Indices of Pacific Walker Circulation Strength
<p>Illustration of definitions of PWC indices. Plotted fields show average El niño state for each particular index and are meant to be just for illustrative purposes. Red shadings correspond to positive values and blue to negative. Black boxes represent areas for averaging and/or integration (<math display="inline"><semantics> <msub> <mi>V</mi> <mi>e</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>L</mi> <mi>τ</mi> </msub> </semantics></math>). For further explanation of definitions, see <a href="#sec2dot1-atmosphere-14-00397" class="html-sec">Section 2.1</a>. (<b>a</b>) Anomalies in mean sea level pressure (contours every 0.25 hPa). Black points represent locations of Tahiti and Darwin. (<b>b</b>) Anomalies in mean sea level pressure (contours every 0.2 hPa). (<b>c</b>) Field of maximal deviation (in absolute value) of velocity potential from its zonal mean at 150 hPa (contours every <math display="inline"><semantics> <mrow> <mn>1.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>) and vectors of corresponding divergent wind. Black box represents the area inside which the maximal deviation of velocity potential is taken at every time step in order to compute the index. (<b>d</b>) Anomalies of <math display="inline"><semantics> <mi>ω</mi> </semantics></math> at 500 hPa (contours every 0.015 Pa/s). (<b>e</b>) SST anomalies (contours every 0.2 K). (<b>f</b>) Vectors of effective wind for water vapor transport and magnitude of its zonal component (contours every 0.4 m/s). (<b>g</b>) Mass stream function from total wind (contours every <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>11</mn> </msup> <mspace width="0.166667em"/> <mi>kg</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>) and zonal wind (line contours every 4 m/s, negative values dashed), from 1000 to 100 hPa. (<b>h</b>) Zonal wind stress (contours every 0.025 N/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>). (<b>i</b>) Specific humidity at 200 hPa (contours every 0.01 g/kg). (<b>j</b>) vectors of average surface wind and zonal wind speed (contours every 2 m/s).</p> "> Figure 2
<p>Maximal absolute value of <math display="inline"><semantics> <mi>χ</mi> </semantics></math> (in s<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>) between 25<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> S and 25<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> N, in the upper troposphere over equatorial Pacific, averaged over 1951–2020.</p> "> Figure 3
<p>Vertical cross-section of the zonal wind (colors, in m/s) and the mass stream function (contours), averaged over the period 1950–2021 and over an area from 5<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> S to 5<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> N; (<b>a</b>) for total wind (contours every 2 × 10<math display="inline"><semantics> <msup> <mrow/> <mn>11</mn> </msup> </semantics></math> kg/s) and (<b>b</b>) for divergent wind (contours every 0.4 × 10<math display="inline"><semantics> <msup> <mrow/> <mn>11</mn> </msup> </semantics></math> kg/s).</p> "> Figure 4
<p>(<b>a</b>) Time series of annual-mean PWC strength in ERA5 reanalysis between 1950 and 2021 for different PWC indices described in <a href="#sec2dot1-atmosphere-14-00397" class="html-sec">Section 2.1</a> as shown in the legend. (<b>b</b>) Correlations between annual means of different PWC indices. Statistically significant (at 95 % confidence level) correlation coefficients are written in the respective fields. The SST, <math display="inline"><semantics> <msub> <mi>V</mi> <mi>e</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>L</mi> <mi>τ</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>U</mi> <mi>ave</mi> </msub> </semantics></math> indices are multiplied by (−1) for easier comparison with other indices. The <math display="inline"><semantics> <msub> <mi>χ</mi> <mn>200</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>ψ</mi> <mrow> <mn>500</mn> </mrow> <mi>div</mi> </msubsup> </semantics></math> are shown dashed in (<b>a</b>), as they are replaced by better-defined equivalent indices and not used in the continuation.</p> "> Figure 5
<p>Mean of normalized indices (without <math display="inline"><semantics> <msubsup> <mi>ψ</mi> <mrow> <mn>500</mn> </mrow> <mrow> <mi>d</mi> <mi>i</mi> <mi>v</mi> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msub> <mi>χ</mi> <mn>200</mn> </msub> </semantics></math>) and their spread. Both on monthly data. Area between one and two standard deviations from zero mean value is shaded gray.</p> "> Figure 6
