Unveiling the Anti-Angiogenic Potential of Small-Molecule (Kinase) Inhibitors for Application in Rheumatoid Arthritis
<p>Effects of sunitinib, tofacitinib, and NIKi on HMEC-1 cell migration in scratch assay. HMEC-1 scratch wound analysis in the presence of (<b>A</b>) sunitinib (pan tyrosine kinase receptor inhibitor) at concentrations ranging from 0.33–10 µM. Analysis conducted after 8, 16, and 24 h drug incubations. (<b>B</b>) Tofacitinib (selective JAK1/3 inhibitor), concentration range: 0.33–10 µM, analysis performed after 4, 8, and 16 h drug incubations (with no stimulator added). (<b>C</b>) NIKi (NF-κB inducing kinase inhibitor) at concentrations ranging from 0.33–10 µM (in the presence of LIGHT (TNFSF14) to stimulate non-canonical NF-κB pathway. The % of migrating cells was calculated as the area covered by cells and is represented as an average of 3 independent experiments. Data represent mean ± SEM. <span class="html-italic">p</span>-values represent two-tailed distribution according to Student’s <span class="html-italic">t</span>-test (***: <span class="html-italic">p</span> ≤ 0.001, **: <span class="html-italic">p</span> ≤ 0.01, *: <span class="html-italic">p</span> ≤ 0.05 and ns: not significant).</p> "> Figure 2
<p>Scratch assay images of HMEC-1 cells treated with sunitinib and fluciclatide after 24 h of incubation. Representative images from scratch assay of HMEC-1 cells treated with (<b>A</b>) sunitinib and (<b>B</b>) fluciclatide following 24 h of drug incubation. The images were captured on an automated platform using a Leica DMI3000B microscope (Leica, Rijswijk, The Netherlands) and a Pulnix RMC1327GE camera (Takex Europe, Hampshire, UK) under control of Universal Grab 6.3 software (DCILabs, Keerbergen, Belgium).</p> "> Figure 3
<p>Inhibition of endothelial cell sprouting in 3D spheroid-based angiogenesis model treated with sunitinib, tofacitinib, NIKi, and fluciclatide. Representative confocal images (10× magnification) of 3D spheroid-based angiogenesis model composed of HUVEC depicted (in cyan) and NHDF cells (in magenta) upon stimulation with the growth factors VEGF/bFGF. Inhibition of EC sprouting was monitored after 40 h of incubation with: (<b>A</b>) sunitinib, (<b>B</b>) tofacitinib, (<b>C</b>) NIKi, and (<b>D</b>) fluciclatide. Sprout formation of HUVEC was quantified by measuring the total sprout area of each spheroid, defined by training pixel classifiers in QuPath. Data represent the means of 3 independent experiments. Statistical analysis was conducted using one-way ANOVA, a non-parametric test, followed by the original FDR method of Benjamini and Hochberg with <span class="html-italic">p</span>-values: ****: <span class="html-italic">p</span> ≤ 0.0001, ***: 0.0001 < <span class="html-italic">p</span> ≤ 0.001, **: 0.001 < <span class="html-italic">p</span> ≤ 0.01, ns: not significant.</p> "> Figure 4
<p>Effects of inhibitors on HUVEC sprouting in a 3D spheroid-based model of RA synovial angiogenesis. Drug incubations: 40 h. Statistical significance was determined using one-way ANOVA, a non-parametric test, followed by the original FDR method of Benjamini and Hochberg with <span class="html-italic">p</span>-values: ****: <span class="html-italic">p</span> ≤ 0.0001, ***: 0.0001 < <span class="html-italic">p</span> ≤ 0.001, and ns: not significant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals/Drugs
2.2. Cell Culture
2.3. Scratch Assay
2.4. 3D Spheroid-Based Models of Angiogenesis
2.5. MTT Assay
2.6. Statistical Analysis
3. Results
3.1. Effectiveness and Toxicity of Small Molecule Compounds in HMEC-1 Cell Scratch Assay: Time-Dosing Profiles and Cellular Impact
3.2. Effects of Small-Molecule Compounds in 3D Spheroid Model of General Angiogenesis with HUVEC and NHDF Stimulated with Growth Factors
