High Level of CD8+PD-1+ Cells in Patients with Chronic Myeloid Leukemia Who Experienced Loss of MMR after Imatinib Discontinuation
<p>Immunological characteristics of all patients enrolled in the study. Differences in the percentages of immune populations at the moment of stopping imatinib and at 3 months after discontinuation in analyzed patients (Wilcoxon signed-rank test). (<b>A</b>) DC subpopulations; mDC, median: 0.20 vs. 0.28%; pDC, median: 0.12 vs. 0.15%; mDC PD-1<sup>+</sup>, median: 35.81 vs. 32.23%. (<b>B</b>) NKT-like and NK cells; NKT-like cells, median: 14.45 vs. 12.80%; NKT-like PD-1<sup>+</sup>; median: 21.02 vs. 21.28%; CD56<sup>bright</sup>CD16-PD-1<sup>+</sup>, median: 2.31 vs. 2.08%; CD56<sup>dim</sup>CD16<sup>+</sup>PD-1<sup>+</sup>, median: 3.71 vs. 3.49%. (<b>C</b>) CD4<sup>+</sup> T cells and regulatory T cells; Treg CD4<sup>+</sup>CD25<sup>+</sup>CD127<sup>dim</sup>FOXP3<sup>+</sup>, median: 3.00 vs. 2.89%; CD4<sup>+</sup>PD-1<sup>+</sup>, median: 21.59 vs. 19.34%. Red color indicates statistical significance <span class="html-italic">p</span> < 0.05, blue color indicates tendency <span class="html-italic">p</span> < 0.1.</p> "> Figure 2
<p>Changes in immune populations in patients with stable MMR or lost MMR at 3 months after withdrawal. Differences in the percentages of immune populations between patient groups were analyzed with the Mann–Whitney U test. (<b>A</b>) CD8<sup>+</sup>PD-1<sup>+</sup> cells, median: 17.70 vs. 27.13%. (<b>B</b>) mDC PD-1<sup>+</sup>, median: 31.55 vs. 42.88%. (<b>C</b>) pDC PD-1<sup>+</sup>, median: 33.42 vs. 46.76%. Red color indicates statistical significance <span class="html-italic">p</span> < 0.05, blue color indicates tendency <span class="html-italic">p</span> < 0.1.</p> "> Figure 3
<p>Comparison of ROC curves showing an analysis of potential immunological biomarkers by age, duration of DMR, length of TKI treatment before TFR, and percentages of CD8<sup>+</sup>PD-1<sup>+</sup>, mDC PD-1<sup>+</sup>, and pDC PD-1<sup>+</sup>. Among the clinical data evaluated, ROC analysis indicates CD8<sup>+</sup>PD-1<sup>+</sup> percentage as the strongest factor in early molecular reoccurrence (lost MMR) (<span class="html-italic">p</span> < 0.01). The statistically significant marker of lost MMR is the duration of DMR before stopping treatment (<span class="html-italic">p</span> < 0.05) (ROC curves).</p> "> Figure 4
<p>Correlation between percentage of CD8<sup>+</sup>PD-1<sup>+</sup> in patients at 3 months after withdrawal, and duration of treatment and DMR before TFR trial. The percentage of CD8<sup>+</sup>PD-1<sup>+</sup> is inversely related to the treatment of imatinib (R = −0.3227, 95% CI: −0.5618 to −0.03378) and DMR duration (R = −0.3118, 95% CI: −0.5535 to −0.02176) (Spearman r). Red color indicates statistical significance <span class="html-italic">p</span> < 0.05, green color indicates the correlation coefficient.</p> "> Figure 5
