Functional Adaptation in the Brain Habenulo–Mesencephalic Pathway During Cannabinoid Withdrawal
<p>Diagram illustrating the experimental timeline. From day 1 to day 6.5 (C and S-W groups) or 7 (P-W group), rats received THC/vehicle, twice daily, i.p. On day 8, animals were challenged with vehicle (24 h after the last vehicle/THC administration; C and S-W groups) or with rimonabant (12 h after last THC administration; P-W group), then they underwent behavioral observation and in vivo electrophysiology.</p> "> Figure 2
<p>Behavioral manifestations of THC withdrawal. Bar histogram showing mean ± SEM of behavioral cannabinoid-withdrawal scores observed for 30 min for each group. P-W rats show a marked behavioral withdrawal syndrome (C, <span class="html-italic">n</span> = 16; S-W, <span class="html-italic">n</span> = 17; P-W, <span class="html-italic">n</span> = 16; two-way ANOVA and Sidak test, **** <span class="html-italic">p</span> < 0.0001, ** <span class="html-italic">p</span> < 0.01).</p> "> Figure 3
<p>(<b>A</b>) On the left, schematic experimental protocol for in vivo electrophysiology recordings within the VTA (rec) and electrical stimulation of the RMTg (stim). Trace showing typical dopamine neuron action potential waveforms. On the right, recording site marked by the PSB dye (arrowhead) in a brain slice. Abbreviations: RN, red nucleus; IP, interpeduncular nucleus; SNr, substantia nigra pars reticulata; PBP, parabrachial pigmented nuclei. (<b>B</b>) Representative extracellular recordings of putative dopamine neurons in the VTA for each experimental group (left). Graphs showing the mean firing rate (right) and (<b>C</b>) the mean bursting activity (C, <span class="html-italic">n</span> = 13 rats, 125 cells; S-W, <span class="html-italic">n</span> = 15 rats, 167 cells; P-W, <span class="html-italic">n</span> = 11 rats, 109 cells). (<b>D</b>) Pie charts illustrating the percentages of inhibited (black) or unresponsive (grey) dopamine neurons following stimulation of the RMTg. Traces acquired from a digital oscilloscope [top] and PSTH of the same cell [bottom] showing that the duration of inhibition is increased in dopamine neurons from S-W (126 ms) and P-W (102 ms) rats when compared with controls (61 ms). (<b>E</b>) The bar graph represents the mean inhibitory response to RMTg stimulation in VTA dopamine cells from C (<span class="html-italic">n</span> = 49), S-W (<span class="html-italic">n</span> = 62), and P-W (<span class="html-italic">n</span> = 48) rats. The complete suppression of discharge activity in S-W and P-W rats was significantly longer than in C animals. (<b>F</b>) Representative extracellular recordings and relative autocorrelograms of regularly, bursting, and irregularly firing cells. (<b>G</b>) The bar graph shows that the number of irregularly firing neurons in S-W and P-W rats was increased. (<b>H</b>) Time course of acute THC’s effect on RMTg-induced inhibition of VTA dopamine neurons in C (<span class="html-italic">n</span> = 10) and S-W (<span class="html-italic">n</span> = 8) groups. The decrease in the duration of inhibition is reduced when compared to the baseline prior THC administration in both C and S-W rats. Data are expressed as mean or percentage of baseline ± SEM. One-way or two-way ANOVA for repeated measures followed by Dunnett test, Sidak test, or chi-square test when appropriate. **** <span class="html-italic">p</span> < 0.0001, *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>(<b>A</b>) On the left, schematic illustration of the experimental protocol for in vivo electrophysiological recordings in the RMTg (rec) and