ion density measured by the satellite DEMETER in relation with the seismic activity. Earthq. Sci. 2011, 24, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Parrot, M. Statistical analysis of automatically detected ion density variations recorded by DEMETER and their relation to seismic activity. Ann. Geophys. 2012, 55, 149–155. [Google Scholar] [CrossRef]
- Li, M.; Parrot, M. “Real time analysis” of the ion density measured by the satellite DEMETER in relation with the seismic activity. Nat. Hazards Earth Syst. Sci. 2012, 12, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Parrot, M. Statistical analysis of the ionospheric ion density recorded by DEMETER in the epicenter areas of earthquakes as well as in their magnetically conjugate point areas. Adv. Space Res. 2018, 61, 974–984. [Google Scholar] [CrossRef]
- Li, M.; Shen, X.; Parrot, M.; Zhang, X.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.; Lu, H.; Guo, F.; et al. Primary joint statistical seismic influence on ionospheric parameters recorded by the CSES and DEMETER satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
- De Santis, A.; Franceschi, G.D.; Spogli, L.; Perrone, L.; Alfonsi, L.; Qamili, E.; Cianchini, G.; Giovambattista, R.D.; Salvi, S.; Filippi, E.; et al. Geospace perturbations induced by the Earth: The state of the art and future trends. Phys. Chem. Earth 2015, 85–86, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Molchanov, O.A. (Eds.) Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Terrapub: Tokyo, Japan, 2002. [Google Scholar]
- Li, M.; Lu, J.; Zhang, X.; Shen, X. Indications of ground-based electromagnetic observations to a possible lithosphere-atmosphere-ionosphere electromagnetic coupling before the 12 May 2008 Wenchuan MS 8.0 earthquake. Atmosphere 2019, 10, 355. [Google Scholar] [CrossRef] [Green Version]
- Molchanov, O.; Fedorov, E.; Schekotov, A.; Gordeev, E.; Chebrov, V.; Surkov, V.; Rozhnoi, A.; Andreevsky, S.; Iudin, D.; Yunga, S.; et al. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere. Nat. Hazards Earth Syst. Sci. 2004, 4, 757–767. [Google Scholar] [CrossRef] [Green Version]
- Pulinets, S.A.; Boyarchuk, K.A.; Hegai, V.V.; Kim, V.P.; Lomonosov, A.M. Quasielectrostatical model of atmosphere-thermosphere-ionosphere coupling. Adv. Space Res. 2000, 26, 1209–1218. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model-An unified concept for earthquake precursors validation. J. Southeast Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Hayakawa, M. Generation of Seismic–Related DC Electric Fields and Lithosphere-Atmosphere-Ionosphere Coupling. Modern Appl. Sci. 2013, 7, 1–25. [Google Scholar] [CrossRef]
- Hayakawa, M.; Pulinets, S. Lithosphere-atmosphere-ionosphere coupling (laic) model. In Electromagnetic Phenomena Associated with Earthquakes; Transworld Research Network: Trivandrum, India, 2009. [Google Scholar]
- Pulinets, S.A.; Davidenko, D. Ionospheric precursors of earthquakes and Global Electric Circuit. Adv. Space Res. 2014, 53, 709–723. [Google Scholar] [CrossRef]
- Kuo, C.L.; Huba, J.D.; Joyce, G.; Lee, L.C. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J. Geophys. Res. Space Phys. 2011, 116, A10317. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Draganov, A.B.; Inan, U.S.; Taranenko, Y.N. ULF magnetic signatures at the earth due to groundwater flow: A possible precursor to earthquakes. Geophys. Res. Lett. 1991, 18, 1127–1130. [Google Scholar] [CrossRef]
- Fenoglio, M.A.; Johnston MJ, S.; Byerlee, J.D. Magnetic and electric fields associated with changes in high pore pressure in fault zones: Application to the Loma Prieta ULF emissions. J. Geophys. Res. 1995, 100, 12951–12958. [Google Scholar] [CrossRef]
- Egbert, G.D. On the generation of ULF magnetic variations by conductivity fluctuations in a fault zone. Pure Appl. Geophys. 2002, 159, 1205–1227. [Google Scholar] [CrossRef]
- Simpson, J.J.; Taflove, A. Electrokinetic effect of the Loma Prieta earthquake calculated by an entire-Earth FDTD solution of Maxwell’s equations. Geophys. Res. Lett. 2005, 32, L09302. [Google Scholar] [CrossRef] [Green Version]