<p>Analysis of changes in the immune system of patients depending on the transcript type of <span class="html-italic">BCR::ABL1</span>. Higher percentage of the population expressing PD-1 in patients with e13a2 compared to patients with e14a2 (Mann–Whitney U test). Differences between patients with e13a2 vs. patients with e14a2: CD56<sup>dim</sup>CD16<sup>+</sup>PD-1<sup>+</sup>, median: 4.89 vs. 3.12%; CD19<sup>+</sup>PD-1<sup>+</sup>, median: 16.20 vs. 10.48%; CD8<sup>+</sup>PD-1<sup>+</sup>, median: 23.15 vs. 14.91%. Red color indicates statistical significance <span class="html-italic">p</span> < 0.05, blue color indicates tendency <span class="html-italic">p</span> < 0.1.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Ethics Statement
2.3. Cell Isolation
2.4. Flow Cytometry for Detection of T Cells, B Cells, and Regulatory T Cells
2.5. Flow Cytometry for Detection of Natural Killer (NK) Cells and Natural Killer T-Like (NKT-like) Cells
2.6. Flow Cytometry for Detection of Myeloid Dendritic Cells (mDCs) and Plasmacytoid Dendritic Cells (pDCs)
2.7. Assessment of PD-1 Expression Changes on Immune Cell Subpopulation by Flow Cytometry
2.8. RNA Extraction
2.9. Reverse Transcription
2.10. RQ-PCR for BCR::ABL1
2.11. ddPCR for BCR::ABL1
2.12. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Characteristics of the Immune System of CML Patients 3 Months after Imatinib Discontinuation
- A significant increase in the percentages of dendritic cell subpopulations (mDC and pDC),
- A significant decrease in the percentages of cells positive for the PD-1 molecule, including DC subpopulations (mDC PD-1+), NK cells (CD56dimCD16+PD-1+, CD56brightCD16−PD-1+), and CD4+ helper lymphocytes (CD4+PD-1+),
- A significant decrease in the percentages of regulatory lymphocytes (CD4+CD25+CD127dimFOXP3+), and NKT-like lymphocytes.
3.3. Immunological Differences between CML Patients in Remission and Patients with Molecular Recurrence
3.4. Other Clinical Parameters in CML Patients in TFR
3.4.1. Type of Transcripts e13a2 and e14a2
3.4.2. Withdrawal Syndrome (WS)
3.4.3. ELTS Scores
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welch, H.G.; Kramer, B.S.; Black, W.C. Epidemiologic Signatures in Cancer. N. Engl. J. Med. 2019, 381, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Islamagic, E.; Hasic, A.; Kurtovic, S.; Suljovic Hadzimesic, E.; Mehinovic, L.; Kozaric, M.; Kurtovic-Kozaric, A. The Efficacy of Generic Imatinib as First- and Second-Line Therapy: 3-Year Follow-up of Patients With Chronic Myeloid Leukemia. Clin. Lymphoma Myeloma Leuk. 2017, 17, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Hochhaus, A. Educational Session: Managing Chronic Myeloid Leukemia as a Chronic Disease. Hematol. Am. Soc. Hematol. Educ. Progr. 2011, 2011, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Hochhaus, A.; Baccarani, M.; Silver, R.T.; Schiffer, C.; Apperley, J.F.; Cervantes, F.; Clark, R.E.; Cortes, J.E.; Deininger, M.W.; Guilhot, F.; et al. European LeukemiaNet 2020 Recommendations for Treating Chronic Myeloid Leukemia. Leukemia 2020, 34, 966–984. [Google Scholar] [CrossRef] [PubMed]
