Identification of Genetic Relationships and Group Structure Analysis of Yanqi Horses
<p>(<b>a</b>) Male Yanqi horse; (<b>b</b>) mare Yanqi; and (<b>c</b>) a group photo of Yanqi horses.</p> "> Figure 2
<p>Population structure of the Yanqi horse. The clustering results illustrate the structural analysis of 117 Yanqi horses based on 16 microsatellite markers. Each horse’s genotype is represented by a vertical line, which is divided into K colors, where K denotes the number of clusters hypothesized in each structural analysis. Each bar corresponds to an individual horse, and the color on each vertical bar indicates the probability of that individual belonging to each cluster.</p> "> Figure 3
<p>Phylogenetic tree based on 117 Yanqi horses in NJ. The number on each branch corresponds to each individual Yanqi horse.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Result
3.1. Genetic Diversity Analysis
3.2. Kinship Analysis
3.3. Genetic Feature Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, W. Product Horse Breeding Science; Tianze Publishing House: Xi’an, China, 1997; p. 255. [Google Scholar]
- Erdembayil, H.; Xu, J.; Yang, Y. Ideas for the protection, development and utilization of genetic resources of Yanqi horses. China Livest. Poult. Breed. Ind. 2022, 18, 8–9. [Google Scholar]
- Li, H. Research on the Appearance Characteristics and Biological Characteristics of Local Breed Horses in Xinjiang; Tarim University: Alar, China, 2022. [Google Scholar]
- Tserendorj; Guan, Y.; Niman. Analysis of Yanqi horse germplasm characteristics and research on breeding directions. Herbiv. Livest. 2014, 26–28. [Google Scholar]
- Guan, Y.; Cairen, D.; Niman. Analysis and research on endurance performance of Yanqi horses. Herbiv. Livest. 2014, 6–8. [Google Scholar]
- Rustam, Y. Study on the Population Genetic Structure and Gait Trait Selection Signals of Yanqi Horses; Xinjiang Agricultural University: Urumqi, China, 2023. [Google Scholar]
- Li, Y. Survey and Analysis of Intestinal Nematodes of Yanqi Horses in Hejing. Grass-Feed. Livest. 2015, 03.009. [Google Scholar]
- Nomindalai, G.; Li, L.; Liu, Y.; Hulcha; Bayin, C. Detection and sequence analysis of equine piroplasmosis etiology in some Yanqi horse farms in Xinjiang. China Anim. Quar. 2023, 40, 17–21. [Google Scholar]
- Tong, P.P.; Song, X.; Zhang, A.; Ren, M.; Zhang, L.; Fong, L.; Xie, J. Serological investigation of equine viral arteritis in some areas of Xinjiang. Prog. Vet. Med. 2021, 42, 129–131. [Google Scholar]
- Cairen, D.; Guan, Y.; Niman; Hu, X.; Liu, J.; Meng, J.; Liu, Y.; Li, M.; Yao, X. Analysis and Research on Yanqi Horses Breed Characteristic and Breeding Direction. Grass-Feed. Livest. 2014, 26–28. [Google Scholar]
- Rustanmu, Y.; Erdembayil; Gao, X.; Li, M.; Qi, A. Study on the correlation between contralateral gait and DMRT3 gene variation in Yanqi horses. China. J. Anim. Husb. 2024, 60, 196–201. [Google Scholar]
- Li, H.; Alifizhe, U.; Tang, C.; Geminguli, M. Analysis of phenotypic differences in different types of Yanqi horses. Chin. Herbiv. Sci. 2021, 41, 78–81. [Google Scholar]
- Wang, J.; Yao, X.; Ren, W.; Wang, C.; Chu, H.; Luo, P.; Yan, M.; Mon, J. Analysis of ACTN3 gene polymorphisms in Yanqi horses and their correlation with endurance race speed. Chin. J. Anim. Husb. 2020, 56, 56–62. [Google Scholar]
