In Vivo and In Vitro Evaluation of the Feasibility and Safety Profiles of Intraarticular Transplantation of Mitochondria for Future Use as a Therapy for Osteoarthritis
<p>Protocol for isolating mitochondria from liver. A 0.3 g piece of liver was mechanically and enzymatically digested using a gentleMACS, followed by labeling with anti-Tom22 antibody. The isolated mitochondria were preserved in storage buffer.</p> "> Figure 2
<p>Liver preserved at 4 °C in PBS+EDTA overnight. Mouse livers were obtained and used fresh or preserved in PBS+EDTA (10 mM) overnight (O/N) before mitochondrial isolation using a previously described protocol. Isolated mitochondria were stained with MitoTracker Red<sup>®</sup>, and the organelles were analyzed using bright-field (BF) and fluorescence microscopy. Scale bar: 100 μm.</p> "> Figure 3
<p>Purity and viability of isolated mitochondria. (<b>A</b>) Membrane potential (ψm) of isolated mitochondria labeled with MitoTracker Red<sup>®</sup>. Representative fluorescence microscopy image is shown (<b>upper panel</b>). FACS analysis was conducted to compare mitochondria without and with MitoTracker Red<sup>®</sup> (MT) staining, and the results are presented as graphs showing the median fluorescence (<b>lower panels</b>) (<span class="html-italic">n</span> = 4). (<b>B</b>) ATP production (nmol/µg mitochondrial protein) was determined using an ATP assay of isolated mitochondria under basal conditions or incubated with 0.8 µM rotenone (Rot) or antimycin A (Ant) for 2 h (<span class="html-italic">n</span> = 4). (<b>C</b>) Transmission electron microscopy (TEM) image of isolated mitochondria. Representative image of mitochondria from mouse liver. Mitochondrial morphology was investigated using TEM, and images were acquired at magnifications of 9000× (<b>left panel</b>) and 25,000× (<b>right panel</b>). Black bars indicate 2.5 µm (<b>left panel</b>) and 1 µm (<b>right panel</b>). Black dots at the outer membrane represent anti-TOM22 magnetic beads (red arrows). (<b>D</b>) Western blotting of protein extracts probed with antibodies specific for organelle/cell compartment–specific marker proteins (ATPsintase α), the endoplasmic reticulum (GRP78-BIP), cytosol (α-Tubulin) and nucleus (Histone H3). Lv: liver homogenate, Elt: first elution through the magnetic column, Mit: isolated mitochondria. * <span class="html-italic">p</span> ≤ 0.05. (<b>E</b>) Iron nanoparticle and MitoTracker Red<sup>®</sup> labeling of isolated mitochondria. Mitochondria were isolated from mouse liver and then labeled with iron nanoparticles (<b>upper panel</b>) or MitoTracker Red<sup>®</sup> (<b>lower panel</b>).</p> "> Figure 4
<p>Mitochondria have the capacity to break through joint tissue. (<b>A</b>) Piglet model. Cartilage (<b>upper panels</b>) and synovial membrane (<b>lower panels</b>) were obtained and incubated in the presence of 14 µg of mitochondria, obtained from piglet liver, labeled with iron nanoparticles or MitoTracker Red<sup>®</sup>. (<b>B</b>) Cartilage tissue was incubated in the presence of isolated mitochondria labeled with MitoTracker Red<sup>®</sup> for 24 and 48 h and then analyzed using confocal microscopy. (<b>C</b>) Synovial membrane was incubated according to the same procedure described above. Negative control = tissue incubated with storage buffer (without mitochondria) with MitoTracker Red<sup>®</sup>. Representative images 20×.</p> "> Figure 5
<p>Confirmation that mitochondria have the capacity to break through joint tissue. (<b>A</b>) Piglet model. Joint tissues were obtained and incubated in the presence of 28 µg of mitochondria (obtained from piglet liver) labeled with MitoTracker Red<sup>®</sup> and incubated for 48, 76, 96, 120 h and 1 and 2 weeks. (<b>B</b>) Cartilage tissue was incubated in the presence of only buffer and only MitoTracker Red<sup>®</sup> using as technique controls, then isolated mitochondria labeled with MitoTracker Red<sup>®</sup> were incubated during the time described and the tissue was analyzed using confocal microscopy.</p> "> Figure 6
<p>Confirmation that mitochondria have the capacity to break through the synovial membrane. Synovial membrane was incubated in the presence of only buffer and only MitoTracker Red<sup>®</sup> using as technique controls, then isolated mitochondria labeled with MitoTracker Red<sup>®</sup> were incubated during the time described and the tissue was analyzed using confocal microscopy. Representative images 40×.</p> "> Figure 7