- Kwaśnik, P.; Giannopoulos, K. Treatment-Free Remission-A New Aim in the Treatment of Chronic Myeloid Leukemia. J. Pers. Med. 2021, 11, 697. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.C.; Kirschner, K.; Copland, M. Improving Outcomes in Chronic Myeloid Leukemia through Harnessing the Immunological Landscape. Leukemia 2021, 35, 1229–1242. [Google Scholar] [CrossRef] [PubMed]
- Ureshino, H. Treatment-Free Remission and Immunity in Chronic Myeloid Leukemia. Int. J. Hematol. 2021, 113, 642–647. [Google Scholar] [CrossRef]
- Sacha, T.; Zawada, M.; Czekalska, S.; Florek, I.; Mueller, M.; Gniot, M.; Jaźwiec, B.; Kyrcz-Krzemień, S.; Leszczyńska, A.; Lewandowski, K.; et al. Standaryzacja Ilościowej Oceny Ekspresji Genu BCR-ABL Metoda RQ-PCR u Chorych Na Przewlekła Białaczke Szpikowa We Współpracy z European Leukemia Net. Przegla̧d Lek. 2010, 67, 454–459. [Google Scholar]
- Kjaer, L.; Skov, V.; Andersen, M.T.; Aggerholm, A.; Clair, P.; Gniot, M.; Soeby, K.; Udby, L.; Dorff, M.H.; Hasselbalch, H.; et al. Variant-Specific Discrepancy When Quantitating BCR-ABL1 E13a2 and E14a2 Transcripts Using the Europe Against Cancer QPCR Assay. Eur. J. Haematol. 2019, 103, 26–34. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Franke, G.N.; Maier, J.; Wildenberger, K.; Cross, M.; Giles, F.J.; Müller, M.C.; Hochhaus, A.; Niederwieser, D.; Lange, T. Comparison of Real-Time Quantitative PCR and Digital Droplet PCR for BCR-ABL1 Monitoring in Patients with Chronic Myeloid Leukemia. J. Mol. Diagn. 2020, 22, 81–89. [Google Scholar] [CrossRef]
- Ilander, M.; Olsson-Strömberg, U.; Schlums, H.; Guilhot, J.; Brück, O.; Lähteenmäki, H.; Kasanen, T.; Koskenvesa, P.; Söderlund, S.; Höglund, M.; et al. Increased Proportion of Mature NK Cells Is Associated with Successful Imatinib Discontinuation in Chronic Myeloid Leukemia. Leukemia 2016, 31, 1108–1116. [Google Scholar] [CrossRef]
- Schütz, C.; Inselmann, S.; Sausslele, S.; Dietz, C.T.; Müller, M.C.; Eigendorff, E.; Brendel, C.A.; Metzelder, S.K.; Brümmendorf, T.H.; Waller, C.; et al. Expression of the CTLA-4 Ligand CD86 on Plasmacytoid Dendritic Cells (PDC) Predicts Risk of Disease Recurrence after Treatment Discontinuation in CML. Leukemia 2017, 31, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Rea, D.; Henry, G.; Khaznadar, Z.; Etienne, G.; Guilhot, F.; Nicolini, F.; Guilhot, J.; Rousselot, P.; Huguet, F.; Legros, L.; et al. Natural Killer-Cell Counts Are Associated with Molecular Relapse-Free Survival after Imatinib Discontinuation in Chronic Myeloid Leukemia: The IMMUNOSTIM Study. Haematologica 2017, 102, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Boissel, N.; Rousselot, P.; Raffoux, E.; Cayuela, J.M.; Maarek, O.; Charron, D.; Degos, L.; Dombret, H.; Toubert, A.; Rea, D. Defective Blood Dendritic Cells in Chronic Myeloid Leukemia Correlate with High Plasmatic VEGF and Are Not Normalized by Imatinib Mesylate. Leukemia 2004, 18, 1656–1661. [Google Scholar] [CrossRef] [PubMed]