stimulation in the LHb (stim). Trace showing superimposed RMTg neuron action potential waveforms. On the right, recording location for the RMTg marked by the PSB dye (arrowhead) in a brain slice. Abbreviations: Pn, pontine nuclei; xscp, decussation of the superior cerebellar peduncle; DR, dorsal raphe. (<b>B</b>) Superimposed traces acquired from a digital oscilloscope showing a relatively constant latency of the orthodromic response of RMTg neuron following LHb stimulation (left) and representative PSTH (right). (<b>C</b>) Recording trace [top] and rate histogram (bottom) of single RMTg neuron encountered in rats belonging to the C, S-W, and P-W groups. (<b>D</b>) Graph showing the mean firing rate of RMTg cells (C, <span class="html-italic">n</span> = 9 rats, 87 cells; S-W, <span class="html-italic">n</span> = 9 rats, 104 cells; P-W, <span class="html-italic">n</span> = 7 rats, 69 cells). (<b>E</b>) Rate histograms showing that the THC-induced reduction in the firing activity of RMTg neurons from C rats is absent in RMTg neurons from S-W rats. (<b>F</b>) Graph showing averaged time course of THC-induced firing rate reduction (C, <span class="html-italic">n</span> = 8; S-W, <span class="html-italic">n</span> = 7). Data are expressed as mean or percentage of baseline ± SEM. One-way or two-way ANOVA for repeated measures followed by Dunnett test or Sidak test when appropriate. **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 5
<p>(<b>A</b>) On the left, diagram illustrating the experimental protocol for in vivo electrophysiological recordings in the LHb (rec) and stimulation in the RMTg (stim). Trace showing superimposed LHb neuron action potential waveforms. On the right, recording site for the LHb marked by the PSB dye (arrowhead) in a brain slice. Abbreviations: lLHb, lateral subdivision of LHb; MHb, medial habenula; PVP, posterior paraventricular thalamus. (<b>B</b>) Spontaneous activity of LHb neurons encountered in a rat belonging to the C, S-W, and P-W groups [top]. Each rate histogram (bottom) represents the neuronal activity of a single neuron. Graphs showing the mean firing rate (<b>C</b>) and the mean percentage of CV (<b>D</b>) (C, <span class="html-italic">n</span> = 9 rats, 72 cells; S-W, <span class="html-italic">n</span> = 10 rats, 107 cells; P-W, <span class="html-italic">n</span> = 4 rats, 58 cells). (<b>E</b>) The bar graph shows that the number of bursting neurons in S-W and P-W rats is increased. (<b>F</b>) Graph displaying averaged normalized frequency of inter-spike intervals (ISI) from LHb neurons recorded from C, S-W, and P-W rats. The enlargement of the first 100 ms shows that LHb cells from withdrawn animals fire with shorter inter-spike intervals, as expected from burst firing cells. On the right, example traces from C and P-W rats illustrate dissimilar intervals among action potentials. In P-W rats, the # points at intervals among spikes within the burst (~10 ms), the * points at intervals between bursts (~700 ms). Graphs showing the mean percentage of spikes in bursts (<b>G</b>) (C, <span class="html-italic">n</span> = 9 rats, 72 cells; S-W, <span class="html-italic">n</span> = 10 rats, 107 cells; P-W, <span class="html-italic">n</span> = 4 rats, 58 cells), the mean intraburst frequency (<b>H</b>), the mean burst rate (<b>I</b>), the mean burst duration (<b>J</b>), and the mean number of spikes per burst (<b>K</b>) (C, <span class="html-italic">n</span> = 9 rats, 64 cells; S-W, <span class="html-italic">n</span> = 10 rats, 69 cells; P-W, <span class="html-italic">n</span> = 4 rats, 39 cells). (<b>L</b>) Rate histogram showing