<p>Spectral analysis of time series of normalized indices, on monthly data.</p> "> Figure 7
<p>Time series of annual-mean values of <math display="inline"><semantics> <mi>χ</mi> </semantics></math> index at different vertical levels.</p> "> Figure 8
<p>Time series of different variations of normalized <math display="inline"><semantics> <mi>ψ</mi> </semantics></math> index from total zonal wind (annual means), at different vertical levels and for different meridional extent of areas over which wind was averaged. Vertical pressure level stands for indices computed as maximal mass stream function at a particular level, “All hPa” denotes index, computed as maximal stream function in the zonal-vertical cross-section, and “<math display="inline"><semantics> <msub> <mi>U</mi> <mrow> <mi mathvariant="italic">div</mi> </mrow> </msub> </semantics></math>” denotes index, computed from the divergent component of zonal wind.</p> "> Figure 9
<p>Trends of Pacific Walker circulation (PWC) strength as a function of the starting year of the trend for different PWC indices. The end year of all linear trends is fixed to 2020. For example, the year 1970 on the x-axis represents the PWC trend calculated for 1970–2020. PWC trends for periods shorter than 20 years are not shown. Thick red lines represent the trend value, and the gray areas represent the uncertainty (i.e., plus or minus one standard deviation) of the estimated trend. SST, <math display="inline"><semantics> <msub> <mi>V</mi> <mi>e</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>L</mi> <mi>τ</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>U</mi> <mi>ave</mi> </msub> </semantics></math> indices are multiplied by (−1) for easier comparison with other indices.</p> "> Figure 10
<p>Trends of Pacific Walker circulation (PWC) strength as a function of the starting year (x-axis) and end year (y-axis) of the trend for different PWC indices, similar as in [<a href="#B23-atmosphere-14-00397" class="html-bibr">23</a>]. PWC trends for periods shorter than 20 years are not shown. Crosses represent statistically significant trends at the 95% confidence level. SST, <math display="inline"><semantics> <msub> <mi>V</mi> <mi>e</mi> </msub> </semantics></math> <math display="inline"><semantics> <msub> <mi>L</mi> <mi>τ</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>U</mi> <mi>ave</mi> </msub> </semantics></math> indices are multiplied by (−1) for easier comparison with other indices. The checkered pattern is a result of ENSO variability. The first row in the matrix is a realization of <a href="#atmosphere-14-00397-f009" class="html-fig">Figure 9</a>. The bottom-left top-right diagonal (0-diagonal) effectively represents a 20-year running trend, as in e.g., [<a href="#B20-atmosphere-14-00397" class="html-bibr">20</a>], whereas the <span class="html-italic">k</span>-diagonal represents a <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>20</mn> <mo>+</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics></math>-year running trend.</p> "> Figure 11
<p>(<b>a</b>) The 20-year running mean of normalized annual-mean index values and (<b>b</b>) 20-year running trends of normalized annual-mean index values. The <span class="html-italic">x</span>-axis defines the central year of running mean and trends.</p> ">
Abstract
:1. Introduction
2. Pacific Walker Circulation Indices and Datasets
2.1. Definitions of Indices
- 1.
- Point-based Southern oscillation index (SOI) from Troup [43]. The index is defined as the anomaly in the mean sea-level pressure difference between the Tahiti and Darwin stations (Figure 1a). The data are standardized for each month of the year using 1950–2021 as a base period. The closest model gridpoints are used for evaluation when computing the SOI from the reanalysis data (see Supplementary Information Figure S1 for justification).
- 2.
- Area-averaged Southern oscillation index ΔSLP from Vecchi et al. [31]. This index is defined as the difference between anomalies in mean sea-level pressure over the eastern and western equatorial Pacific (Figure 1b). The anomalies are calculated by averaging over two boxes, both extending from 5° S to 5° N in the meridional directions, and in the zonal direction from 80° E to 160° E (western Pacific box) and from 80° W to 160° W (eastern Pacific box). This index has widely been used due to the availability of long-term historical data on sea-level pressure.