- Mohty, M.; Jourdan, E.; Mami, N.B.; Vey, N.; Damaj, G.; Blaise, D.; Isnardon, D.; Olive, D.; Gaugler, B. Imatinib and Plasmacytoid Dendritic Cell Function in Patients with Chronic Myeloid Leukemia. Blood 2004, 103, 4666–4668. [Google Scholar] [CrossRef]
- Mohty, M.; Isnardon, D.; Vey, N.; Brière, F.; Blaise, D.; Olive, D.; Gaugler, B. Low Blood Dendritic Cells in Chronic Myeloid Leukaemia Patients Correlates with Loss of CD34+/CD38– Primitive Haematopoietic Progenitors. Br. J. Haematol. 2002, 119, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.; Yong, A.S.M. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission. Front. Immunol. 2017, 8, 469. [Google Scholar] [CrossRef] [PubMed]
- Brück, O.; Blom, S.; Dufva, O.; Turkki, R.; Chheda, H.; Ribeiro, A.; Kovanen, P.; Aittokallio, T.; Koskenvesa, P.; Kallioniemi, O.; et al. Immune Cell Contexture in the Bone Marrow Tumor Microenvironment Impacts Therapy Response in CML. Leukemia 2018, 32, 1643–1656. [Google Scholar] [CrossRef]
- Mumprecht, S.; Schürch, C.; Schwaller, J.; Solenthaler, M.; Ochsenbein, A.F. Programmed Death 1 Signaling on Chronic Myeloid Leukemia-Specific T Cells Results in T-Cell Exhaustion and Disease Progression. Blood 2009, 114, 1528–1536. [Google Scholar] [CrossRef]
- Hughes, A.; Clarson, J.; Tang, C.; Vidovic, L.; White, D.L.; Hughes, T.P.; Yong, A.S.M. CML Patients with Deep Molecular Responses to TKI Have Restored Immune Effectors and Decreased PD-1 and Immune Suppressors. Blood 2017, 129, 1166–1176. [Google Scholar] [CrossRef]
- Hsu, J.; Hodgins, J.J.; Marathe, M.; Nicolai, C.J.; Bourgeois-Daigneault, M.C.; Trevino, T.N.; Azimi, C.S.; Scheer, A.K.; Randolph, H.E.; Thompson, T.W.; et al. Contribution of NK Cells to Immunotherapy Mediated by PD-1/PD-L1 Blockade. J. Clin. Investig. 2018, 128, 4654. [Google Scholar] [CrossRef]
- Iannello, A.; Thompson, T.W.; Ardolino, M.; Marcus, A.; Raulet, D.H. Immunosurveillance and Immunotherapy of Tumors by Innate Immune Cells. Curr. Opin. Immunol. 2016, 38, 52–58. [Google Scholar] [CrossRef]
- Ansell, S.M. Hodgkin Lymphoma: MOPP Chemotherapy to PD-1 Blockade and Beyond. Am. J. Hematol. 2016, 91, 109–112. [Google Scholar] [CrossRef]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Akiba, H.; Iwai, H.; Matsuda, H.; Aoki, M.; Tanno, Y.; Shin, T.; Tsuchiya, H.; Pardoll, D.M.; Okumura, K.; et al. Expression of Programmed Death 1 Ligands by Murine T Cells and APC. J. Immunol. 2002, 169, 5538–5545. [Google Scholar] [CrossRef] [PubMed]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and Its Ligands in Tolerance and Immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.S.; Chew, V.; Sieow, J.L.; Goh, S.; Yeong, J.P.S.; Soon, A.L.; Ricciardi-Castagnoli, P. PD-1 Expression on Dendritic Cells Suppresses CD8+T Cell Function and Antitumor Immunity. Oncoimmunology 2016, 5, e1085146. [Google Scholar] [CrossRef]
- Park, S.J.; Namkoong, H.; Doh, J.; Choi, J.-C.; Yang, B.-G.; Park, Y.; Sung, Y.C. Negative Role of Inducible PD-1 on Survival of Activated Dendritic Cells. J. Leukoc. Biol. 2014, 95, 621–629. [Google Scholar] [CrossRef]