the decreased firing rate induced by THC in LHb neurons from C and S-W rats. (<b>M</b>) Averaged time course of firing rate decrease following THC administration (C, <span class="html-italic">n</span> = 9; S-W, <span class="html-italic">n</span> = 7). Data are expressed as mean or percentage of baseline ± SEM. One-way or two-way ANOVA for repeated measures followed by Dunnett test, Sidak test, or chi-square test when appropriate. **** <span class="html-italic">p</span> < 0.0001, *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drugs
2.3. THC Chronic Administration
2.4. Behavioral Evaluation
2.5. In Vivo Electrophysiology
2.6. Data Analysis and Statistics
3. Results
3.1. Behavioral Manifestations of THC Withdrawal
3.2. The Hypodopaminergic State Underlying THC Withdrawal Is Concurrent with a Prolonged Duration of Inhibition Evoked by RMTg
3.3. Decline of RMTg Neuron Spontaneous Activity during THC Withdrawal
3.4. Functional Alterations of LHb Neurons During Acute THC Withdrawal
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Substance Abuse and Mental Health Services Administration. Results from the 2018 National Survey on Drug Use and Health; Substance Abuse and Mental Health Services Administration: Rockville, MD, USA, 2018. [Google Scholar]
- Hall, W.; Weier, M. Assessing the Public Health Impacts of Legalizing Recreational Cannabis Use in the USA. Clin. Pharmacol. Ther. 2015, 97, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Piomelli, D.; Haney, M.; Budney, A.J.; Piazza, P.V. Legal or Illegal, Cannabis Is Still Addictive. Cannabis Cannabinoid Res. 2016, 1, 47–53. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. DSM-5 Diagnostic Classification. In Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Freeman, T.P.; Hindocha, C.; Green, S.F.; Bloomfield, M.A.P. Medicinal Use of Cannabis Based Products and Cannabinoids. BMJ 2019, 365, l1141. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Khalsa, J.; Cadet, J.L.; Baron, D.; Bowirrat, A.; Boyett, B.; Lott, L.; Brewer, R.; Gondré-Lewis, M.; Bunt, G.; et al. Cannabis-Induced Hypodopaminergic Anhedonia and Cognitive Decline in Humans: Embracing Putative Induction of Dopamine Homeostasis. Front. Psychiatry 2021, 12, 623403. [Google Scholar] [CrossRef] [PubMed]
- Freeman, T.P.; Craft, S.; Wilson, J.; Stylianou, S.; ElSohly, M.; Di Forti, M.; Lynskey, M.T. Changes in Delta-9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) Concentrations in Cannabis over Time: Systematic Review and Meta-Analysis. Addiction 2021, 116, 1000–1010. [Google Scholar] [CrossRef]
- Sherman, B.J.; McRae-Clark, A.L. Treatment of Cannabis Use Disorder: Current Science and Future Outlook. Pharmacotherapy 2016, 36, 511–535. [Google Scholar] [CrossRef]
- United Nations Office on Drugs and Crime World Drug Report 2018. Available online: https://www.unodc.org/wdr2018/ (accessed on 1 June 2024).
- Curran, H.V.; Freeman, T.P.; Mokrysz, C.; Lewis, D.A.; Morgan, C.J.A.; Parsons, L.H. Keep off the Grass? Cannabis, Cognition and Addiction. Nat. Rev. Neurosci. 2016, 17, 293–306. [Google Scholar] [CrossRef]
- Budney, A.J.; Hughes, J.R.; Moore, B.A.; Vandrey, R. Review of the Validity and Significance of Cannabis Withdrawal Syndrome. Am. J. Psychiatry 2004, 161, 1967–1977. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F. The Neurobiology of Addiction: A Neuroadaptational View Relevant for Diagnosis. Addiction 2006, 101, 23–30. [Google Scholar] [CrossRef]
- Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic Advances from the Brain Disease Model of Addiction. N. Engl. J. Med. 2016, 374, 363–371. [Google Scholar] [CrossRef]