- Parrot, M.; Li, M. Statistical Analysis of the Ionospheric Density Recorded by the Satellite during Seismic Activity. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; AGU Monograph by Ouzounov; Pulinets, D.S., Kafatos, M.C., Taylor, P., Eds.; Wiley: New York, NY, USA, 2018; pp. 319–328. [Google Scholar]
- Sorokin, V.M.; Chmyrev, V.M.; Hayakawa, M. A review on electrodynamic influence of atmospheric processes to the ionosphere. Open J. Earthq. Res. 2020, 9, 113–141. [Google Scholar] [CrossRef] [Green Version]
- Liperovsky, V.A.; Meister, C.V.; Liperovskaya, E.V.; Bogdanov, V.V. On the generation of electric field and infrared radiation in aerosol clouds due to radon emanation in the atmosphere before earthquakes. Nat. Hazards Earth Syst. Sci. 2008, 8, 1199–1205. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Hobara, Y.; Rozhnoi, A.; Solovieva, M.; Molchanov, O.A.; Korepanov, K. Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbations. J. Atmos. Electr. 2011, 31, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Korepanov, V.; Hayakawa, M.; Yampolski, Y.; Lizunov, G. AGW as a seismo-ionospheric coupling responsible agent. Phys. Chem. Earth 2009, 34, 485–495. [Google Scholar] [CrossRef]
- Yang, S.S.; Asano, T.; Hayakawa, M. Abnomal gravity wave activity in the stratosphere prior to the 2016 Kumamoto earthquakes. J. Geophys. Res. Space Phys. 2019, 124, 1410–1425. [Google Scholar] [CrossRef]
- Peter, M.S. Introduction to Seismology; Cambridge University Press: Cambridge, UK, 1999; 272p. [Google Scholar]
- Stein, S.; Wysession, M. An Introduction to Seismology, Earthquakes, and Earth Structure; Blackwell Publishing: Hoboken, NJ, USA, 2003; 510p. [Google Scholar]
- Parrot, M.; Berthelier, J.J.; Lebreton, J.P.; Sauvaud, J.A.; Santol’ık, O.; Blecki, J. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth 2006, 31, 486–495. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, X.; Yuan, S.; Wang, L.; Cao, J.; Huang, J.; Zhu, X.; Piergiorgio, P.; Dai, J. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Berthelier, J.J.; Godefroy, M.; Leblanc, F.; Seran, E.; Peschard, D.; Gilbert, P.; Artru, J. IAP, the thermal plasma analyzer on DEMETER. Planet. Space Sci. 2006, 54, 487–501. [Google Scholar] [CrossRef]
- Yan, R.; Guan, Y.; Shen, X.; Huang, J.; Zhang, X.; Liu, C.; Liu, D. The Langmuir Probe onboard CSES: Data inversion analysis method and first results. Earth Planet. Phys. 2018, 2, 479–488. [Google Scholar] [CrossRef]
- Liu, C.; Guan, Y.; Zheng, X.; Zhang, A.; Piero, D.; Sun, Y. The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite. Sci. China Tech. Sci. 2018, 62, 829–838. [Google Scholar] [CrossRef]
- Yang, Y.; Zeren, Z.; Shen, X.; Chu, W.; Huang, J.; Wang, Q.; Yan, R.; Xu, S.; Lu, H.; Liu, D. The first intense solar storm event recorded by the China Seismo Electromagnetic Satellite. Space Weather. 2020, 18, e2019SW002243. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Zeren, Z.; Shen, X.; Zhao, S.; Yan, R.; Wang, X.; Liu, C.; Guan, Y.; Zhu, X.; Miao, Y.; et al. Typical ionospheric disturbances revealed by the plasma analyzer package onboard the China Seismo-Electromagnetic Satellite. Adv. Space Res. 2021, 68, 3796–3805. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Yan, R.; Zhima, Z.; Xiong, C.; Shen, X.; Huang, J.; Guan, Y.; Zhu, X.; Liu, C. Comparison of electron density and temperature from the CSES satellite with other space-borne and ground-based observations. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027747. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Liu, J.; Shen, X. Two large earthquakes registered by the CSES satellite during its earthquake prediction practice in China. Atmosphere 2022, 13, 751. [Google Scholar] [CrossRef]
- Mogi, K. Fundamental Studies on Earthquake Prediction. In A Collection of Papers of International Symposium on ISC-SEP; Seismological Press: Beijing, China, 1984; pp. 375–402. [Google Scholar]
