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Abstract: Background: Spinach (Spinacia oleracea L.) is an important leafy vegetable with
dioecious and occasional monoecious plants. Monoecious lines are more suitable for hy-
brid production than dioecious lines due to their extended flowering period. However,
genetic research on the sex determination of monoecism remains limited. Methods: In
this study, RNA-seq analysis of monoecious and female spinach plants was performed at
two distinct flowering stages. In total, we identified 4586 differentially expressed genes
(DEGs), which were primarily involved in biological processes such as hormone signaling,
cell wall biosynthesis, photosynthesis, and flower development, based on Gene Ontology
(GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis. Results: Among these DEGs, 354 transcription factors, including 27 genes
associated with the ABCDE gene, were discovered. Furthermore, a co-expression gene
regulatory network was built, identifying nine key genes that play important roles in
regulating sex differentiation between female and monoecious plants. Conclusions: Our
findings provide crucial molecular insights into the mechanisms of monoecism in spinach
and offer a scientific basis for future spinach breeding.
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1. Introduction
Sex determination and expression in plants is a complex biological process influenced

by a combination of genetic, environmental, physiological, biological, and anthropogenic
factors. Male plants of dioecious spinach varieties exhibit rapid senescence and a short
flowering period, whereas monoecious plants exhibit slower senescence and longer flower-
ing periods and are capable of self-fertilization for seed production. Therefore, the study
of sex-related genes in monoecious spinach is critical for breeding. Sex differentiation in
plants is governed by both intrinsic factors, such as endogenous hormones, and extrinsic
factors, such as environmental conditions. These factors collectively govern and regulate
plant sex determination [1]. Studies have shown that plant sex is determined by sex chro-
mosomes (XY system), with the sex-determining gene on the Y chromosome playing a
pivotal role [2,3]. Most species in the plant kingdom are monoecious (with bisexual flowers,
bearing bisexual flowers, where both pistils and stamens are located in the same flower, or
unisexual flowers, where a flower contains only pistils or stamens), and approximately 6%
of angiosperms are dioecious, which is characterized by separate male and female flowers
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located on different plants [4]. The sex-determination system varies significantly across
breeding systems. In dioecious species, sex determination is typically controlled by nuclear
genes located on sex chromosomes. Only a subset of species exhibits heteromorphic sex
chromosomes, similar to most animals. Dioecy in plants may have evolved from monoecy,
with sex chromosomes arising from a pair of autosomes [5].

Spinach (Spinacia oleracea L.) is an annual and biennial herbaceous plant belonging
to the Amaranthaceae family. It is widely cultivated and highly valued worldwide as a
nutritious leafy vegetable rich in vitamins (such as vitamin C and vitamin K) and minerals
(including iron and calcium). Spinach can be cultivated year-round and serves as an
important edible green vegetable during the spring, autumn, and winter seasons [6].
Although most spinach plants are dioecious, monoecious individuals are occasionally
observed [7]. Sex determination in dioecious spinach is governed by a pair of X/Y alleles
located on the largest chromosome [8]. Spinach exhibits an XY sex-determination system,
with no significant size difference between the X and Y chromosomes [7]. Spinach exhibits
three types of sex expression: male, female, and monoecious. Spinach flowers are unisexual.
Most spinach varieties are dioecious, with distinct male and female plants typically showing
a 1:1 segregation ratio. In spinach, sex determination is controlled by sex-determining
genes on sex chromosomes. Previous studies have shown that X/Y genes control dioecy in
spinach and the Xm gene governs monoecy. The Y chromosome is dominant over both X
and Xm, and Xm is dominant over X [9]. Therefore, the spinach genotypes are as follows:
male plants are XY or XmY, monoecious plants are XmXm or XmX, and female plants are
XX. Sex determination and differentiation are crucial biological processes in unisexual
flower development. Spinach serves as a model plant for studying plant sex determination
and differentiation mechanisms [10]. Despite these advances, research on the Xm gene
responsible for monoecy in spinach is still limited, and positional cloning has not yet
been achieved. Furthermore, the molecular mechanisms underlying the sex determination
network in monoecious spinach remain poorly understood, significantly hindering the
breeding efficiency of spinach.