- Koob, G.F. The Dark Side of Emotion: The Addiction Perspective. Eur. J. Pharmacol. 2015, 753, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F. Drug Addiction: Hyperkatifeia/Negative Reinforcement as a Framework for Medications Development. Pharmacol. Rev. 2021, 73, 163–201. [Google Scholar] [CrossRef]
- Koob, G.F.; Le Moal, M. Neurobiological Mechanisms for Opponent Motivational Processes in Addiction. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3113–3123. [Google Scholar] [CrossRef]
- Melis, M.; Spiga, S.; Diana, M. The Dopamine Hypothesis of Drug Addiction: Hypodopaminergic State. Int. Rev. Neurobiol. 2005, 63, 101–154. [Google Scholar] [CrossRef]
- Diana, M.; Melis, M.; Muntoni, A.L.; Gessa, G.L. Mesolimbic Dopaminergic Decline after Cannabinoid Withdrawal. Proc. Natl. Acad. Sci. USA 1998, 95, 10269–10273. [Google Scholar] [CrossRef]
- Tanda, G.; Loddo, P.; Di Chiara, G. Dependence of Mesolimbic Dopamine Transmission on Delta9-Tetrahydrocannabinol. Eur. J. Pharmacol. 1999, 376, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Van de Giessen, E.; Weinstein, J.J.; Cassidy, C.M.; Haney, M.; Dong, Z.; Ghazzaoui, R.; Ojeil, N.; Kegeles, L.S.; Xu, X.; Vadhan, N.P.; et al. Deficits in Striatal Dopamine Release in Cannabis Dependence. Mol. Psychiatry 2017, 22, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Baler, R.D.; Compton, W.M.; Weiss, S.R.B. Adverse Health Effects of Marijuana Use. N. Engl. J. Med. 2014, 370, 2219–2227. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.-J.; Telang, F.; Fowler, J.S.; Alexoff, D.; Logan, J.; Jayne, M.; Wong, C.; Tomasi, D. Decreased Dopamine Brain Reactivity in Marijuana Abusers Is Associated with Negative Emotionality and Addiction Severity. Proc. Natl. Acad. Sci. USA 2014, 111, E3149–E3156. [Google Scholar] [CrossRef]
- Floresco, S.B.; West, A.R.; Ash, B.; Moore, H.; Grace, A.A. Afferent Modulation of Dopamine Neuron Firing Differentially Regulates Tonic and Phasic Dopamine Transmission. Nat. Neurosci. 2003, 6, 968–973. [Google Scholar] [CrossRef]
- Oliva, I.; Wanat, M.J. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors. Front. Psychiatry 2016, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Grace, A.A.; Floresco, S.B.; Goto, Y.; Lodge, D.J. Regulation of Firing of Dopaminergic Neurons and Control of Goal-Directed Behaviors. Trends Neurosci. 2007, 30, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Lecca, S.; Melis, M.; Luchicchi, A.; Muntoni, A.L.; Pistis, M. Inhibitory Inputs from Rostromedial Tegmental Neurons Regulate Spontaneous Activity of Midbrain Dopamine Cells and Their Responses to Drugs of Abuse. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2012, 37, 1164–1176. [Google Scholar] [CrossRef]
- Ji, H.; Shepard, P.D. Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABAA Receptor-Mediated Mechanism. J. Neurosci. 2007, 27, 6923–6930. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Hikosaka, O. Lateral Habenula as a Source of Negative Reward Signals in Dopamine Neurons. Nature 2007, 447, 1111–1115. [Google Scholar] [CrossRef]
- Hong, S.; Jhou, T.C.; Smith, M.; Saleem, K.S.; Hikosaka, O. Negative Reward Signals from the Lateral Habenula to Dopamine Neurons Are Mediated by Rostromedial Tegmental Nucleus in Primates. J. Neurosci. 2011, 31, 11457–11471. [Google Scholar] [CrossRef]
- Jhou, T.C.; Geisler, S.; Marinelli, M.; Degarmo, B.A.; Zahm, D.S. The Mesopontine Rostromedial Tegmental Nucleus: A Structure Targeted by the Lateral Habenula That Projects to the Ventral Tegmental Area of Tsai and Substantia Nigra Compacta. J. Comp. Neurol. 2009, 513, 566–596. [Google Scholar] [CrossRef]