- Aminou, O.; Badaoui, B.; Machmoum, M.; Piro, M. Evaluation of the effectiveness of single nucleotide polymorphisms compared to microsatellite markers for parentage verification in Moroccan horses. Anim. Genet. 2024, 55, 404–409. [Google Scholar] [CrossRef]
- Flynn, P.; Morrin-O’Donnell, R.; Weld, R.; Gargan, L.M.; Carlsson, J.; Daly, S.; Suren, H.; Siddavatam, P.; Gujjula, K.R. Comparative analysis of single nucleotide polymorphisms and microsatellite markers for parentage verification and discovery within the equine Thoroughbred breed. bioRxiv 2021. bioRxiv:2021.07.28.453868. [Google Scholar]
- Thelingwani, R.; Jonhera, C.A.; Masimirembwa, C. Analysis of data and common mutations encountered during routine parentage testing in Zimbabwe. Sci. Rep. 2024, 14, 1385. [Google Scholar] [CrossRef] [PubMed]
- Damour, G.; Baumer, K.; Legardeur, H.; Hall, D. Early noninvasive prenatal paternity testing by targeted fetal DNA analysis. Sci. Rep. 2023, 13, 12139. [Google Scholar] [CrossRef]
- Amos, W.; Flint, J.; Xu, X. Heterozygosity increases microsatellite mutation rate, linking it to demographic history. BMC Genet. 2008, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Smouse, P.E.; Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 1999, 82, 561–573. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 1984, 38, 1358. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 2007, 7, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Hubisz, M.J.; Falush, D.; Stephens, M.; Pritchard, J.K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 2009, 9, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef]
- Sang, Y.; Long, Z.; Dan, X.; Feng, J.; Shi, T.; Jia, C.; Zhang, X.; Lai, Q.; Yang, G.; Zhang, H.; et al. Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia. Nat. Commun. 2022, 13, 6541. [Google Scholar] [CrossRef] [PubMed]
- Schierenbeck, K.A. Population-level genetic variation and climate change in a biodiversity hotspot. Ann. Bot. 2017, 119, 215–228. [Google Scholar] [CrossRef] [PubMed]
- King, K.C.; Lively, C.M. Does genetic diversity limit disease spread in natural host populations? Heredity 2012, 109, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Oyungerel, B.; Kong, H.S. Genetic diversity and population structure of Mongolian regional horses with 14 microsatellite markers. Anim. Biosci. 2022, 35, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Ding, L. Research on Phenotypic and Microsatellite Genetic Diversity of Kazakh Horses; Tarim University: Alar, China, 2017. [Google Scholar]
- Li, M. Research on the Genetic Structure of Ili Horse Population; Xinjiang Agricultural University: Urumqi, China, 2022. [Google Scholar]
- Zhang, J.; Liu, K.; Hao, J. Fetal STR typing and paternity testing of first-trimester abortion tissue based on next-generation sequencing technology. China. J. Forensic Med. 2024, 39, 539–545. [Google Scholar]
- Guo, J.; Shang, L.; Tang, Z. Construction and verification of a multi-source genetic marker detection system based on second-generation sequencing technology. Crim. Technol. 2023, 48, 111–120. [Google Scholar]
- Long, J. Parentage analysis using genome-wide high-density SNP microarray. Gene 2021, 785, 145605. [Google Scholar] [CrossRef]