In higher plants, plant hormones, such as auxin (IAA), ethylene, gibberellin (GA),
and abscisic acid, play multiple roles in plant growth and development [1,11,12], with
many exhibiting pleiotropic effects. IAA induces female flower development in cucumber,
lemon, and hemp. GA promotes male flower development in cucumber, melon, aspara-
gus, and hemp but induces female flowers in maize. These hormones also influence sex
differentiation in monoecious and dioecious species. Collectively, these findings show
that no single hormone has a universal effect on sex determination in monoecious and
dioecious plants, indicating that each species has its own hormonally regulated mechanism
for sex expression. GA is a major plant hormone that participates in normal plant growth
and development and influences sex expression in many plant species [13–17]. Among
plant hormones, GA plays a key role in regulating flowering in the model plant Arabidopsis
thaliana. Although over 100 GAs have been identified in plants, only a few are considered
biologically active, including GA1, GA3, GA4, and GA7 [18]. GAs were initially recog-
nized for their effects on stem elongation, with exogenous GA3 application reversing the
dwarf phenotypes of Pisum sativum [19] and Zea mays mutants [20], enabling them to reach
heights comparable to mature plants. GAs are essential at multiple stages of plant growth
and development, including seed germination, floral induction, leaf elongation, and fruit
growth. GAs have also been shown to promote male flower formation in several species,
including spinach [21], hemp [22,23], and cucumber. Although GA typically promotes
male floral development, it is not universal across all species. For example, exogenous GA3
application in Z. mays results in feminization of the terminal inflorescence [24]. Exogenous
GA treatment of spinach leads to the transformation of 78% of pistils into stamens [21].
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GA3 has been shown to enhance the masculinizing effect on individual female spinach
plants, resulting in complete conversion and functional stamens [25].

In many plants, sex determination is controlled by specific genes, and the expression
of these genes is often regulated by transcription factors (TFs). For example, in some plants,
TFs control the plant’s sex expression by activating or repressing sex-determining gene tran-
scription. The MADS-box gene family plays a pivotal role in numerous stages of the plant
developmental cycle, including floral organogenesis, fruit development, and gametophyte
formation [26,27]. These genes are also involved in biological regulatory processes in plants,
such as circadian rhythm regulation, metabolic regulation, and floral transition [26,28,29].
Some MADS-box genes in angiosperms exhibit homologous functions. Although not all
MADS-box genes are homologous, they can serve as key meristem identity regulators. CRC
genes from the YABBY family influence carpel development and affect male and female
flower formation, playing a pivotal role in sex determination in Cucurbitaceae species [30].
Proposed in 1991 to explain the role of homologous genes in floral organ identity, the ABC
model posits that each organ within a floral whorl is determined by the interaction of
three distinct organ identity genes [31–34]. This model was later expanded to the ABCDE
model [35,36].

In contemporary plant research, the utilization of transcriptomic data represents
a prevalent and popular approach to identify genes associated with sex determination
and flowering. Using transcriptomic data from different periods of pepper floral organ
development and incorporating the ABCDE model of floral development, 17 ABCDE
model candidate genes were identified in pepper by Tang et al. [37]. The transcriptomes
of different sexes were analyzed in papaya, and the expression of 40 plant-conserved
miRNAs and 14 papaya-specific miRNAs was detected in 1 or 2 normal flowers and pistils
of monoecious, inverted flowers by Lin et al. [38]. These results suggest that male-to-
female sex reversal may be caused by the silencing of androgynous inhibitory sex functions
through epigenetic modification in the sex-determination pathway.

AP1 (Apetala1) regulates sepal and petal development and is expressed during early
floral development, playing a key role in flower formation [36]. The PI gene plays a critical
role in flower development, particularly in the formation of the second and third whorls
of floral organs (i.e., the stamen and pistil). PI expression influences petal and stamen
development [39]. AG (Agamous) is essential for stamen and pistil development. AG is
a key gene in floral development, and its absence leads to abnormal reproductive organ
development [40]. SQUA (Squamosa) participates in stamen and pistil formation in some
plant species and affects floral morphology [41]. SEP1 is a member of the SEPALLATA
gene family and regulates floral organ development. SEP1 plays an important role in
the formation of floral organs, such as petals, stamens, and pistils [42]. Suppressor of
Overexpression of Constans 1 (SOC1) integrates environmental signals and activates the
flowering process. SOC1 is typically a part of plants’ biological clock and responds to
environmental cues, such as photoperiod and temperature, to regulate flowering [43].