- Kaufling, J.; Veinante, P.; Pawlowski, S.A.; Freund-Mercier, M.J.; Barrot, M. Afferents to the GABAergic Tail of the Ventral Tegmental Area in the Rat. J. Comp. Neurol. 2009, 513, 597–621. [Google Scholar] [CrossRef]
- Jhou, T.C.; Fields, H.L.; Baxter, M.G.; Saper, C.B.; Holland, P.C. The Rostromedial Tegmental Nucleus (RMTg), a GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses. Neuron 2009, 61, 786–800. [Google Scholar] [CrossRef]
- Balcita-Pedicino, J.J.; Omelchenko, N.; Bell, R.; Sesack, S.R. The Inhibitory Influence of the Lateral Habenula on Midbrain Dopamine Cells: Ultrastructural Evidence for Indirect Mediation via the Rostromedial Mesopontine Tegmental Nucleus. J. Comp. Neurol. 2011, 519, 1143–1164. [Google Scholar] [CrossRef]
- Hnasko, T.S.; Hjelmstad, G.O.; Fields, H.L.; Edwards, R.H. Ventral Tegmental Area Glutamate Neurons: Electrophysiological Properties and Projections. J. Neurosci. 2012, 32, 15076–15085. [Google Scholar] [CrossRef] [PubMed]
- Lammel, S.; Lim, B.K.; Ran, C.; Huang, K.W.; Betley, M.J.; Tye, K.M.; Deisseroth, K.; Malenka, R.C. Input-Specific Control of Reward and Aversion in the Ventral Tegmental Area. Nature 2012, 491, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Lecca, S.; Meye, F.J.; Mameli, M. The Lateral Habenula in Addiction and Depression: An Anatomical, Synaptic and Behavioral Overview. Eur. J. Neurosci. 2014, 39, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A.M.; Jennings, J.H.; Ung, R.L.; Blair, G.A.; Weinberg, R.J.; Neve, R.L.; Boyce, F.; Mattis, J.; Ramakrishnan, C.; Deisseroth, K.; et al. A Unique Population of Ventral Tegmental Area Neurons Inhibits the Lateral Habenula to Promote Reward. Neuron 2013, 80, 1039–1053. [Google Scholar] [CrossRef]
- Stamatakis, A.M.; Stuber, G.D. Activation of Lateral Habenula Inputs to the Ventral Midbrain Promotes Behavioral Avoidance. Nat. Neurosci. 2012, 15, 1105–1107. [Google Scholar] [CrossRef]
- Barrot, M.; Sesack, S.R.; Georges, F.; Pistis, M.; Hong, S.; Jhou, T.C. Braking Dopamine Systems: A New GABA Master Structure for Mesolimbic and Nigrostriatal Functions. J. Neurosci. 2012, 32, 14094–14101. [Google Scholar] [CrossRef]
- Bourdy, R.; Barrot, M. A New Control Center for Dopaminergic Systems: Pulling the VTA by the Tail. Trends Neurosci. 2012, 35, 681–690. [Google Scholar] [CrossRef]
- Bromberg-Martin, E.S.; Matsumoto, M.; Hikosaka, O. Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron 2010, 68, 815–834. [Google Scholar] [CrossRef]
- Lecca, S.; Melis, M.; Luchicchi, A.; Ennas, M.G.; Castelli, M.P.; Muntoni, A.L.; Pistis, M. Effects of Drugs of Abuse on Putative Rostromedial Tegmental Neurons, Inhibitory Afferents to Midbrain Dopamine Cells. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2011, 36, 589–602. [Google Scholar] [CrossRef]
- Stopper, C.M.; Floresco, S.B. What’s Better for Me? Fundamental Role for Lateral Habenula in Promoting Subjective Decision Biases. Nat. Neurosci. 2014, 17, 33–35. [Google Scholar] [CrossRef]
- Velasquez, K.M.; Molfese, D.L.; Salas, R. The Role of the Habenula in Drug Addiction. Front. Hum. Neurosci. 2014, 8, 174. [Google Scholar] [CrossRef] [PubMed]
- Vento, P.J.; Jhou, T.C. Bidirectional Valence Encoding in the Ventral Pallidum. Neuron 2020, 105, 766–768. [Google Scholar] [CrossRef] [PubMed]
- Michel, L.; Molina, P.; Mameli, M. The Behavioral Relevance of a Modular Organization in the Lateral Habenula. Neuron 2024, 112, 2669–2685. [Google Scholar] [CrossRef]
- Barrot, M.; Thome, J. Discovering a New Anatomical Structure in the Brain: Implications for Neuropsychiatry and Therapy. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2011, 12 (Suppl. S1), 19–22. [Google Scholar] [CrossRef]