- Škevin, S.; Tytgat, O.; Fauvart, M.; De Keyzer, L.; Deforce, D.; Van Nieuwerburgh, F. STR genotyping by real-time PCR using QueSTR probes. Sens. Actuators B: Chem. 2023, 394, 134413. [Google Scholar] [CrossRef]
- Shang, S.; Jiang, R.; Luo, R.; Jia, S.; Irwin, D.M.; Wang, Z.; Zhang, S. Development of a 19-plex short tandem repeat typing system for individual identification and parentage testing of horses (Equus caballus). Anim. Genet. 2021, 52, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Dang, W.; Shang, S.; Zhang, X.; Yu, Y.; Irwin, D.M.; Wang, Z.; Zhang, S. A novel 13-plex STR typing system for individual identification and parentage testing of donkeys (Equus asinus). Equine Vet. J. 2019, 52, 290–297. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, K.; Wang, W.-L.; Yin, T.-T.; Dong, W.-Q.; Xu, C.-J. A high-throughput SNP discovery strategy for RNA-seq data. BMC Genom. 2019, 20, 1471–2164. [Google Scholar] [CrossRef]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-generation sequencing technologies: An overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, K.; Wang, J. Exploring the Mechanisms of Differentiation, Dedifferentiation, Reprogramming and Transdifferentiation. PLoS ONE 2014, 9, e105216. [Google Scholar] [CrossRef] [PubMed]
- Fornal, A.; Kowalska, K.; Zabek, T.; Piestrzynska-Kajtoch, A.; Musiał, A.D.; Ropka-Molik, K. Genetic Variability and Population Structure of Polish Konik Horse Maternal Lines Based on Microsatellite Markers. Genes 2021, 12, 546. [Google Scholar] [CrossRef] [PubMed]
Locis | Na | Ne | Ho | He | PIC | I |
---|---|---|---|---|---|---|
HMS7 | 12.00 | 8.02 | 0.54 | 0.86 | 0.78 | 0.60 |
HTG10 | 15.25 | 8.70 | 0.54 | 0.88 | 0.67 | 0.27 |
ABS23 | 16.75 | 11.08 | 0.73 | 0.90 | 0.85 | 0.01 |
HMS3 | 14.75 | 10.98 | 0.63 | 0.91 | 0.85 | 0.16 |
AHT4 | 10.25 | 5.97 | 0.32 | 0.79 | 0.62 | 0.73 |
HMS2 | 11.75 | 8.50 | 0.56 | 0.83 | 0.71 | 0.13 |
TKY297 | 11.75 | 8.57 | 0.46 | 0.82 | 0.65 | 0.59 |
ABS17 | 17.50 | 12.04 | 0.65 | 0.90 | 0.90 | 0.18 |
AHT5 | 14.25 | 10.88 | 0.52 | 0.82 | 0.71 | 0.08 |
ABS2 | 12.25 | 6.76 | 0.54 | 0.79 | 0.73 | 0.36 |
HMS9 | 7.75 | 4.26 | 0.29 | 0.73 | 0.65 | 0.84 |
VHL20 | 8.00 | 3.71 | 0.28 | 0.66 | 0.51 | 0.84 |
HMS6 | 8.00 | 4.60 | 0.36 | 0.73 | 0.51 | 0.55 |
HMS18 | 6.00 | 2.96 | 0.32 | 0.48 | 0.31 | 0.84 |
TKY343 | 15.00 | 5.31 | 0.64 | 0.80 | 0.69 | 0.39 |
TKY337 | 10.25 | 3.65 | 0.32 | 0.72 | 0.50 | 0.71 |
Mean | 11.97 | 7.27 | 0.48 | 0.70 | 0.67 | 0.44 |
Locus | NE-1P | NE-2P |
---|---|---|
HMS7 | 0.25 | 0.14 |
HTG10 | 0.22 | 0.12 |
ABS23 | 0.19 | 0.11 |
HMS3 | 0.19 | 0.11 |
AHT4 | 0.30 | 0.18 |
HMS2 | 0.24 | 0.14 |
TKY297 | 0.27 | 0.16 |
ASB17 | 0.13 | 0.07 |
AHT5 | 0.22 | 0.12 |
ABS2 | 0.26 | 0.15 |
HMS9 | 0.38 | 0.24 |
VHL20 | 0.49 | 0.32 |
HMS6 | 0.39 | 0.24 |
HMS18 | 0.58 | 0.40 |
TKY343 | 0.32 | 0.19 |
TKY337 | 0.44 | 0.28 |
CEP1/CEP2 | 0.9652999 | 0.9996999 |
Identification Category | Confidence Level | Confidence (%) | LOD Threshold | Distribute | Distribution Rate |
---|---|---|---|---|---|
Maternity identification simulation. | Strict | 95.00 | 4.08 | 4535 | 45% |
Relaxed | 90.00 | 2.83 | 5034 | 50% | |
Unassigned | 4966 | 50% | |||
Total | 10,000 | 100% | |||
Paternity test simulation. | Strict | 95.00 | 3.31 | 4758 | 48% |
Relaxed | 90.00 | 1.86 | 5212 | 52% | |
Unassigned | 4788 | 48% | |||