<p>Mitochondria were detected in cartilage and synovial membrane using TEM. (<b>A</b>) Representative TEM images of cartilage explants without added mitochondria showed no mitochondria in the ECM. The panel shows the chondrocyte morphology in the different cartilage layers. Images were acquired at 5000×, and the white bar indicates 10 µm. (<b>B</b>) Representative TEM images of cartilage explants with added mitochondria labeled with iron nanoparticles for 48 h. Left panel shows the presence of mitochondria in the superficial layer embedded in the ECM. Images were acquired at 15,000× and 40,000×, respectively, and the white bars indicate 2 and 1 µm, respectively. (<b>C</b>) Synovial membrane without added mitochondria showed synoviocytes and ECM morphology investigated by TEM; image was acquired at 15,000×, and white bars indicate 2 µm. (<b>D</b>) Representative image of synovial membrane incubated in the presence of mitochondria labeled with iron nanoparticles showing mitochondria in the ECM and inside some synoviocytes. <b>Left panel</b> shows the presence of mitochondria embedded in the ECM and magnification of a small area; these images were acquired at 15,000× and 50,000×, respectively, and the white bars indicate 2 µm and 0.5 µm, respectively. <b>Right panel</b> shows the presence of mitochondria labeled with iron nanoparticles inside the synoviocytes and the magnification of a small area; these images were acquired at 25,000× and 60,000×, respectively, and the white bars indicate 2 µm and 200 nm, respectively. ECM = extracellular matrix, ch = chondrocyte, s = synoviocyte.</p> "> Figure 8
<p>In vivo model. (<b>A</b>) Mitochondria obtained from mouse liver were labeled with MitoTracker Red<sup>®</sup> and injected into the mouse’s left knee; after 48 h, the animal was sacrificed and the left joint was obtained and processed. (<b>B</b>) Representative image of complete left knee stained with hematoxylin and eosin (H&E). (<b>C</b>) Complementary images from areas 1 (black box in (<b>B</b>)) and 2 (dash box in panel (<b>B</b>)) analyzed under fluorescence microscopy. Red fluorescence from isolated mitochondria (red) was detected in the superficial layer of the cartilage and in the synovial membrane. Light: image obtained without fluorescence. Red: image obtained whit red fluoresce.</p> "> Figure 9
<p>In vivo model analysis of red fluorescence showed the presence of red mitochondria in the superficial layer of the cartilage and in the synovial membrane. Neg = vehicle (only isolation buffer) inject into the joint, Control = supernatant obtained from isolation buffer (without mitochondria) incubated with MitoTracker Red<sup>®</sup>, Mito = isolated mitochondria in isolation buffer labeled with MitoTracker Red<sup>®</sup>, c = cartilage, s = synovial membrane. Scale bar, 400 µm.</p> "> Figure 10
<p>In vivo model. (<b>A</b>) Schematic illustration of the long-term in vivo model. Mitochondria obtained from C57BL/6JOlaHsd (MitoC57) and NZB/OlaHsd (MitoNZB) mice were injected in the left knee of healthy C57BL/6JOlaHsd mice (without OA damage). Control mice received no injection (Control). After 7 weeks, the mice were sacrificed. M = measurements each week. (<b>B</b>) Weight during the 7 weeks. (<b>C</b>) Joint width. (<b>D</b>,<b>E</b>) Representative staining of cartilage with Safranin O. OARSI score to evaluate cartilage damage. (<b>F</b>,<b>G</b>) Representative staining of synovial membrane with H&E. Krenn score to evaluate synovial membrane inflammation/damage. Full boxes correspond to the left knee, and the empty boxes represent the right joint. <span class="html-italic">n</span> = 3 animals per group.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Mice
2.3. Piglets
2.4. Isolation of Mitochondria
2.5. Tissue Dissociation and Differential Filtration
2.6. Isolation of Mitochondria Using Superparamagnetic Microbeads
2.7. Characterization of Isolated Mitochondria
Mitochondrial Protein Content
2.8. Mitochondrial Purity
2.8.1. Transmission Electron Microscopy (TEM)
2.8.2. Western Blotting (WB)
2.9. Mitochondrial Viability
2.9.1. MitoTracker Red®
2.9.2. ATP Production
2.10. Mitochondrial Labeling
2.10.1. Cy5-Labeled Oligonucleotides
2.10.2. Iron Oxide
2.10.3. MitoTracker Red®
2.11. Mitochondrial Transplantation
2.11.1. In Vitro Models
2.11.2. In Vivo Models
Short-Term Model
- Negative control group (Neg); mice were injected with vehicle (only isolation buffer).