- Krempski, J.; Karyampudi, L.; Behrens, M.D.; Erskine, C.L.; Hartmann, L.; Dong, H.; Goode, E.L.; Kalli, K.R.; Knutson, K.L. Tumor-Infiltrating Programmed Death Receptor-1+ Dendritic Cells Mediate Immune Suppression in Ovarian Cancer. J. Immunol. 2011, 186, 6905–6913. [Google Scholar] [CrossRef]
- Breccia, M.; Molica, M.; Colafigli, G.; Massaro, F.; Quattrocchi, L.; Latagliata, R.; Mancini, M.; Diverio, D.; Guarini, A.; Alimena, G.; et al. Prognostic Factors Associated with a Stable MR4.5 Achievement in Chronic Myeloid Leukemia Patients Treated with Imatinib. Oncotarget 2017, 9, 7534–7540. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, M.; Scaffidi, L.; Binotto, G.; De Marchi, F.; Maino, E.; Calistri, E.; Bonalumi, A.; Frison, L.; Marin, L.; Medeot, M.; et al. Predictive Factors of Stable Deep Molecular Response in Chronic Myeloid Leukemia Patients Treated with Imatinib Standard Dose: A Study from the Gruppo Triveneto LMC. Blood 2015, 126, 597. [Google Scholar] [CrossRef]
- Castagnetti, F.; Gugliotta, G.; Breccia, M.; Iurlo, A.; Levato, L.; Albano, F.; Vigneri, P.; Abruzzese, E.; Rossi, G.; Rupoli, S.; et al. The BCR-ABL1 Transcript Type Influences Response and Outcome in Philadelphia Chromosome-Positive Chronic Myeloid Leukemia Patients Treated Frontline with Imatinib. Am. J. Hematol. 2017, 92, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Kantarjian, H.; Patel, K.P.; Gonzalez, G.N.; Luthra, R.; Shamanna, R.K.; Sasaki, K.; Jabbour, E.; Romo, C.G.; Kadia, T.M.; et al. Impact of BCR-ABL Transcript Type on Outcome in Patients with Chronic-Phase CML Treated with Tyrosine Kinase Inhibitors. Blood 2016, 127, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Genthon, A.; Nicolini, F.E.; Huguet, F.; Colin-Gil, C.; Berger, M.; Saugues, S.; Janel, A.; Hayette, S.; Cohny-Makhoul, P.; Cadoux, N.; et al. Influence of Major BCR-ABL1 Transcript Subtype on Outcome in Patients with Chronic Myeloid Leukemia in Chronic Phase Treated Frontline with Nilotinib. Oncotarget 2020, 11, 2560. [Google Scholar] [CrossRef] [PubMed]
- Claudiani, S.; Apperley, J.F.; Gale, R.P.; Clark, R.; Szydlo, R.; Deplano, S.; Palanicawandar, R.; Khorashad, J.; Foroni, L.; Milojkovic, D. E14a2 BCR-ABL1 Transcript Is Associated with a Higher Rate of Treatment-Free Remission in Individuals with Chronic Myeloid Leukemia after Stopping Tyrosine Kinase Inhibitor Therapy. Haematologica 2017, 102, e297–e299. [Google Scholar] [CrossRef] [PubMed]
- Shanmuganathan, N.; Branford, S.; Yong, A.S.M.; Hiwase, D.K.; Yeung, D.T.; Ross, D.M.; Hughes, T.P. The E13a2 BCR-ABL1 Transcript Is Associated with Higher Rates of Molecular Recurrence after Treatment-Free Remission Attempts: Retrospective Analysis of the Adelaide Cohort. Blood 2018, 132, 1731. [Google Scholar] [CrossRef]
- D’Adda, M.; Farina, M.; Schieppati, F.; Borlenghi, E.; Bottelli, C.; Cerqui, E.; Ferrari, S.; Gramegna, D.; Pagani, C.; Passi, A.; et al. The E13a2 BCR-ABL Transcript Negatively Affects Sustained Deep Molecular Response and the Achievement of Treatment-Free Remission in Patients with Chronic Myeloid Leukemia Who Receive Tyrosine Kinase Inhibitors. Cancer 2019, 125, 1674–1682. [Google Scholar] [CrossRef] [PubMed]