- Clerke, J.A.; Congiu, M.; Mameli, M. Neuronal Adaptations in the Lateral Habenula during Drug Withdrawal: Preclinical Evidence for Addiction Therapy. Neuropharmacology 2021, 192, 108617. [Google Scholar] [CrossRef]
- Hikosaka, O. The Habenula: From Stress Evasion to Value-Based Decision-Making. Nat. Rev. Neurosci. 2010, 11, 503–513. [Google Scholar] [CrossRef]
- Hu, H.; Cui, Y.; Yang, Y. Circuits and Functions of the Lateral Habenula in Health and in Disease. Nat. Rev. Neurosci. 2020, 21, 277–295. [Google Scholar] [CrossRef]
- Proulx, C.D.; Aronson, S.; Milivojevic, D.; Molina, C.; Loi, A.; Monk, B.; Shabel, S.J.; Malinow, R. A Neural Pathway Controlling Motivation to Exert Effort. Proc. Natl. Acad. Sci. USA 2018, 115, 5792–5797. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Zuo, W.; Shiwalkar, N.; Mei, Q.; Fan, Q.; Chen, X.; Li, J.; Bekker, A.; Ye, J.-H. Alcohol Withdrawal Drives Depressive Behaviors by Activating Neurons in the Rostromedial Tegmental Nucleus. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2019, 44, 1464–1475. [Google Scholar] [CrossRef]
- Kaufling, J.; Aston-Jones, G. Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal. J. Neurosci. 2015, 35, 10290–10303. [Google Scholar] [CrossRef]
- Glover, E.J.; Starr, E.M.; Chao, Y.; Jhou, T.C.; Chandler, L.J. Inhibition of the Rostromedial Tegmental Nucleus Reverses Alcohol Withdrawal-Induced Anxiety-like Behavior. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2019, 44, 1896–1905. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates; Academic Press: Cambridge, MA, USA, 2013; ISBN 978-0-12-391949-6. [Google Scholar]
- Sagheddu, C.; Aroni, S.; De Felice, M.; Lecca, S.; Luchicchi, A.; Melis, M.; Muntoni, A.L.; Romano, R.; Palazzo, E.; Guida, F.; et al. Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain. Neuropharmacology 2015, 97, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Lammel, S.; Elizabeth, E.; Luo, L.; Robert, C.; Wall, N.R.; Beier, K.; Luo, L. Diversity of Transgenic Mouse Models for Selective Targeting of Midbrain Dopamine Neurons. Neuron 2015, 85, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Wang, H.L.; Li, X.; Ng, T.H.; Morales, M. Mesocorticolimbic Glutamatergic Pathway. J. Neurosci. 2011, 31, 8476–8490. [Google Scholar] [CrossRef]
- Grace, A.A.; Bunney, B.S. The Control of Firing Pattern in Nigral Dopamine Neurons: Burst Firing. J. Neurosci. 1984, 4, 2877–2890. [Google Scholar] [CrossRef]
- Grace, A.A.; Bunney, B.S. The Control of Firing Pattern in Nigral Dopamine Neurons: Single Spike Firing. J. Neurosci. 1984, 4, 2866–2876. [Google Scholar] [CrossRef]
- Wagner, F.; Weiss, T.; Veh, R.W. Electrophysiological Properties of Neurons and Synapses in the Lateral Habenular Complex (LHb). Pharmacol. Biochem. Behav. 2017, 162, 38–45. [Google Scholar] [CrossRef]
- Kowski, A.B.; Veh, R.W.; Weiss, T. Dopaminergic Activation Excites Rat Lateral Habenular Neurons in Vivo. Neuroscience 2009, 161, 1154–1165. [Google Scholar] [CrossRef]
- Lipski, J. Antidromic Activation of Neurones as an Analytic Tool in the Study of the Central Nervous System. J. Neurosci. Methods 1981, 4, 1–32. [Google Scholar] [CrossRef]
- Farassat, N.; Costa, K.M.; Stojanovic, S.; Albert, S.; Kovacheva, L.; Shin, J.; Egger, R.; Somayaji, M.; Duvarci, S.; Schneider, G.; et al. In Vivo Functional Diversity of Midbrain Dopamine Neurons within Identified Axonal Projections. eLife 2019, 8, e48408. [Google Scholar] [CrossRef]