- Fluorescence control group (Control); mice were injected with the supernatant obtained from isolation buffer (without mitochondria) incubated with MitoTracker Red® following the same protocol for the Injected mitochondria group.
- Injected mitochondria group (Mito); mice were injected in the joint with isolated mitochondria in isolation buffer labeled with MitoTracker Red®.
Long-Term Model
2.12. Statistical Analyses
3. Results
3.1. Characterization of Isolated Mitochondria
3.2. Mitochondrial Labeling
3.3. Mitochondrial Administration in In Vitro Models
3.4. Mitochondrial Injection in the Short-Term In Vivo Model
3.5. Mitochondrial Injection in the Long-Term In Vivo Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcaraz, M.J.; Guillén, M.I.; Ferrándiz, M.L. Emerging therapeutic agents in osteoarthritis. Biochem. Pharmacol. 2019, 165, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Blanco, F.J.; Rego-Pérez, I. Mitochondria and mitophagy: Biosensors for cartilage degradation and osteoarthritis. Osteoarthr. Cartil. 2018, 26, 989–991. [Google Scholar] [CrossRef] [PubMed]
- Blanco, F.J.; June, R.K., 2nd. Cartilage Metabolism, Mitochondria, and Osteoarthritis. J. Am. Acad. Orthop. Surg. 2020, 28, e242–e244. [Google Scholar] [CrossRef]
- Gurke, S.; Barroso, J.F.; Hodneland, E.; Bukoreshtliev, N.V.; Schlicker, O.; Gerdes, H.H. Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp. Cell Res. 2008, 314, 3669–3683. [Google Scholar] [CrossRef]
- Gurke, S.; Barroso, J.F.; Gerdes, H.H. The art of cellular communication: Tunneling nanotubes bridge the divide. Histochem. Cell Biol. 2008, 129, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Domhan, S.; Ma, L.; Tai, A.; Anaya, Z.; Beheshti, A.; Zeier, M.; Hlatky, L.; Abdollahi, A. Intercellular communication by exchange of cytoplasmic material via tunneling nano-tube like structures in primary human renal epithelial cells. PLoS ONE 2011, 6, e21283. [Google Scholar] [CrossRef]
- Hayakawa, K.; Bruzzese, M.; Chou, S.H.; Ning, M.; Ji, X.; Lo, E.H. Extracellular Mitochondria for Therapy and Diagnosis in Acute Central Nervous System Injury. JAMA Neurol. 2018, 75, 119–122. [Google Scholar] [CrossRef]
- Russo, E.; Nguyen, H.; Lippert, T.; Tuazon, J.; Borlongan, C.V.; Napoli, E. Mitochondrial targeting as a novel therapy for stroke. Brain Circ. 2018, 4, 84–94. [Google Scholar] [CrossRef]
- Torralba, D.; Baixauli, F.; Sánchez-Madrid, F. Mitochondria Know No Boundaries: Mechanisms and Functions of Intercellular Mitochondrial Transfer. Front. Cell Dev. Biol. 2016, 4, 107. [Google Scholar] [CrossRef]
- Rebbeck, C.A.; Leroi, A.M.; Burt, A. Mitochondrial capture by a transmissible cancer. Science 2011, 331, 6015. [Google Scholar] [CrossRef]
- Islam, M.N.; Das, S.R.; Emin, M.T.; Wei, M.; Sun, L.; Westphalen, K.; Rowlands, D.J.; Quadri, S.K.; Bhattacharya, S.; Bhattacharya, J. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 2012, 18, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhu, R.; Shen, J.; Wu, J.; Lu, W.; Zhang, J.; Zhang, J.; Liu, K. Human Bone Marrow Mesenchymal Stem Cells Rescue Endothelial Cells Experiencing Chemotherapy Stress by Mitochondrial Transfer Via Tunneling Nanotubes. Stem Cells Dev. 2019, 28, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.S.; Bhattacharya, J. When cells become organelle donors. Physiology 2013, 28, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Esposito, E.; Wang, X.; Terasaki, Y.; Liu, Y.; Xing, C.; Ji, X.; Lo, E.H. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 2016, 535, 551–555. [Google Scholar] [CrossRef]