- Dominy, K.M.; Claudiani, S.; O’Hare, M.; Szydlo, R.; Gerrard, G.; Foskett, P.; Foroni, L.; Milojkovic, D.; Apperley, J.F.; Khorashad, J. Assessment of Quantitative Polymerase Chain Reaction for BCR-ABL1 Transcripts in Chronic Myeloid Leukaemia: Are Improved Outcomes in Patients with E14a2 Transcripts an Artefact of Technology? Br. J. Haematol. 2022, 197, 52–62. [Google Scholar] [CrossRef]
- Salmon, M.; White, H.E.; Zizkova, H.; Gottschalk, A.; Motlova, E.; Cerveira, N.; Colomer, D.; Coriu, D.; Franke, G.N.; Gottardi, E.; et al. Impact of BCR::ABL1 Transcript Type on RT-QPCR Amplification Performance and Molecular Response to Therapy. Leukemia 2022, 36, 1879–1886. [Google Scholar] [CrossRef]
- Pfirrmann, M.; Evtimova, D.; Saussele, S.; Castagnetti, F.; Cervantes, F.; Janssen, J.; Hoffmann, V.S.; Gugliotta, G.; Hehlmann, R.; Hochhaus, A.; et al. No Influence of BCR-ABL1 Transcript Types E13a2 and E14a2 on Long-Term Survival: Results in 1494 Patients with Chronic Myeloid Leukemia Treated with Imatinib. J. Cancer Res. Clin. Oncol. 2017, 143, 843–850. [Google Scholar] [CrossRef]
- Bernardi, S.; Malagola, M.; Zanaglio, C.; Polverelli, N.; Dereli Eke, E.; D’Adda, M.; Farina, M.; Bucelli, C.; Scaffidi, L.; Toffoletti, E.; et al. Digital PCR Improves the Quantitation of DMR and the Selection of CML Candidates to TKIs Discontinuation. Cancer Med. 2019, 8, 2041–2055. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.; Cartwright, A.; Francis, S.; Whitby, L.; Sanzone, A.P.; Mulder, A.; Galimberti, S.; Dulucq, S.; Mauté, C.; Lauricella, C.; et al. Assessment of Droplet Digital Polymerase Chain Reaction for Measuring BCR-ABL1 in Chronic Myeloid Leukaemia in an International Interlaboratory Study. Br. J. Haematol. 2021, 194, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Baccarani, M.; Rosti, G.; Soverini, S. Chronic Myeloid Leukemia: The Concepts of Resistance and Persistence and the Relationship with the BCR-ABL1 Transcript Type. Leukemia 2019, 33, 2358–2364. [Google Scholar] [CrossRef]
- Lucas, C.M.; Harris, R.J.; Giannoudis, A.; Davies, A.; Knight, K.; Watmough, S.J.; Wang, L.; Clark, R.E. Chronic Myeloid Leukemia Patients with the E13a2 BCR-ABL Fusion Transcript Have Inferior Responses to Imatinib Compared to Patients with the E14a2 Transcript. Haematologica 2009, 94, 1362–1367. [Google Scholar] [CrossRef]
- Hanfstein, B.; Lauseker, M.; Hehlmann, R.; Saussele, S.; Erben, P.; Dietz, C.; Fabarius, A.; Proetel, U.; Schnittger, S.; Haferlach, C.; et al. Distinct Characteristics of E13a2 versus E14a2 BCR-ABL1 Driven Chronic Myeloid Leukemia under First-Line Therapy with Imatinib. Haematologica 2014, 99, 1441. [Google Scholar] [CrossRef] [PubMed]
- Gale, R.P.; Opelz, G. Is There Immune Surveillance against Chronic Myeloid Leukaemia? Possibly, but Not Much. Leuk. Res. 2017, 57, 109–111. [Google Scholar] [CrossRef]