Total | 10,000 | 100% | |||
Parentage Test Simulation. | Strict | 95.00 | 15.42 | 1883 | 19% |
Relaxed | 90.00 | 13.31 | 2261 | 23% | |
Unassigned | 7739 | 77% | |||
Total | 10,000 | 100% |
Offspring | Candidate Mother | LOD Threshold | Confidence | Candidate Father | LOD Threshold | Confidence |
---|---|---|---|---|---|---|
Y2 | Y20 | 0.68 | * | Y21 | 14.00 | * |
Y3 | Y34 | 6.32 | * | Y51 | 16.30 | * |
Y7 | Y44 | 4.23 | * | Y14 | 10.30 | * |
Y9 | Y20 | 5.40 | * | Y50 | 1.60 | * |
Y13 | Y9 | 9.26 | * | Y15 | 9.07 | * |
Y15 | Y45 | 6.20 | * | Y50 | 5.04 | * |
Y21 | Y20 | 4.08 | * | Y41 | 6.25 | * |
Y22 | Y19 | 9.13 | * | Y18 | 14.40 | * |
Y25 | Y6 | 3.10 | * | Y28 | 3.65 | * |
Y26 | Y37 | 5.37 | * | Y28 | 6.52 | * |
Y27 | Y5 | 2.81 | * | Y24 | 3.93 | * |
Y29 | Y35 | 21.60 | * | Y14 | 2.15 | * |
Y30 | Y16 | 8.61 | * | Y24 | 14.30 | * |
Y32 | Y36 | 7.41 | * | Y14 | 8.91 | * |
Y35 | Y36 | 2.03 | * | Y41 | 5.91 | * |
Y36 | Y7 | 5.32 | * | Y41 | 2.67 | * |
Y38 | Y39 | 9.98 | * | Y33 | 4.26 | * |
Y39 | Y36 | 4.31 | * | Y22 | 3.71 | * |
Y42 | Y5 | 4.92 | * | Y50 | 0.31 | * |
Y43 | Y42 | 0.52 | * | Y13 | 6.27 | * |
Y44 | Y7 | 4.23 | * | Y33 | 6.40 | * |
Y45 | Y10 | 8.60 | * | Y50 | 4.52 | * |
Y46 | Y37 | 7.76 | * | Y21 | 20.01 | * |
Y47 | Y10 | 6.86 | * | Y13 | 12.30 | * |
Y50 | Y42 | 0.31 | * | Y18 | 1.99 | * |
Y63 | Y71 | 2.13 | * | Y60 | 41.20 | * |
Y67 | Y96 | 8.51 | * | Y78 | 25.10 | * |
Locus | Ho | FST | FIT | FIS |
---|---|---|---|---|
HMS7 | 0.54 | 0.07 | 0.42 | 0.38 |
HTG10 | 0.54 | 0.06 | 0.41 | 0.38 |
ABS23 | 0.73 | 0.04 | 0.23 | 0.19 |
HMS3 | 0.63 | 0.04 | 0.34 | 0.31 |
AHT4 | 0.32 | 0.12 | 0.65 | 0.60 |
HMS2 | 0.56 | 0.10 | 0.39 | 0.32 |
TKY297 | 0.46 | 0.10 | 0.50 | 0.44 |
ASB17 | 0.65 | 0.07 | 0.32 | 0.27 |
AHT5 | 0.52 | 0.11 | 0.43 | 0.36 |
ABS2 | 0.54 | 0.13 | 0.40 | 0.31 |
HMS9 | 0.29 | 0.16 | 0.66 | 0.60 |
VHL20 | 0.28 | 0.22 | 0.67 | 0.58 |
HMS6 | 0.36 | 0.16 | 0.59 | 0.51 |
HMS18 | 0.32 | 0.36 | 0.58 | 0.34 |
TKY343 | 0.64 | 0.12 | 0.29 | 0.20 |
TKY337 | 0.32 | 0.17 | 0.63 | 0.55 |
Mean | 0.48 | 0.13 | 0.47 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Tang, C.; Xue, P.; Yang, N.; Sun, X.; Serik, K.; Assanbayer, T.; Shamekova, M.; Kozhanov, Z.; Sapakhova, Z.; et al. Identification of Genetic Relationships and Group Structure Analysis of Yanqi Horses. Genes 2025, 16, 294. https://doi.org/10.3390/genes16030294
Wang Y, Tang C, Xue P, Yang N, Sun X, Serik K, Assanbayer T, Shamekova M, Kozhanov Z, Sapakhova Z, et al. Identification of Genetic Relationships and Group Structure Analysis of Yanqi Horses. Genes. 2025; 16(3):294. https://doi.org/10.3390/genes16030294
Chicago/Turabian StyleWang, Yaru, Chi Tang, Pengfei Xue, Na Yang, Xiaoyuan Sun, Khizat Serik, Tolegen Assanbayer, Malika Shamekova, Zhassulan Kozhanov, Zagipa Sapakhova, and et al. 2025. "Identification of Genetic Relationships and Group Structure Analysis of Yanqi Horses" Genes 16, no. 3: 294. https://doi.org/10.3390/genes16030294
APA StyleWang, Y., Tang, C., Xue, P., Yang, N., Sun, X., Serik, K., Assanbayer, T., Shamekova, M., Kozhanov, Z., Sapakhova, Z., Khurramovich, J. K., Zhou, X., Kairat, I., & Muhatai, G. (2025). Identification of Genetic Relationships and Group Structure Analysis of Yanqi Horses. Genes, 16(3), 294. https://doi.org/10.3390/genes16030294