- Ma, H.; He, S.; Li, Y.; Zhang, X.; Chang, H.; Du, M.; Yan, C.; Jiang, S.; Gao, H.; Zhao, J.; et al. Augmented Mitochondrial Transfer Involved in Astrocytic PSPH Attenuates Cognitive Dysfunction in db/db Mice. Mol. Neurobiol. 2024, 61, 8872–8885. [Google Scholar] [CrossRef]
- McCully, J.D.; Cowan, D.B.; Emani, S.M.; Del Nido, P.J. Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion 2017, 34, 127–134. [Google Scholar] [CrossRef]
- Kaza, A.K.; Wamala, I.; Friehs, I.; Kuebler, J.D.; Rathod, R.H.; Berra, I.; Ericsson, M.; Yao, R.; Thedsanamoorthy, J.K.; Zurakowski, D.; et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J. Thorac. Cardiovasc. Surg. 2017, 153, 934–943. [Google Scholar] [CrossRef]
- Emani, S.M.; McCully, J.D. Mitochondrial transplantation: Applications for pediatric patients with congenital heart disease. Transl. Pediatr. 2018, 7, 169–175. [Google Scholar] [CrossRef]
- McCully, J.D.; Del Nido, P.J.; Emani, S.M. Mitochondrial transplantation for organ rescue. Mitochondrion 2022, 64, 27–33. [Google Scholar] [CrossRef]
- Ulger, O.; Kubat, G.B. Therapeutic applications of mitochondrial transplantation. Biochimie 2022, 195, 1–15. [Google Scholar] [CrossRef]
- Stücker, S.; Bollmann, M.; Garbers, C.; Bertrand, J. The role of calcium crystals and their effect on osteoarthritis pathogenesis. Best Pract. Res. Clin. Rheumatol. 2021, 35, 4. [Google Scholar] [CrossRef]
- Dubinin, M.V.; Mikheeva, I.B.; Stepanova, A.E.; Igoshkina, A.D.; Cherepanova, A.A.; Semenova, A.A.; Sharapov, V.A.; Kireev, I.I.; Belosludtsev, K.N. Mitochondrial Transplantation Therapy Ameliorates Muscular Dystrophy in mdx Mouse Model. Biomolecules 2024, 14, 316. [Google Scholar] [CrossRef] [PubMed]
- McCully, J.D.; Emani, S.M.; Del Nido, P.J. Letter by McCully et al. Regarding Article, “Mitochondria Do Not Survive Calcium Overload”. Circ. Res. 2020, 126, 8. [Google Scholar] [CrossRef] [PubMed]
- Bertero, E.; Maack, C.; O’Rourke, B. Mitochondrial transplantation in humans: “Magical” cure or cause for concern? J. Clin. Investig. 2018, 128, 5191–5194. [Google Scholar] [CrossRef] [PubMed]
- Bertero, E.; O’Rourke, B.; Maack, C. Mitochondria Do Not Survive Calcium Overload During Transplantation. Circ. Res. 2020, 126, 784–786. [Google Scholar] [CrossRef]
- Qi, Z.; Zhu, J.; Cai, W.; Lou, C.; Li, Z. The role and intervention of mitochondrial metabolism in osteoarthritis. Mol. Cell. Biochem. 2023, 479, 1513–1524. [Google Scholar] [CrossRef]
- Blanco, F.J.; Rego, I.; Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 161–169. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Cao, Y.; Cui, Y.; Yang, X.; Meng, Z.; Wang, R. Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration: A possible pathway for osteoarthritis pathology at the subcellular level. Mol. Med. Rep. 2019, 20, 3308–3316. [Google Scholar] [CrossRef]