In this study, RNA sequencing (RNA-seq) was conducted in female and monoecious
plants at two flower stages. We conducted a co-expression network analysis and identified
many TF genes. These findings provide novel genetic reservoirs for further pinpointing the
regulatory mechanism underlying monoecism.

2. Materials and Methods
2.1. Plant Materials

A monoecious spinach line (Sp139) and a female spinach line (Sp140) were grown
in a nursery tray in a greenhouse at the experiment station of the Institute of Vegetables
and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China, in December 2023.
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These plants were transplanted to the field at the 2−3 leaf stage. Flowers were harvested
in April 2024 and used for RNA preparation and RNA-seq analysis. However, due to
an insufficient number of representative female plants at the time, only two biological
replicates were collected. Samples were collected on the first day of flowering (T1) and the
eighth day of flowering (T2). All samples were immediately flash frozen in liquid nitrogen
and stored at −80 ◦C for subsequent analysis.

2.2. RNA Extraction and Sequencing

RNA was extracted using a magnetic bead-based method. The concentration and
purity of the extracted RNA were assessed using a NanoDrop 2000 and 8000 spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA). RNA integrity was evaluated using
an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), and RNA was
diluted to an appropriate concentration prior to assessment. RNA concentration should
typically be between 100 ng/µL and 1 µg/µL. After successful quality control, 1–3 µg
of total RNA from each sample was used as the input for RNA-seq library construction.
mRNA was subsequently enriched and fragmented into short sequences. First-strand
cDNA was synthesized using mRNA as a template, which was followed by second-strand
cDNA synthesis. cDNA was then purified, and the resulting products underwent a series
of procedures, including end repair, adapter ligation, A-tailing, and PCR amplification, to
produce a cDNA library for sequencing.

The constructed cDNA library was quality-checked. After passing quality control,
the cDNA library was sequenced on the NovaSeq 6000 S4 platform using paired-end
sequencing (150 bp). Raw reads were processed using bioinformatics pipeline tools on the
BMKCloud platform (www.biocloud.net, accessed 29 September 2024).

2.3. qRT-PCR Analysis and Statistical Analysis

RNA was extracted from each sample and reverse-transcribed into cDNA using
HiScript III All-in-One RT SuperMix Perfect (Vazyme, Nanjing, China). qRT-PCR was
performed using Taq Pro Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) on an
ABI real-time PCR system (ABI Q1 system). Primers were designed using Primer3 software
(v2.6.0, https://primer3.org/, accessed on 10 October 2024; Supplementary Table S2).
Gene expression data were analyzed using the 2−∆∆Ct method with actin as an internal
reference gene. One-way analysis of variance (ANOVA) was conducted using SPSS v26.0
(SPSS software, Chicago, IL, USA), and Duncan’s multiple range test was used, with the
significance level set at p < 0.05.

2.4. RNA-seq Analysis

The raw sequencing data were subjected to quality control and filtered using fastp
(v0.23.3) [44]. HISAT2 (v2.8.2) was used to map clean reads on the spinach reference
genome (Monoe_Viroflay) [37]. We used featureCounts (v2.0.1) to calculate the gene
expression levels [38]. The expression data were then normalized. Genes with an adjusted p-
value < 0.01 and fold change ≥2 found by DESeq2 were assigned as differentially expressed.

2.5. GO and KEGG Pathway Enrichment Analyses

To identify Gene Ontology (GO) terms that were significantly enriched compared with
the entire genome background, enrichment analysis for biological processes, molecular
functions, and cellular components was performed on the DEG sets of each group using
the hypergeometric test in ClusterProfiler. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment results were visualized using graphical representations gen-
erated by ClusterProfiler software (v4.4.4) [45].

www.biocloud.net
https://primer3.org/
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2.6. Analysis of Co-Expression Trends and Co-Expression Networks

Co-expression trends were analyzed for 10 samples using the K-means method in the
Python (v3.12.4) package [46].