- 3.
- Velocity potential index from Tanaka et al. [44]. The index is computed for 2D circulation at a single vertical level (typically pressure p level) by solving the Poisson equation:The index was originally defined by Tanaka et al. [44] as the yearly average of the maximum deviation of velocity potential from its zonal mean over the equatorial Pacific at 200 hPa level, between 25° S and 25° N, and 80° E and 80° W (named χ200). Here, the yearly averaging was applied as a 12-month running mean. As the maximum divergent outflow from a convective area over the Maritime continent is higher up in the troposphere (see Figure 2) and varies year-to-year, we constructed a data-adaptive index χmax that takes the maximal deviation of velocity potential from its zonal mean over the equatorial Pacific inside the box between 25° S and 25° N, and 80° E and 80° W, and 250 and 100 hPa at each time step as shown in Figure 1c. The justification of the index revision is described in Section 3.
- 4.
- Vertical velocity index from Wang [45] (named ω500). The index is calculated as the difference in average vertical pressure velocity anomalies between the eastern and western equatorial Pacific at 500 hPa (Figure 1d). The eastern Pacific is defined as an area between 120° W and 160° W, and from 5° S to 5° N. The western Pacific is defined between 120° E and 160° E, and from 5° S to 5° N.
- 5.
- The sea-surface temperature (SST) index is defined as the east-west difference in the SST, the same way as the ΔSLP index, but for the SST data (Figure 1e). The east-west SST gradient in the equatorial Pacific is strongly coupled to PWC through the Bjerknes feedback, and thus the SST data are often used as a proxy for the PWC strength [19,35,38,46].
- 6.
- Effective wind for the water vapor transport index following Sohn and Park [12]. The boundary layer easterlies in the lower return branch of the Walker circulation transport the water vapor from the eastern to the western Pacific to provide additional fuel for condensation heating, which maintains the Walker circulation. An increase or decrease in water vapor flux normalized by the total amount of vapor in the atmospheric column is regarded as the strengthening or weakening of circulation, respectively. The effective wind is defined asPrecipitable water is calculated as
- 7.
- Stream function index, based on the mass stream function:
- 8.
- Zonally integrated (across the Pacific basin) wind stress following Clarke and Lebedev [49]. The index is defined as
- 9.
- Upper-tropospheric specific humidity (denoted ). The deep convection in the ascending branch of the PWC transports the water vapor into the upper troposphere. Therefore, a change in the upper-tropospheric humidity may indicate a change in the circulation strength [13]. To eliminate the increase in specific humidity (a general increase in humidity due to global atmospheric warming), we formulated the index as the difference in upper tropospheric humidity at the top of the ascending and descending branches of Walker circulation. The Q200 PWC index is then defined as the difference in average specific humidity between two boxes over the eastern and western Pacific at 200 hPa (Figure 1i). We used the same horizontal boxes for specific humidity as those used for ω500.
- 10.