- Wang, R.; Maimaitijuma, T.; Ma, Y.Y.; Jiao, Y.; Cao, Y.P. Mitochondrial transfer from bone-marrow-derived mesenchymal stromal cells to chondrocytes protects against cartilage degenerative mitochondrial dysfunction in rats chondrocytes. Chin. Med. J. 2020, 134, 212–218. [Google Scholar] [CrossRef]
- Liu, D.; Cai, Z.J.; Yang, Y.T.; Lu, W.H.; Pan, L.Y.; Xiao, W.F.; Li, Y.S. Mitochondrial quality control in cartilage damage and osteoarthritis: New insights and potential therapeutic targets. Osteoarthr. Cartil. 2022, 30, 395–405. [Google Scholar] [CrossRef]
- Fahey, M.; Bennett, M.; Thomas, M.; Montney, K.; Vivancos-Koopman, I.; Pugliese, B.; Browning, L.; Bonassar, L.J.; Delco, M. Mesenchymal stromal cells donate mitochondria to articular chondrocytes exposed to mitochondrial, environmental, and mechanical stress. Sci. Rep. 2022, 12, 21525. [Google Scholar] [CrossRef]
- Lee, A.R.; Woo, J.S.; Lee, S.Y.; Na, H.S.; Cho, K.H.; Lee, Y.S.; Lee, J.S.; Kim, S.A.; Park, S.H.; Kim, S.J.; et al. Mitochondrial Transplantation Ameliorates the Development and Progression of Osteoarthritis. Immune Netw. 2022, 22, e14. [Google Scholar] [CrossRef] [PubMed]
- Court, A.C.; Vega-Letter, A.M.; Parra-Crisóstomo, E.; Velarde, F.; García, C.; Ortloff, A.; Vernal, R.; Pradenas, C.; Luz-Crawford, P.; Khoury, M.; et al. Mitochondrial transfer balances cell redox, energy and metabolic homeostasis in the osteoarthritic chondrocyte preserving cartilage integrity. Theranostics 2024, 14, 6471–6486. [Google Scholar] [CrossRef]
- Schmitt, S.; Saathoff, F.; Meissner, L.; Schropp, E.M.; Lichtmannegger, J.; Schulz, S.; Eberhagen, C.; Borchard, S.; Aichler, M.; Adamski, J.; et al. A semi-automated method for isolating functionally intact mitochondria from cultured cells and tissue biopsies. Anal. Biochem. 2013, 443, 66–74. [Google Scholar] [CrossRef]
- Pallotti, F.; Lenaz, G. Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol. 2007, 80, 3–44. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Vizarra, E.; Ferrín, G.; Pérez-Martos, A.; Fernández-Silva, P.; Zeviani, M.; Enríquez, J.A. Isolation of mitochondria for biogenetical studies: An update. Mitochondrion 2010, 10, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Franko, A.; Baris, O.R.; Bergschneider, E.; von Toerne, C.; Hauck, S.M.; Aichler, M.; Walch, A.K.; Wurst, W.; Wiesner, R.J.; Johnston, I.C.; et al. Efficient isolation of pure and functional mitochondria from mouse tissues using automated tissue disruption and enrichment with anti-TOM22 magnetic beads. PLoS ONE 2013, 8, e82392. [Google Scholar] [CrossRef]
- Hornig-Do, H.T.; Günther, G.; Bust, M.; Lehnartz, P.; Bosio, A.; Wiesner, R.J. Isolation of functional pure mitochondria by superparamagnetic microbeads. Anal. Biochem. 2009, 389, 1–5. [Google Scholar] [CrossRef]
- Liao, P.C.; Bergamini, C.; Fato, R.; Pon, L.A.; Pallotti, F. Isolation of mitochondria from cells and tissues. Methods Cell Biol. 2020, 155, 3–31. [Google Scholar] [CrossRef]
- Preble, J.M.; Pacak, C.A.; Kondo, H.; MacKay, A.A.; Cowan, D.B.; McCully, J.D. Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J. Vis. Exp. 2014, 91, 51682. [Google Scholar] [CrossRef]