2.7. Transcription Factor Prediction

The DEGs were subjected to TF prediction using the PlantTFDB database (https:
//planttfdb.gao-lab.org/, accessed on 10 October 2024) and further analyzed in conjunction
with the ABCDE model of floral development to identify relevant genes.

3. Results
3.1. RNA Sequencing

RNA-seq of the cDNA libraries were constructed from 10 spinach flowers of 2 lines
(Sp139 and Sp140) at 2 stages (T1 and T2), generating 65.16 Gb of clean data, with >6.00 Gb
for each sample (Figure 1). All clean reads were aligned to the Monoe–Viroflay spinach ref-
erence genome. The overall alignment rates ranged from 88.89% to 93.75% (Supplementary
Table S1). Based on the selected reference genome, we utilized the StringTie software (v2.2.1)
to assemble mapped RNA-seq reads. The resulting assembled transcripts were compared
against the existing genomic annotation to identify previously unannotated transcriptional
regions, thereby discovering novel transcripts and genes. To ensure the reliability of our
findings, sequences encoding peptides shorter than 50 amino acid residues or containing
only a single exon were excluded from further analysis. This rigorous filtering process
resulted in the identification of 3152 novel genes, significantly enhancing the completeness
and accuracy of the original genome annotation. To assess the accuracy and reproducibil-
ity, we determined the Pearson correlation coefficient between samples within the group,
and the value ranged from 0.82 to 0.98, indicating high reproducibility between samples
(Figure 2a). These results demonstrate the high quality of the transcriptome data, indicating
its suitability for further analysis. Principal component analysis (PCA) was conducted
to reduce the dimensionality of multiple variables into a few independent components
(principal components). The PCA plot showed a clear separation between groups, with
significant differences between samples (Figure 2b).
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parisons among all samples and (b) PCA based on all expressed genes, showing three distinct
sample groups.

3.2. Identification of Differentially Expressed Genes (DEGs) Between Monoecious and
Female Individuals

The transcriptional differences between monoecious and female lines were evaluated
at different stages (T1 and T2). A total of 4586 DEGs were identified across the 4 groups.
In Sp139, there were 1851 DEGs (571 upregulated and 1280 downregulated) between T1
and T2. A total of 1621 DEGs (1042 upregulated and 579 downregulated) were identified in
Sp140 between T1 and T2. At the T1 stage, there were 1169 DEGs (642 upregulated and 527
downregulated) between Sp139 and Sp140. At the T2 stage, 3137 DEGs (1012 upregulated
and 2125 downregulated) were identified between Sp139 and Sp140 (Figure 3).
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3.3. qRT-PCR Validation and Comparison with TPM Values

To validate the precision and reliability of RNA-seq analysis, four genes were chosen
and analyzed. The results obtained from RNA-seq and qRT-PCR for these genes were
highly consistent, suggesting the reliability of high-throughput transcriptome sequencing
(Figure 4).
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(b) SOV6g032730; (c) SOV3g046810; and (d) SOV2g009980.