- Melis, M.; Sagheddu, C.; De Felice, M.; Casti, A.; Madeddu, C.; Spiga, S.; Muntoni, A.L.; Mackie, K.; Marsicano, G.; Colombo, G.; et al. Enhanced Endocannabinoid-Mediated Modulation of Rostromedial Tegmental Nucleus Drive onto Dopamine Neurons in Sardinian Alcohol-Preferring Rats. J. Neurosci. 2014, 34, 12716–12724. [Google Scholar] [CrossRef] [PubMed]
- Jalabert, M.; Bourdy, R.; Courtin, J.; Veinante, P.; Manzoni, O.J.; Barrot, M.; Georges, F. Neuronal Circuits Underlying Acute Morphine Action on Dopamine Neurons. Proc. Natl. Acad. Sci. USA 2011, 108, 16446–16450. [Google Scholar] [CrossRef] [PubMed]
- Huestis, M.A. Pharmacokinetics and Metabolism of the Plant Cannabinoids, Delta9-Tetrahydrocannabinol, Cannabidiol and Cannabinol. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 657–690. [Google Scholar] [CrossRef]
- Paronis, C.; Iliopoulos-Tsoutsouvas, C.; Papanastasiou, I.; Makriyannis, A.; Bergman, J.; Nikas, S.P. Evidence for Spontaneous Cannabinoid Withdrawal in Mice. Behav. Pharmacol. 2022, 33, 184–194. [Google Scholar] [CrossRef]
- Barti, B.; Dudok, B.; Kenesei, K.; Zöldi, M.; Miczán, V.; Balla, G.Y.; Zala, D.; Tasso, M.; Sagheddu, C.; Kisfali, M.; et al. Presynaptic Nanoscale Components of Retrograde Synaptic Signaling. Sci. Adv. 2024, 10, eado0077. [Google Scholar] [CrossRef]
- Dudok, B.; Barna, L.; Ledri, M.; Szabó, S.I.; Szabadits, E.; Pintér, B.; Woodhams, S.G.; Henstridge, C.M.; Balla, G.Y.; Nyilas, R.; et al. Cell-Specific STORM Super-Resolution Imaging Reveals Nanoscale Organization of Cannabinoid Signaling. Nat. Neurosci. 2015, 18, 75–86. [Google Scholar] [CrossRef] [PubMed]
- González, S.; Fernández-Ruiz, J.; Di Marzo, V.; Hernández, M.; Arévalo, C.; Nicanor, C.; Cascio, M.G.; Ambrosio, E.; Ramos, J.A. Behavioral and Molecular Changes Elicited by Acute Administration of SR141716 to Delta9-Tetrahydrocannabinol-Tolerant Rats: An Experimental Model of Cannabinoid Abstinence. Drug Alcohol Depend. 2004, 74, 159–170. [Google Scholar] [CrossRef]
- Rothwell, P.E.; Lammel, S. Illuminating the Opponent Process: Cocaine Effects on Habenulomesencephalic Circuitry. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 13935–13937. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.L.; Henricks, A.M.; Lugo, J.M.; Wright, H.R.; Warrick, C.R.; Sticht, M.A.; Morena, M.; Bonilla, I.; Laredo, S.A.; Craft, R.M.; et al. The Lateral Habenula Directs Coping Styles Under Conditions of Stress via Recruitment of the Endocannabinoid System. Biol. Psychiatry 2018, 84, 611–623. [Google Scholar] [CrossRef]
- Winters, N.D.; Kondev, V.; Loomba, N.; Delpire, E.; Grueter, B.A.; Patel, S. Opposing Retrograde and Astrocyte-Dependent Endocannabinoid Signaling Mechanisms Regulate Lateral Habenula Synaptic Transmission. Cell Rep. 2023, 42, 112159. [Google Scholar] [CrossRef]
- Omelchenko, N.; Bell, R.; Sesack, S.R. Lateral Habenula Projections to the Rat Ventral Tegmental Area: Sparse Synapses Observed Onto Dopamine and GABA Neurons. Eur. J. Neurosci. 2009, 30, 1239–1250. [Google Scholar] [CrossRef]
- Ellison, G. Neural Degeneration Following Chronic Stimulant Abuse Reveals a Weak Link in Brain, Fasciculus Retroflexus, Implying the Loss of Forebrain Control Circuitry. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2002, 12, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.; Armstrong, B.; Switzer, R.C.; Ellison, G. Selective neurotoxic effects of nicotine on axons in fasciculus retroflexus further support evidence that this a weak link in brain across multiple drugs of abuse. Neuropharmacology 2000, 39, 2792–2798. [Google Scholar] [CrossRef] [PubMed]
- Meye, F.J.; Trusel, M.; Soiza-Reilly, M.; Mameli, M. Neural circuit adaptations during drug withdrawal—Spotlight on the lateral habenula. Pharmacol. Biochem. Behav. 2017, 162, 87–93. [Google Scholar] [CrossRef]