- Mei, S.R. Regionalism of earthquake precursors. Earthq. Res. China 1985, 1, 17–23, (In Chinese with English abstract). [Google Scholar]
- Zhang, G.M. On the mechanical cause of regional differences of earthquake precursors. Earthquake 1988, 2, 1–6, (In Chinese with English abstract). [Google Scholar]
- Cahyadi, M.N. Comparison of coseismic ionospheric disturbance waveforms revisited: Strike-slip, normal, and reverse fault earthquake. Geoid 2015, 10, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Nadai, A. Theory of Flow and Fracture of Solids; McGraw Hill: New York, NY, USA, 1950. [Google Scholar]
- Labuz, J.F.; Zang, A. Mohr–Coulomb Failure Criterion. Rock Mech. Rock Nngineering 2012, 45, 975–979. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J. Geophys. Res. 2009, 114, A04320. [Google Scholar] [CrossRef]
- Chen, Y.I.; Chuo, Y.J.; Liu, J.Y.; Pulinets, S.A. Statistical study of ionospheric precursors of strong earthquakes at Taiwan area. In Proceedings of the XXVI URSI General Assembly, Toronto, ON, Canada, 13–21 August 1999. [Google Scholar]
Ne Density Perturbation |
---|
Time: 2021 12 28 19 3 16 936 |
Orbit: 21,668 |
Sub-orbit: 1 |
Latitude: 38.0043 |
Longitude: 99.9026 |
BkgdIon (×106/m3): 24,798.8 |
Amplitude (×106/m3): 34,310.4 |
Trend: Increase |
Percent(%): 38.4 |
Time_width (m s ms): 1 39 0 |
Extension (km): 705 |
CSES | DEMETER | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dataset | PAP-3s | LAP-3s | IAP-4s | ISL-4s | ||||||
Types | Ne | Ng | Np | Ng | Np | Ne | Ng | Np | Ng | Np |
Rupture EQs | 204 | 170 | 1006 | 128 | 552 | 473 | 266 | 1453 | 184 | 359 |
Strike-slip EQs | 162 | 150 | 843 | 108 | 444 | 324 | 173 | 909 | 137 | 259 |
CSES | DEMETER | |||||||
---|---|---|---|---|---|---|---|---|
Dataset | PAP-3s | LAP-3s | IAP-4s | ISL-4s | ||||
Types | n | r | n | r | n | r | n | r |
Rupture EQs | 5.9 | 83.3% | 4.3 | 62.7% | 5.5 | 56.2% | 2.0 | 38.7% |
Strike-slip EQs | 5.6 | 92.6% | 4.1 | 66.7% | 5.3 | 53.4% | 1.9 | 42.3% |
CSES | DEMETER | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dataset | PAP-3s | LAP-3s | IAP-4s | ISL-4s | ||||||
Types | Ne | Ng | Np | Ng | Np | Ne | Ng | Np | Ng | Np |
Rupture EQs | 204 | 171 | 922 | 118 | 473 | 473 | 258 | 1463 | 186 | 340 |
Strike-slip EQs | 162 | 141 | 773 | 106 | 442 | 324 | 171 | 901 | 123 | 225 |
CSES | DEMETER | |||||||
---|---|---|---|---|---|---|---|---|
Dataset | PAP-3s | LAP-3s | IAP-4s | ISL-4s | ||||
Types | n | r | n | r | n | r | n | r |
Rupture EQs | 5.4 | 83.8% | 4.0 | 57.8% | 5.7 | 54.5% | 1.8 | 39.3% |
Strike-slip EQs | 5.5 | 87.0% | 4.2 | 65.4% | 5.3 | 52.7% | 1.8 | 38.0% |
CSES | DEMETER | |||||
---|---|---|---|---|---|---|
Dataset | PAP-3s | LAP-3s | IAP-4s | ISL-4s | ||
Types | Ng | Np | Np | Ng | Np | Np |
Rupture EQs | 118 | 626 | 498 | 123 | 697 | 245 |
Strike-slip EQs | 101 | 488 | 412 | 77 | 400 | 147 |
CSES | DEMETER | |||
---|---|---|---|---|
Dataset | PAP-3s | LAP-3s | IAP-4s | ISL-4s |
Types | n | n | n | n |
Rupture EQs | 5.3 | 4.2 | 5.7 | 2.0 |
Strike-slip EQs | 4.8 | 4.1 | 5.2 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yang, Z.; Song, J.; Zhang, Y.; Jiang, X.; Shen, X. Statistical Seismo-Ionospheric Influence with the Focal Mechanism under Consideration. Atmosphere 2023, 14, 455. https://doi.org/10.3390/atmos14030455
Li M, Yang Z, Song J, Zhang Y, Jiang X, Shen X. Statistical Seismo-Ionospheric Influence with the Focal Mechanism under Consideration. Atmosphere. 2023; 14(3):455. https://doi.org/10.3390/atmos14030455
Chicago/Turabian StyleLi, Mei, Zhigao Yang, Jin Song, Yongxian Zhang, Xianghua Jiang, and Xuhui Shen. 2023. "Statistical Seismo-Ionospheric Influence with the Focal Mechanism under Consideration" Atmosphere 14, no. 3: 455. https://doi.org/10.3390/atmos14030455
APA StyleLi, M., Yang, Z., Song, J., Zhang, Y., Jiang, X., & Shen, X. (2023). Statistical Seismo-Ionospheric Influence with the Focal Mechanism under Consideration. Atmosphere, 14(3), 455. https://doi.org/10.3390/atmos14030455