2.2. Comparison of Distinct PWC Indices
2.3. Data
3. Results
3.1. Time-Series of PWC Indices and Their Correlations
3.2. Sensitivity Analysis of PWC Indices
3.3. Trends in PWC and Their Sensitivity to the WC
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: College Park, MD, USA, 1992; p. 520. [Google Scholar]
- Seager, R.; Cane, M.; Henderson, N.; Lee, D.E.; Abernathey, R.; Zhang, H. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. cahnge 2019, 9, 517–522. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric Teleconnetions from the Equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Barichivich, J.; Gloor, E.; Peylin, P.; Brienen, R.J.; Schöngart, J.; Espinoza, J.C.; Pattnayak, K.C. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 2018, 4, eaat8785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrifield, M.A. A Shift in Western Tropical Pacific Sea Level Trends during the 1990s. J. Clim. 2011, 24, 4126–4138. [Google Scholar] [CrossRef]
- Muis, S.; Haigh, I.D.; Guimarães Nobre, G.; Aerts, J.C.; Ward, P.J. Influence of El Niño-Southern Oscillation on Global Coastal Flooding. Earth’s Future 2018, 6, 1311–1322. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Fasullo, J.T.; Hu, A.; Trenberth, K.E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. cahnge 2011, 1, 360–364. [Google Scholar] [CrossRef]
- England, M.H.; Mcgregor, S.; Spence, P.; Meehl, G.A.; Timmermann, A.; Cai, W.; Gupta, A.S.; Mcphaden, M.J.; Purich, A.; Santoso, A. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. cahnge 2014, 4, 222–227. [Google Scholar] [CrossRef] [Green Version]
- McGregor, S.; Timmermann, A.; Stuecker, M.F.; England, M.H.; Merrifield, M.; Jin, F.F.; Chikamoto, Y. Recent walker circulation strengthening and pacific cooling amplified by atlantic warming. Nat. Clim. cahnge 2014, 4, 888–892. [Google Scholar] [CrossRef] [Green Version]
- Betts, R.A.; Burton, C.A.; Feely, R.A.; Collins, M.; Jones, C.D.; Wiltshire, A.J. ENSO and the Carbon Cycle. Geophys. Monogr. Ser. 2020, 253, 453–470. [Google Scholar] [CrossRef]
- Kosaka, Y.; Xie, S.P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 2013, 501, 403–407. [Google Scholar] [CrossRef] [Green Version]
- Sohn, B.J.; Park, S.C. Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res. 2010, 115, D15112. [Google Scholar] [CrossRef] [Green Version]
- Sohn, B.J.; Yeh, S.W.; Schmetz, J.; Song, H.J. Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Clim. Dyn. 2013, 40, 1721–1732. [Google Scholar] [CrossRef] [Green Version]
- Kociuba, G.; Power, S.B. Inability of CMIP5 Models to Simulate Recent Strengthening of the Walker Circulation: Implications for Projections. J. Clim. 2015, 28, 20–35. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Xu, K.M.; Sud, Y.C.; Betts, A.K. Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J. Geophys. Res. Atmos. 2011, 116, 9101. [Google Scholar] [CrossRef] [Green Version]
- Zahn, M.; Allan, R.P. Changes in water vapor transports of the ascending branch of the tropical circulation. J. Geophys. Res. Atmos. 2011, 116, 18111. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Del Genio, A.D.; Carlson, B.E.; Bosilovich, M.G. The Spatiotemporal Structure of Twentieth-Century Climate Variations in Observations and Reanalyses. Part I: Long-Term Trend. J. Clim. 2008, 21, 2611–2633. [Google Scholar] [CrossRef]
- Luo, J.J.; Sasaki, W.; Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA 2012, 109, 18701–18706. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Latif, M.; Park, W.; Keenlyside, N.S.; Semenov, V.A.; Martin, T. Twentieth century Walker Circulation change: Data analysis and model experiments. Clim. Dyn. 2012, 38, 1757–1773. [Google Scholar] [CrossRef]
- L’Heureux, M.L.; Lee, S.; Lyon, B. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Clim. cahnge 2013, 3, 571–576. [Google Scholar] [CrossRef]