- Meye, F.J.; Valentinova, K.; Lecca, S.; Marion-Poll, L.; Maroteaux, M.J.; Musardo, S.; Moutkine, I.; Gardoni, F.; Huganir, R.L.; Georges, F.; et al. Cocaine-Evoked Negative Symptoms Require AMPA Receptor Trafficking in the Lateral Habenula. Nat. Neurosci. 2015, 18, 376–378. [Google Scholar] [CrossRef]
- Kang, S.; Li, J.; Zuo, W.; Fu, R.; Gregor, D.; Krnjevic, K.; Bekker, A.; Ye, J.H. Ethanol Withdrawal Drives Anxiety-Related Behaviors by Reducing M-type Potassium Channel Activity in the Lateral Habenula. Neuropsychopharmacology 2017, 42, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kang, S.; Fu, R.; Wu, L.; Wu, W.; Liu, H.; Gregor, D.; Zuo, W.; Bekker, A.; Ye, J.H. Inhibition of AMPA receptor and CaMKII activity in the lateral habenula reduces depressive-like behavior and alcohol intake in rats. Neuropharmacology 2017, 126, 108–120. [Google Scholar] [CrossRef]
- Nentwig, T.B.; Vaughan, D.T.; Braunscheidel, K.M.; Browning, B.D.; Woodward, J.J.; Chandler, L.J. The Lateral Habenula Is Not Required for Ethanol Dependence-Induced Escalation of Drinking. Neuropsychopharmacology 2022, 47, 2123–2131. [Google Scholar] [CrossRef]
- Valentinova, K.; Tchenio, A.; Trusel, M.; Clerke, J.A.; Lalive, A.L.; Tzanoulinou, S.; Matera, A.; Moutkine, I.; Maroteaux, L.; Paolicelli, R.C.; et al. Morphine withdrawal recruits lateral habenula cytokine signaling to reduce synaptic excitation and sociability. Nat. Neurosci. 2019, 22, 1053–1056. [Google Scholar] [CrossRef]
- Nuno-Perez, A.; Trusel, M.; Lalive, A.L.; Congiu, M.; Gastaldo, D.; Tchenio, A.; Lecca, S.; Soiza-Reilly, M.; Bagni, C.; Mameli, M. Stress undermines reward-guided cognitive performance through synaptic depression in the lateral habenula. Neuron 2021, 109, 947–956.e5. [Google Scholar] [CrossRef]
- Bonci, A.; Williams, J.T. Increased Probability of GABA Release during Withdrawal from Morphine. J. Neurosci. Off. J. Soc. Neurosci. 1997, 17, 796–803. [Google Scholar] [CrossRef]
- Matsui, A.; Williams, J.T. Opioid-Sensitive GABA Inputs from Rostromedial Tegmental Nucleus Synapse onto Midbrain Dopamine Neurons. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 17729–17735. [Google Scholar] [CrossRef] [PubMed]
- Diana, M.; Pistis, M.; Muntoni, A.; Gessa, G. Profound Decrease of Mesolimbic Dopaminergic Neuronal Activity in Morphine Withdrawn Rats. J. Pharmacol. Exp. Ther. 1995, 272, 781–785. [Google Scholar] [PubMed]
- Diana, M.; Muntoni, A.L.; Pistis, M.; Melis, M.; Gessa, G.L. Lasting Reduction in Mesolimbic Dopamine Neuronal Activity after Morphine Withdrawal. Eur. J. Neurosci. 1999, 11, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aroni, S.; Sagheddu, C.; Pistis, M.; Muntoni, A.L. Functional Adaptation in the Brain Habenulo–Mesencephalic Pathway During Cannabinoid Withdrawal. Cells 2024, 13, 1809. https://doi.org/10.3390/cells13211809
Aroni S, Sagheddu C, Pistis M, Muntoni AL. Functional Adaptation in the Brain Habenulo–Mesencephalic Pathway During Cannabinoid Withdrawal. Cells. 2024; 13(21):1809. https://doi.org/10.3390/cells13211809
Chicago/Turabian StyleAroni, Sonia, Claudia Sagheddu, Marco Pistis, and Anna Lisa Muntoni. 2024. "Functional Adaptation in the Brain Habenulo–Mesencephalic Pathway During Cannabinoid Withdrawal" Cells 13, no. 21: 1809. https://doi.org/10.3390/cells13211809
APA StyleAroni, S., Sagheddu, C., Pistis, M., & Muntoni, A. L. (2024). Functional Adaptation in the Brain Habenulo–Mesencephalic Pathway During Cannabinoid Withdrawal. Cells, 13(21), 1809. https://doi.org/10.3390/cells13211809