3.4. Enrichment Analysis for the Functional Annotation of DEGs

GO and KEGG analyses are used to predict the biological functions, mechanisms of
action, and potential biological processes associated with genes. Enrichment analysis of
the DEGs across the four groups was performed to assess their distribution in the GO and
KEGG pathways. Using GO enrichment analysis, 4586 DEGs were assigned to 3 major
branches: biological process, cellular component, and molecular function. Among the bio-
logical processes, the most enriched terms were related to flower and cell wall development
(Figure 5a,b). In the cellular component category, the integral components of the membrane
and nucleus were most significantly enriched (Figure 5c,d). DNA binding was the most en-
riched term in the molecular function category, indicating the regulation of gene expression
and key pathways related to floral organ development and sex determination (Figure 5e,f).
Among the top 20 enriched annotations, 5 were related to floral organ development or
plant sex differentiation, including flower development, corolla development, and petal
development (Figure 5).
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Figure 5. Top-20 pathways in the GO enrichment analysis of DEGs in five comparisons. (a) GO
enrichment dot plot of Biological_Processes; (b) Cell_Components; (c) Molecular_Function; (d) GO
terms and hierarchical relationship of Biological_Processes; (e) Cell_Components; and (f) Molec-
ular_Function. Note: Each node represents a GO term, and the box represents the GO with an
enrichment level of Top 5. The depth of the box (or ellipse) color represents the enrichment level,
and the darker the color, the higher the significance. The name of the term and the q-value of the
enrichment analysis are displayed on each node.
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In KEGG pathway analysis, the most significantly enriched pathway was indole alka-
loid biosynthesis, which refers to the indole alkaloid biosynthetic process in plants. Other
significantly enriched pathways with a large number of genes included plant hormone
signal transduction, which regulates plant growth, development, and response to environ-
mental stimuli, and the MAPK signaling pathway, which has a regulatory role in plant
growth and development (Figure 6). Phenylpropanoid biosynthesis, which is crucial for
floral organ development, was also highly enriched. Biosynthesis of zeatin and brassinos-
teroid (BR), which are plant hormones, were among the factors influencing sex transition
in monoecious plants.
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On the first day of flowering, KEGG enrichment analysis identified 102 DEGs
(Figure 7a), which were significantly enriched in the pathways of plant hormone sig-
nal transduction, MAPK signaling pathway—plant, and flavonoid biosynthesis. On the
eighth day of flowering, KEGG enrichment analysis revealed 113 DEGs (Figure 7b) en-
riched in plant hormone signal transduction and other glycan degradation pathways. These
pathways play crucial roles in plant sex differentiation and flower organ development.

3.5. Analysis of the Co-Expression Trends of DEGs

Co-expression network analysis is used to identify hub genes or key regulators within
each module and their interactions with other genes. A K-means clustering analysis was
performed on the DEGs identified at two distinct developmental stages in monoecious
plants (male and female) and female plants. Based on the dynamic expression profiles, the
co-expressed genes were categorized into 6 clusters for monoecious plants and 12 clusters
for female plants (Figure 8).
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Among the 6 clusters for monoecious and female plants, clusters 1, 6, and 8 showed
significant expression changes associated with sex determination in spinach. These clusters
showed a pronounced transition from undifferentiated floral organs to differentiated
structures, suggesting that the genes within these clusters play pivotal roles in the process
of sex differentiation.

GO and KEGG enrichment analyses of clusters 1, 6, and 8 revealed their strong
association with pathways involved in GA signaling, pollen tube development, sexual
reproduction, MAPK signaling, pollen recognition, and plant hormone signaling (Sup-
plementary Figures S1–S3). These enriched pathways were consistent with the results of
enrichment analyses performed on previously identified DEGs. Together, these findings
highlight that the genes involved in sex determination follow dynamic expression trends
analogous to those observed in clusters 1, 6, and 8, further elucidating the molecular
mechanism underlying sex differentiation in spinach.

3.6. Transcription Factor Prediction of DEGs

Sex differentiation in many plants is determined by the regulation of specific genes
and TFs. The prediction of TFs has significant scientific and practical value in plant sex
research. All 4586 DEGs were BLASTed against the Plant Transcription Factor Database
(PlantTFDB) to identify the TFs. A total of 354 TFs belonging to 32 gene families were
identified. Among these, 26 genes were classified as MADS-box family members.

3.7. Candidate Genes Associated with Monoecism

ABCDE floral identity genes play important roles in flower development and sex
determination. Among the 26 MADS-box genes, 17 exhibited high homology, including
1 AP1 gene belonging to the A model, 2 PI genes belonging to the B model, and 14 AG
genes belonging to the C model. Except for the MADS-box genes, six DEGs were identified
as highly homologous to AP2 from the A model. In total, we uncovered 27 candidate genes
related to the flower development of floral structures and organs. Nine genes (SOV3g004950,
SOV1g020280, SOV2g002560, SOV2g030600, SOV4g052720, SOV1g000430, SOV1g002920,
SOV2g009980, and SOV4g045350) were identified in the co-expression network, suggesting
their roles in regulating sex differentiation between female and monoecious plants. The
model genes corresponding to these 27 genes are listed in Table 1.
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Table 1. Gene IDs and their corresponding protein families for these hub genes.