- McCully, J.D.; Cowan, D.B.; Pacak, C.A.; Toumpoulis, I.K.; Dayalan, H.; Levitsky, S. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H94–H105. [Google Scholar] [CrossRef]
- Jono, A.; Yanagihara, Y.; Kinoshita, T.; Takao, M.; Imai, Y. Establishment of a uniform histological evaluation method for early stage osteophytes in the destabilization of the medial meniscus mouse model. Osteoarthr. Cartil. Open 2023, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Glasson, S.S.; Blanchet, T.J.; Morris, E.A. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil. 2007, 15, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Vaamonde-García, C.; López-Armada, M.J. Role of mitochondrial dysfunction on rheumatic diseases. Biochem. Pharmacol. 2019, 165, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, S.; Tomcin, S.; Mailänder, V. Staining of mitochondria with Cy5-labeled oligonucleotides for long-term microscopy studies. Microsc. Microanal. 2011, 17, 440–445. [Google Scholar] [CrossRef]
- Pitcher, T.; Sousa-Valente, J.; Malcangio, M. The Monoiodoacetate Model of Osteoarthritis Pain in the Mouse. J. Vis. Exp. 2016, 111, 53746. [Google Scholar] [CrossRef]
- Choi, M.C.; Jo, J.; Lee, M.; Park, J.; Park, Y. Intra-Articular Administration of Cramp into Mouse Knee Joint Exacerbates Experimental Osteoarthritis Progression. Int. J. Mol. Sci. 2021, 22, 3429. [Google Scholar] [CrossRef]
- Glasson, S.S.; Chambers, M.G.; Van Den Berg, W.B.; Little, C.B. The OARSI histopathology initiative—Recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil. 2010, 18 (Suppl. 3), S17–S23. [Google Scholar] [CrossRef]
- Krenn, V.; Morawietz, L.; Häupl, T.; Neidel, J.; Petersen, I.; König, A. Grading of chronic synovitis-A histopathological grading system for molecular and diagnostic pathology. Pathol. Res. Pract. 2002, 198, 317–325. [Google Scholar] [CrossRef]
- Krenn, V.; Morawietz, L.; Burmester, G.R.; Kinne, R.W.; Mueller-Ladner, U.; Muller, B.; Haupl, T. Synovitis score: Discrimination between chronic low-grade and high-grade synovitis. Histopathology 2006, 49, 358–364. [Google Scholar] [CrossRef]
- Munro, S.; Pelham, H.R. An Hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 1986, 46, 291–300. [Google Scholar] [CrossRef]
- Akinyemi, A.O.; Simpson, K.E.; Oyelere, S.F.; Nur, M.; Ngule, C.M.; Owoyemi, B.C.D.; Ayarick, V.A.; Oyelami, F.F.; Obaleye, O.; Esoe, D.P.; et al. Unveiling the dark side of glucose-regulated protein 78 (GRP78) in cancers and other human pathology: A systematic review. Mol. Med. 2023, 29, 112. [Google Scholar] [CrossRef] [PubMed]
- Farah, N.K.; Liu, X.; Wu, C.H.; Wu, G.Y. An Improved Method for Preparation of Uniform and Functional Mitochondria from Fresh Liver. J. Clin. Transl. Hepatol. 2019, 7, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Frezza, C.; Cipolat, S.; Scorrano, L. Organelle isolation: Functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2007, 2, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, A.; Vengut-Climent, E.; de Rochambeau, D.; Sleiman, H.F. Uptake and Fate of Fluorescently Labeled DNA Nanostructures in Cellular Environments: A Cautionary Tale. ACS Cent. Sci. 2019, 5, 882–891. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, T.; Jiang, X.; Li, A.; Su, Y.; Bian, Q.; Wu, H.; Lin, R.; Li, N.; Cao, H.; et al. Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci. Adv. 2021, 7, 40. [Google Scholar] [CrossRef]