- Bayr, T.; Dommenget, D.; Martin, T.; Power, S.B. The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Clim. Dyn. 2014, 43, 2747–2763. [Google Scholar] [CrossRef]
- Sandeep, S.; Stordal, F.; Sardeshmukh, P.D.; Compo, G.P. Pacific Walker Circulation variability in coupled and uncoupled climate models. Clim. Dyn. 2014, 43, 103–117. [Google Scholar] [CrossRef]
- Chung, E.S.; Timmermann, A.; Soden, B.J.; Ha, K.J.; Shi, L.; John, V.O. Reconciling opposing Walker circulation trends in observations and model projections. Nat. Clim. cahnge 2019, 9, 405–412. [Google Scholar] [CrossRef]
- Zhao, X.; Allen, R.J. Strengthening of the Walker Circulation in recent decades and the role of natural sea surface temperature variability. Environ. Res. Commun. 2019, 1, 021003. [Google Scholar] [CrossRef]
- Falster, G.; Konecky, B.; Madhavan, M.; Stevenson, S.; Coats, S. Imprint of the Pacific Walker Circulation in Global Precipitation δ18O. J. Clim. 2021, 34, 8579–8597. [Google Scholar] [CrossRef]
- Lee, S.; L’Heureux, M.; Wittenberg, A.T.; Seager, R.; O’Gorman, P.A.; Johnson, N.C. On the future zonal contrasts of equatorial Pacific climate: Perspectives from Observations, Simulations, and Theories. NPJ Clim. Atmos. Sci. 2022, 5, 82. [Google Scholar] [CrossRef]
- Watanabe, M.; Kamae, Y.; Yoshimori, M.; Oka, A.; Sato, M.; Ishii, M.; Mochizuki, T.; Kimoto, M. Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett. 2013, 40, 3175–3179. [Google Scholar] [CrossRef]
- Bellomo, K.; Clement, A.C. Evidence for weakening of the Walker circulation from cloud observations. Geophys. Res. Lett. 2015, 42, 7758–7766. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.R.; Manabe, S. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Clim. 1995, 8, 2181–2199. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B.J.; Wittenberg, A.T.; Held, I.M.; Leetmaa, A.; Harrison, M.J. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 2006, 441, 73–76. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B.J. Global Warming and the Weakening of the Tropical Circulation. J. Clim. 2007, 20, 4316–4340. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Zhou, T.; Li, C.; Li, H.; Chen, X.; Wu, B.; Zhang, W.; Zhang, L. A very likely weakening of Pacific Walker Circulation in constrained near-future projections. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.; et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Tokinaga, H.; Xie, S.P.; Deser, C.; Kosaka, Y.; Okumura, Y.M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 2012, 491, 439–443. [Google Scholar] [CrossRef]
- Woodruff, S.D.; Worley, S.J.; Lubker, S.J.; Ji, Z.; Eric Freeman, J.; Berry, D.I.; Brohan, P.; Kent, E.C.; Reynolds, R.W.; Smith, S.R.; et al. ICOADS Release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol. 2011, 31, 951–967. [Google Scholar] [CrossRef] [Green Version]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Deser, C.; Phillips, A.S.; Alexander, M.A. Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett. 2010, 37, L10701. [Google Scholar] [CrossRef] [Green Version]
- Power, S.B.; Kociuba, G. What Caused the Observed Twentieth-Century Weakening of the Walker Circulation? J. Clim. 2011, 24, 6501–6514. [Google Scholar] [CrossRef]
- DiNezio, P.N.; Vecchi, G.A.; Clement, A.C. Detectability of Changes in the Walker Circulation in Response to Global Warming. J. Clim. 2013, 26, 4038–4048. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Jian, Z.; Poulsen, C.J.; Zhao, L. Isotopic evidence for twentieth-century weakening of the Pacific Walker circulation. Earth Planet. Sci. Lett. 2019, 507, 85–93. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Troup, A.J. The ‘southern oscillation’. Q. J. R. Meteorol. Soc. 1965, 91, 490–506. [Google Scholar] [CrossRef]
- Tanaka, H.L.; Ishizaki, N.; Kitoh, A. Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus A 2004, 56, 250–269. [Google Scholar] [CrossRef]