Gene ID The Protein Family Similarity Represents Gene

SOV2g002570 MADS AP1, PI, SQUA, SEP1, SOC1
SOV2g002560 MADS AP1, PI, SQUA, SEP1, SOC1
SOV5g027690 MADS AP1, PI, SQUA, SEP1, SOC1
SOV1g019570 MADS AP1, PI, SQUA, SEP1, SOC1
SOV2g030600 MADS AP1, PI, SQUA, SEP1, SOC1
SOV1g020280 MADS AP1, PI, SQUA, SEP1, SOC1
SOV5g010450 MADS AP1, PI, SQUA, SEP1, SOC1
SOV4g032440 MADS AP1, PI, SQUA, SEP1, SOC1
SOV3g038170 MADS AP1, PI, SQUA, SEP1, SOC1
SOV3g046800 MADS AP1, PI, SQUA, SEP1, SOC1
SOV4g008150 MADS AP1, PI, SQUA, SEP1, SOC1
SOV4g052950 MADS AP1, PI, SQUA, SEP1, SOC1
SOV3g046460 MADS AP1, PI, SQUA, SEP1, SOC1
SOV3g046810 MADS AP1, PI, SQUA, SEP1, SOC1
SOV4g052720 MADS AP1, PI, SQUA, SEP1, SOC1
SOV3g018900 MADS AP1, PI, SQUA, SEP1, SOC1
SOV5g010460 MADS AP1, PI, SQUA, SEP1, SOC1
SOV4g059500 MADS AP1
SOV1g020300 MADS PI, SQUA
SOV1g047710 MADS PI, SQUA
SOV3g004950 MADS PI, SQUA
SOV6g045620 ERF AP2
SOV6g045610 ERF AP2
SOV6g032730 ERF AP2
SOV3g042190 ERF AP2
SOV3g004160 ERF AP2
SOV1g045680 ERF AP2

4. Discussion
Spinach is a predominantly dioecious biennial herb; however, monoecious inbred

spinach lines, which have a longer flowering period and produce hybrids with high purity
and yield, have significant implications for spinach breeding. Therefore, research on the
monoecious form of spinach is of considerable importance for breeding programs. In this
study, two sampling time points—the first day of flowering and the eighth day of flowering,
which show distinct phenotypic differences—were selected for sampling two genotypes.
RNA-seq analysis was performed on samples with different genotypes collected at different
developmental stages. PCA, GO and KEGG enrichment analyses, co-expression trend
analysis, and TF prediction were conducted based on the RNA-seq data. In this study,
numerous DEGs involved in pathways related to flower development were identified,
influencing processes such as floral organ morphogenesis. In addition, some DEGs were
associated with plant hormone signaling pathways and phenylpropanoid biosynthesis.

GO enrichment analysis revealed that the biological processes related to corolla petal
development and carbohydrate metabolic processes were the most significantly enriched
pathways. Carbohydrates, a crucial organic compound in plants, play pivotal roles in
plant growth, development, and metabolism. They not only serve as a primary energy
source but also participate in critical physiological processes, such as cell wall biosynthesis,
signal transduction, and stress responses [47]. In the context of cellular components, the
chloroplast and plastid nucleoids are closely associated with chloroplast structure and
function, potentially influencing plant growth and development through the regulation
of photosynthesis [48]. At the molecular function level, several pathways are linked to
DNA-binding activity, which is essential for cellular processes. DNA-binding activity is
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involved in plant hormone signaling, developmental processes, stress responses, and cell
division and differentiation.

KEGG enrichment analysis revealed the most significantly enriched DEGs. Plant
hormones are crucial signaling molecules regulating plant growth, development, and stress
responses. Hormones, such as GAs, IAA, and BRs, are indispensable for plant growth and
development [49]. These plant hormones modulate gene expression and cellular activities
through intricate signal transduction pathways, thereby influencing physiological processes.
In addition, the “MAPK signaling pathway—plant” is involved in a wide range of cellular
processes, including growth, development, and responses to environmental stimuli.