- Clark, R.E.; Anthony Dodi, I.; Hill, S.C.; Lill, J.R.; Aubert, G.; Macintyre, A.R.; Rojas, J.; Bourdon, A.; Bonner, P.L.R.; Wang, L.; et al. Direct Evidence That Leukemic Cells Present HLA-Associated Immunogenic Peptides Derived from the BCR-ABL B3a2 Fusion Protein. Blood 2001, 98, 2887–2893. [Google Scholar] [CrossRef]
- Berger, M.G.; Pereira, B.; Rousselot, P.; Cony-Makhoul, P.; Gardembas, M.; Legros, L.; Escoffre-Barbe, M.; Nicolini, F.E.; Saugues, S.; Lambert, C.; et al. Longer Treatment Duration and History of Osteoarticular Symptoms Predispose to Tyrosine Kinase Inhibitor Withdrawal Syndrome. Br. J. Haematol. 2019, 187, 337–346. [Google Scholar] [CrossRef]
- Petrova, A.; Chelysheva, E.; Shukhov, O.; Bykova, A.; Nemchenko, I.; Gusarova, G.; Tsyba, N.; Julhakyan, H.; Shuvaev, V.; Fominykh, M.; et al. Withdrawal Syndrome After Tyrosine Kinase Inhibitor Discontinuation in Patients With Chronic Myeloid Leukemia in the Russian Prospective Study RU-SKI. Clin. Lymphoma Myeloma Leuk. 2020, 20, 267–271. [Google Scholar] [CrossRef]
- Flynn, K.E.; Atallah, E.; Lin, L.; Shah, N.P.; Silver, R.T.; Larson, R.A.; Pinilla-Ibarz, J.; Thompson, J.E.; Oehler, V.G.; Radich, J.P.; et al. Patient- and Physician-Reported Pain after Tyrosine Kinase Inhibitor Discontinuation among Patients with Chronic Myeloid Leukemia. Haematologica 2022, 107, 2641–2649. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Choi, S.Y.; Song, H.Y.; Kim, S.H.; Choi, M.Y.; Park, J.S.; Kim, H.J.; Kim, S.H.; Zang, D.Y.; Oh, S.; et al. Imatinib Withdrawal Syndrome and Longer Duration of Imatinib Have a Close Association with a Lower Molecular Relapse after Treatment Discontinuation: The KID Study. Haematologica 2016, 101, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Ceko, M.; Milenkovic, N.; Le Coutre, P.; Westermann, J.; Lewin, G.R. Inhibition of C-Kit Signaling Is Associated with Reduced Heat and Cold Pain Sensitivity in Humans. Pain 2014, 155, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Saussele, S.; Richter, J.; Guilhot, J.; Gruber, F.X.; Hjorth-Hansen, H.; Almeida, A.; Janssen, J.J.W.M.; Mayer, J.; Koskenvesa, P.; Panayiotidis, P.; et al. Discontinuation of Tyrosine Kinase Inhibitor Therapy in Chronic Myeloid Leukaemia (EURO-SKI): A Prespecified Interim Analysis of a Prospective, Multicentre, Non-Randomised, Trial. Lancet Oncol. 2018, 19, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Mahon, F.X.; Réa, D.; Guilhot, J.; Guilhot, F.; Huguet, F.; Nicolini, F.; Legros, L.; Charbonnier, A.; Guerci, A.; Varet, B.; et al. Discontinuation of Imatinib in Patients with Chronic Myeloid Leukaemia Who Have Maintained Complete Molecular Remission for at Least 2 Years: The Prospective, Multicentre Stop Imatinib (STIM) Trial. Lancet Oncol. 2010, 11, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.M.; Branford, S.; Seymour, J.F.; Schwarer, A.P.; Arthur, C.; Yeung, D.T.; Dang, P.; Goyne, J.M.; Slader, C.; Filshie, R.J.; et al. Safety and Efficacy of Imatinib Cessation for CML Patients with Stable Undetectable Minimal Residual Disease: Results from the TWISTER Study. Blood 2013, 122, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Rousselot, P.; Charbonnier, A.; Cony-Makhoul, P.; Agape, P.; Nicolini, F.E.; Varet, B.; Gardembas, M.; Etienne, G.; Reá, D.; Roy, L.; et al. Loss of Major Molecular Response as a Trigger for Restarting Tyrosine Kinase Inhibitor Therapy in Patients with Chronic-Phase Chronic Myelogenous Leukemia Who Have Stopped Imatinib after Durable Undetectable Disease. J. Clin. Oncol. 2014, 32, 424–430. [Google Scholar] [CrossRef]