- Wang, C. Atmospheric circulation cells associated with the El Nino-Southern Oscillation. J. Clim. 2002, 15, 399–419. [Google Scholar] [CrossRef]
- Zhang, L.; Karnauskas, K.B. The Role of Tropical Interbasin SST Gradients in Forcing Walker Circulation Trends. J. Clim. 2017, 30, 499–508. [Google Scholar] [CrossRef]
- Yu, B.; Zwiers, F.W. Changes in equatorial atmospheric zonal circulations in recent decades. Geophys. Res. Lett. 2010, 37, 5701. [Google Scholar] [CrossRef]
- Eresanya, E.O.; Guan, Y. Structure of the Pacific Walker Circulation Depicted by the Reanalysis and CMIP6. Atmosphere 2021, 12, 1219. [Google Scholar] [CrossRef]
- Clarke, A.J.; Lebedev, A. Long-Term Changes in the Equatorial Pacific Trade Winds. J. Clim. 1996, 9, 1020–1029. [Google Scholar] [CrossRef]
- Sohn, B.J.; Yeh, S.W.; Lee, A.; Lau, W.K. Regulation of atmospheric circulation controlling the tropical Pacific precipitation change in response to CO2 increases. Nat. Commun. 2019, 10, 1108. [Google Scholar] [CrossRef] [Green Version]
- Pikovnik, M.; Zaplotnik, Z.; Boljka, L.; Žagar, N. Metrics of the Hadley circulation strength and associated circulation trends. Weather Clim. Dyn. 2022, 3, 625–644. [Google Scholar] [CrossRef]
- Zaplotnik, Z.; Pikovnik, M.; Boljka, L. Recent Hadley circulation strengthening: A trend or multidecadal variability? J. Clim. 2022, 35, 4157–4176. [Google Scholar] [CrossRef]
- Schwendike, J.; Govekar, P.; Reeder, M.J.; Wardle, R.; Berry, G.J.; Jakob, C. Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations. J. Geophys. Res. Atmos. 2014, 119, 1322–1339. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Cheng, J.; Chou, J. Novel three-pattern decomposition of global atmospheric circulation: Generalization of traditional two-dimensional decomposition. Clim. Dyn. 2017, 49, 3573–3586. [Google Scholar] [CrossRef]
- Hu, S.; Chou, J.; Cheng, J. Three-pattern decomposition of global atmospheric circulation: Part I—decomposition model and theorems. Clim. Dyn. 2018, 50, 2355–2368. [Google Scholar] [CrossRef]
- Chung, E.S.; Soden, B.; Sohn, B.J.; Shi, L. Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA 2014, 111, 11636–11641. [Google Scholar] [CrossRef] [Green Version]
- Jenney, A.M.; Randall, D.A.; Branson, M.D. Understanding the Response of Tropical Ascent to Warming Using an Energy Balance Framework. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002056. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1959 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview (accessed on 27 June 2022).
- Bell, B.; Hersbach, H.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; et al. ERA5 Hourly Data on Pressure Levels from 1950 to 1978 (Preliminary Version). 2020. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-preliminary-back-extension?tab=overview (accessed on 27 June 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1959 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 27 June 2022).
- Bell, B.; Hersbach, H.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; et al. ERA5 Hourly Data on Single Levels from 1950 to 1978 (Preliminary Version). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-preliminary-back-extension?tab=overview (accessed on 27 June 2022).
- Simmons, A.J. Trends in the tropospheric general circulation from 1979 to 2022. Weather Clim. Dyn. 2022, 3, 777–809. [Google Scholar] [CrossRef]
- Tokinaga, H.; Xie, S.P. Wave- and Anemometer-Based Sea Surface Wind (WASWind) for Climate Change Analysis. J. Clim. 2011, 24, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Allan, R.; Ansell, T. A New Globally Complete Monthly Historical Gridded Mean Sea Level Pressure Dataset (HadSLP2): 1850–2004. J. Clim. 2006, 19, 5816–5842. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Wang, C. Applicability of Prewhitening to Eliminate the Influence of Serial Correlation on the Mann-Kendall Test. Water Resour. Res. 2002, 38, 4-1–4-7. [Google Scholar] [CrossRef]