Co-expression trend analysis identified three gene clusters whose enrichment patterns
closely aligned with those observed in previous enrichment analyses. It is hypothesized
that these three clusters reflect the expression trends of sex-related genes. GO and KEGG en-
richment analysis of these clusters revealed that they are strongly associated with pathways
such as GA signaling, nuclear development, DNA-binding, chloroplast association, sexual
reproduction, and IAA response, which is consistent with the DEG enrichment results.

TFs play a crucial role in processes such as floral development, fruit ripening, and root
development in plants. By predicting the TFs for all DEGs and comparing them with genes
representative of the ABCDE model, 27 genes were identified. These genes regulate floral
development by influencing the formation of the calyx, corolla, stamens, and carpels.

Based on functional enrichment analysis, co-expression trend analysis, and TF predic-
tion, the SOV3g004950 gene, encoding a MADS-box protein and showing high similarity to
representative genes in the ABCDE model of floral organ development, including PI and
SQUA, was enriched in the flower development pathway. The SOV1g020280, SOV2g002560,
SOV2g030600, and SOV4g052720 genes were significantly enriched in the DNA-binding
molecular function category and exhibited high similarity to key genes in the ABCDE
model, such as AP1, PI, SQUA, SEP1, and SOC1. In addition, SOV1g000430 was involved
in the flower, corolla, and petal development pathways, showing high homology to genes
regulating pollen development in Arabidopsis. The SOV1g002920 and SOV2g009980 genes
were involved in plant hormone signaling pathways and encoded receptor-like kinases,
which are highly similar to the EMS1 receptor-like kinase. These kinases are essential for
plant reproductive development, particularly in microsporocyte formation, with EMS1
playing a key role in ensuring proper meiosis and anther development. The SOV4g045350
gene belongs to the molecular function category of DNA binding and encodes a SANT
domain-containing protein. This protein regulates the expression of specific genes and
modulates the chromatin status, contributing to plant sex determination and floral organ
development. It is a member of the RADIALIS (RAD) gene family, which influences dorsal
petal identity and regulates floral symmetry. Masuda et al. [50] demonstrated that DkRAD,
a gene from hexaploid persimmon, shared high homology with RADIALIS, and expression
analysis showed that DkRAD likely promoted pistil development by activating MYB73
and modulating the IAA signaling pathway. Furthermore, DkRAD overexpression in
Arabidopsis and Nicotiana models has been shown to induce excessive pistil growth.

We identified nine genes associated with sex determination in monoecious spinach
plants. Among them, the SOV3g004950, SOV1g020280, SOV2g002560, SOV2g030600, and
SOV4g052720 genes exhibited high homology with genes involved in the floral develop-
ment model. SOV1g000430 was involved in the pathways of flower development, corolla
development, and petal development, with significant expression differences across differ-
ent developmental stages and genotypes. SOV1g002920 and SOV2g009980 influenced floral
development through plant hormone signaling pathways. SOV4g045350 was identified as
a key gene involved in pistil growth.
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5. Conclusions
The genetic study of sex determination in monoecious spinach provides a foundation

for monoecious hybrid breeding and has significant implications for spinach breeding. To
date, research on sex determination in spinach has been relatively limited. In this study,
RNA-seq was performed using materials from monoecious and female spinach plants
to analyze the functional enrichment of DEGs, co-expression trends, and TF predictions,
aiming to identify key genes influencing sex determination in spinach. The results indicate
that floral development and plant hormone signaling pathways are crucial for sex deter-
mination in spinach. Twenty-seven genes associated with the ABCDE model, particularly
within the MADS-box and ERF families, played vital roles in spinach development. The
SOV3g004950, SOV1g020280, SOV2g002560, SOV2g030600, and SOV4g052720 genes were
significantly enriched in pathways associated with floral development and exhibited high
homology to key genes from the ABCDE model. SOV1g000430 was a critical gene involved
in pollen development, while SOV1g002920 and SOV2g009980 regulated anther structure
development through plant hormones. In addition, SOV4g045350 played a pivotal role in
regulating pistil growth via the IAA signaling pathway. In conclusion, this study provided
a comprehensive analysis of RNA-seq data and identified seven candidate genes associated
with monoecious sex determination in spinach, laying the groundwork for future spinach
breeding and sex determination research.
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in Cluster 8.
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