- Haddad, F.G.; Sasaki, K.; Issa, G.C.; Garcia-Manero, G.; Ravandi, F.; Kadia, T.; Cortes, J.; Konopleva, M.; Pemmaraju, N.; Alvarado, Y.; et al. Treatment-Free Remission in Patients with Chronic Myeloid Leukemia Following the Discontinuation of Tyrosine Kinase Inhibitors. Am. J. Hematol. 2022, 97, 856–864. [Google Scholar] [CrossRef]
Characteristic | No. of Patients (%) or Median [Range] |
---|---|
N | 63 |
Age (years) | 64 [25–87] |
Gender | |
Female | 38 (60.3) |
Male | 25 (39.7) |
ELTS score | |
Low | 32 (78.1) |
Intermediate | 7 (17.1) |
High | 2 (4.8) |
Sokal score | |
Low | 39 (76.5) |
Intermediate | 6 (11.8) |
High | 6 (11.8) |
Transcript type a | |
e14a2 | 34 (65.4) |
e13a2 | 15 (28.8) |
e13a2 and e14a2 | 3 (5.8) |
MR at the moment of withdrawal b | |
MR4.0 | 2 (3.3) |
MR4.5 or more | 58 (96.7) |
The median duration of treatment (months) | 115 [38–173] |
The median duration of DMR before discontinuation (months) | 81.5 [10–148] |
Occurrence of withdrawal syndrome c | 21 (42.0) |
No. of patients with DMR loss in 3 months b | 24 (38.1) |
No. of patients with MMR loss in 3 months b | 13 (20.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwaśnik, P.; Zaleska, J.; Link-Lenczowska, D.; Zawada, M.; Wysogląd, H.; Ochrem, B.; Bober, G.; Wasilewska, E.; Hus, I.; Szarejko, M.; et al. High Level of CD8+PD-1+ Cells in Patients with Chronic Myeloid Leukemia Who Experienced Loss of MMR after Imatinib Discontinuation. Cells 2024, 13, 723. https://doi.org/10.3390/cells13080723
Kwaśnik P, Zaleska J, Link-Lenczowska D, Zawada M, Wysogląd H, Ochrem B, Bober G, Wasilewska E, Hus I, Szarejko M, et al. High Level of CD8+PD-1+ Cells in Patients with Chronic Myeloid Leukemia Who Experienced Loss of MMR after Imatinib Discontinuation. Cells. 2024; 13(8):723. https://doi.org/10.3390/cells13080723
Chicago/Turabian StyleKwaśnik, Paulina, Joanna Zaleska, Dorota Link-Lenczowska, Magdalena Zawada, Hubert Wysogląd, Bogdan Ochrem, Grażyna Bober, Ewa Wasilewska, Iwona Hus, Monika Szarejko, and et al. 2024. "High Level of CD8+PD-1+ Cells in Patients with Chronic Myeloid Leukemia Who Experienced Loss of MMR after Imatinib Discontinuation" Cells 13, no. 8: 723. https://doi.org/10.3390/cells13080723
APA StyleKwaśnik, P., Zaleska, J., Link-Lenczowska, D., Zawada, M., Wysogląd, H., Ochrem, B., Bober, G., Wasilewska, E., Hus, I., Szarejko, M., Prejzner, W., Grzybowska-Izydorczyk, O., Klonowska-Szymczyk, A., Mędraś, E., Kiełbus, M., Sacha, T., & Giannopoulos, K. (2024). High Level of CD8+PD-1+ Cells in Patients with Chronic Myeloid Leukemia Who Experienced Loss of MMR after Imatinib Discontinuation. Cells, 13(8), 723. https://doi.org/10.3390/cells13080723