- Hussain, M.M.; Mahmud, I. pyMannKendall: A python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO-like Interdecadal Variability: 1900–93. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production*. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1080. [Google Scholar] [CrossRef]
- Van Loon, H.; Meehl, G.A.; Shea, D.J. Coupled air-sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res. Atmos. 2007, 112, D02108. [Google Scholar] [CrossRef]
- Roy, I.; Haigh, J.D. Solar Cycle Signals in the Pacific and the Issue of Timings. J. Atmos. Sci. 2012, 69, 1446–1451. [Google Scholar] [CrossRef]
- Misios, S.; Gray, L.J.; Knudsen, M.F.; Karoff, C.; Schmidt, H.; Haigh, J.D. Slowdown of the Walker circulation at solar cycle maximum. Proc. Natl. Acad. Sci. USA 2019, 116, 7186–7191. [Google Scholar] [CrossRef] [Green Version]
- Roy, I. Is it always slowdown of the Walker circulation at solar cycle maximum? Nat. Hazards 2021, 107, 2021–2026. [Google Scholar] [CrossRef]
- Gulev, S.K.; Thorne, P.W.; Ahn, J.; Dentener, F.J.; Domingues, C.M.; Gerland, S.; Gong, D.; Kaufman, D.S.; Nnamchi, H.C.; Quaas, J.; et al. Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; Chapter 2. [Google Scholar]
- Mann, M.E.; Steinman, B.A.; Brouillette, D.J.; Miller, S.K. Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science 2021, 371, 1014–1019. [Google Scholar] [CrossRef]
- Orihuela-Pinto, B.; England, M.H.; Taschetto, A.S. Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation. Nat. Clim. cahnge 2022, 12, 558–565. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E.; Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Dufresne, J.L.; Kosaka, Y.; Mauritsen, T.; Tatebe, H. Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Clim. cahnge 2020, 11, 33–37. [Google Scholar] [CrossRef]
- Wills, R.C.J.; Dong, Y.; Proistosecu, C.; Armour, K.C.; Battisti, D.S. Systematic Climate Model Biases in the Large-Scale Patterns of Recent Sea-Surface Temperature and Sea-Level Pressure Change. Geophys. Res. Lett. 2022, 49, e2022GL100011. [Google Scholar] [CrossRef]
- Wright, D.G. and Thompson, K.R. Time-Averaged Forms of the Nonlinear Stress Law. J. Phys. Oceanogr. 1983, 13, 341–345. [Google Scholar] [CrossRef]
PWC Index | 1960–2020 | 1970–2020 | 1980–2020 | 1990–2020 | 2000–2020 |
---|---|---|---|---|---|
0.009 (± 0.007) | 0.013 (± 0.010) | 0.041 (± 0.012) | 0.050 (± 0.019) | −0.007(± 0.026) | |
SOI | 0.003 (± 0.007) | −0.005 (± 0.009) | 0.015 (± 0.011) | 0.023 (± 0.017) | −0.003 (± 0.031) |
SLP | −0.007 (± 0.007) | −0.006 (± 0.010) | 0.014 (± 0.013) | 0.020 (± 0.019) | −0.020 (± 0.030) |
−0.003 (± 0.008) | 0.003 (± 0.011) | 0.027 (± 0.014) | 0.045 (± 0.022) | −0.017 (± 0.030) | |
−0.010 (± 0.007) | −0.012 (± 0.009) | 0.007 (± 0.012) | 0.022 (± 0.017) | −0.003 (± 0.031) | |
−SST | 0.006 (± 0.007) | 0.007 (± 0.010) | 0.019 (± 0.014) | 0.026 (± 0.019) | −0.014 (± 0.029) |
− | −0.015 (± 0.007) | −0.013 (± 0.010) | 0.001 (± 0.013) | 0.013 (± 0.020) | −0.016 (± 0.032) |
−0.001 (± 0.007) | −0.001 (± 0.011) | 0.024 (± 0.015) | 0.046 (± 0.020) | 0.006 (± 0.029) | |
− | −0.002(± 0.007) | 0.002 (± 0.010) | 0.026 (± 0.013) | 0.047 (± 0.020) | −0.012 (± 0.031) |
− | −0.007 (± 0.007) | −0.005 (± 0.010) | 0.021 (± 0.014) | 0.041 (± 0.021) | −0.016 (± 0.032) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosovelj, K.; Zaplotnik, Ž. Indices of Pacific Walker Circulation Strength. Atmosphere 2023, 14, 397. https://doi.org/10.3390/atmos14020397
Kosovelj K, Zaplotnik Ž. Indices of Pacific Walker Circulation Strength. Atmosphere. 2023; 14(2):397. https://doi.org/10.3390/atmos14020397
Chicago/Turabian StyleKosovelj, Katarina, and Žiga Zaplotnik. 2023. "Indices of Pacific Walker Circulation Strength" Atmosphere 14, no. 2: 397. https://doi.org/10.3390/atmos14020397
APA StyleKosovelj, K., & Zaplotnik, Ž. (2023). Indices of Pacific Walker Circulation Strength. Atmosphere, 14(2), 397. https://doi.org/10.3390/atmos14020397