- Ma, H.; Jiang, T.; Tang, W.; Ma, Z.; Pu, K.; Xu, F.; Chang, H.; Zhao, G.; Gao, W.; Li, Y.; et al. Transplantation of platelet-derived mitochondria alleviates cognitive impairment and mitochondrial dysfunction in db/db mice. Clin. Sci. 2020, 134, 2161–2175. [Google Scholar] [CrossRef]
- Kim, M.J.; Hwang, J.W.; Yun, C.K.; Lee, Y.; Choi, Y.S. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci. Rep. 2018, 8, 3330. [Google Scholar] [CrossRef]
- Orfany, A.; Arriola, C.G.; Doulamis, I.P.; Guariento, A.; Ramirez-Barbieri, G.; Moskowitzova, K.; Shin, B.; Blitzer, D.; Rogers, C.; Del Nido, P.J.; et al. Mitochondrial transplantation ameliorates acute limb ischemia. J. Vasc. Surg. 2020, 71, 1014–1026. [Google Scholar] [CrossRef]
- Ramirez-Barbieri, G.; Moskowitzova, K.; Shin, B.; Blitzer, D.; Orfany, A.; Guariento, A.; Iken, K.; Friehs, I.; Zurakowski, D.; Del Nido, P.J.; et al. Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion 2019, 46, 103–115. [Google Scholar] [CrossRef]
- Masuzawa, A.; Black, K.M.; Pacak, C.A.; Ericsson, M.; Barnett, R.J.; Drumm, C.; Seth, P.; Bloch, D.B.; Levitsky, S.; Cowan, D.B.; et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H966–H982. [Google Scholar] [CrossRef]
- McCully, J.D.; Del Nido, P.J.; Emani, S.M. Mitochondrial transplantation: The advance to therapeutic application and molecular modulation. Front. Cardiovasc. Med. 2023, 10, 1268814. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaamonde-Garcia, C.; Hermida-Gómez, T.; Paniagua-Barro, S.; Burguera, E.F.; Blanco, F.J.; Fernández-Moreno, M. In Vivo and In Vitro Evaluation of the Feasibility and Safety Profiles of Intraarticular Transplantation of Mitochondria for Future Use as a Therapy for Osteoarthritis. Cells 2025, 14, 151. https://doi.org/10.3390/cells14030151
Vaamonde-Garcia C, Hermida-Gómez T, Paniagua-Barro S, Burguera EF, Blanco FJ, Fernández-Moreno M. In Vivo and In Vitro Evaluation of the Feasibility and Safety Profiles of Intraarticular Transplantation of Mitochondria for Future Use as a Therapy for Osteoarthritis. Cells. 2025; 14(3):151. https://doi.org/10.3390/cells14030151
Chicago/Turabian StyleVaamonde-Garcia, Carlos, Tamara Hermida-Gómez, Sara Paniagua-Barro, Elena F. Burguera, Francisco J. Blanco, and Mercedes Fernández-Moreno. 2025. "In Vivo and In Vitro Evaluation of the Feasibility and Safety Profiles of Intraarticular Transplantation of Mitochondria for Future Use as a Therapy for Osteoarthritis" Cells 14, no. 3: 151. https://doi.org/10.3390/cells14030151
APA StyleVaamonde-Garcia, C., Hermida-Gómez, T., Paniagua-Barro, S., Burguera, E. F., Blanco, F. J., & Fernández-Moreno, M. (2025). In Vivo and In Vitro Evaluation of the Feasibility and Safety Profiles of Intraarticular Transplantation of Mitochondria for Future Use as a Therapy for Osteoarthritis. Cells, 14(3), 151. https://doi.org/10.3390/cells14030151