3.3. Effects of Small-Molecule Compounds on the 3D Spheroid Model of RA Synovial Angiogenesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef] [PubMed]
- Alivernini, S.; Firestein, G.S.; McInnes, I.B. The pathogenesis of rheumatoid arthritis. Immunity 2022, 55, 2255–2270. [Google Scholar] [CrossRef]
- Molendijk, M.; Hazes, J.M.; Lubberts, E. From patients with arthralgia, pre-RA and recently diagnosed RA: What is the current status of understanding RA pathogenesis? RMD Open 2018, 4, e000256. [Google Scholar] [CrossRef]
- Deane, K.D.; Holers, V.M. Rheumatoid Arthritis Pathogenesis, Prediction, and Prevention: An Emerging Paradigm Shift. Arthritis Rheumatol. 2021, 73, 181–193. [Google Scholar] [CrossRef]
- Zvaifler, N.J.; Boyle, D.; Firestein, G.S. Early synovitis—synoviocytes and mononuclear cells. Semin. Arthritis Rheum. 1994, 23, 11–16. [Google Scholar] [CrossRef]
- Szekanecz, Z.; Koch, A.E. Angiogenesis and its targeting in rheumatoid arthritis. Vasc. Pharmacol. 2009, 51, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Veale, D.J.; Fearon, U. Inhibition of angiogenic pathways in rheumatoid arthritis: Potential for therapeutic targeting. Best. Pract. Res. Clin. Rheumatol. 2006, 20, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Paleolog, E.M. The vasculature in rheumatoid arthritis: Cause or consequence? Int. J. Exp. Pathol. 2009, 90, 249–261. [Google Scholar] [CrossRef]
- Elshabrawy, H.A.; Chen, Z.; Volin, M.V.; Ravella, S.; Virupannavar, S.; Shahrara, S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015, 18, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Tas, S.W.; Maracle, C.X.; Balogh, E.; Szekanecz, Z. Targeting of proangiogenic signalling pathways in chronic inflammation. Nat. Rev. Rheumatol. 2016, 12, 111–122. [Google Scholar] [CrossRef]
- Shams, S.; Martinez, J.M.; Dawson, J.R.D.; Flores, J.; Gabriel, M.; Garcia, G.; Guevara, A.; Murray, K.; Pacifici, N.; Vargas, M.V.; et al. The Therapeutic Landscape of Rheumatoid Arthritis: Current State and Future Directions. Front. Pharmacol. 2021, 12, 680043. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Deng, R. Angiogenesis as a potential treatment strategy for rheumatoid arthritis. Eur. J. Pharmacol. 2021, 910, 174500. [Google Scholar] [CrossRef] [PubMed]
- Kohler, B.M.; Gunther, J.; Kaudewitz, D.; Lorenz, H.M. Current Therapeutic Options in the Treatment of Rheumatoid Arthritis. J. Clin. Med. 2019, 8, 938. [Google Scholar] [CrossRef]
- Khodadust, F.; Ezdoglian, A.; Steinz, M.M.; van Beijnum, J.R.; Zwezerijnen, G.J.C.; Jansen, G.; Tas, S.W.; van der Laken, C.J. Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis. Int. J. Mol. Sci. 2022, 23, 7071. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, I.J.; Liu, S.C.; Su, C.M.; Wang, Y.H.; Tsai, C.H.; Tang, C.H. Implications of Angiogenesis Involvement in Arthritis. Int. J. Mol. Sci. 2018, 19, 2012. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.F.; Bungau, S.G.; Negru, P.A.; Marcu, M.F.; Andronie-Cioara, F.L. In-depth bibliometric analysis and current scientific mapping research in the context of rheumatoid arthritis pharmacotherapy. Biomed. Pharmacother. 2022, 154, 113614. [Google Scholar] [CrossRef] [PubMed]
- Grosios, K.; Wood, J.; Esser, R.; Raychaudhuri, A.; Dawson, J. Angiogenesis inhibition by the novel VEGF receptor tyrosine kinase inhibitor, PTK787/ZK222584, causes significant anti-arthritic effects in models of rheumatoid arthritis. Inflamm. Res. 2004, 53, 133–142. [Google Scholar] [CrossRef]
- Lu, K.; Iwenofu, O.H.; Mitra, R.; Mo, X.; Dasgupta, P.S.; Basu, S. Chebulinic acid is a safe and effective antiangiogenic agent in collagen-induced arthritis in mice. Arthritis Res. Ther. 2020, 22, 273. [Google Scholar] [CrossRef]
- Lee, C.J.; Moon, S.J.; Jeong, J.H.; Lee, S.; Lee, M.H.; Yoo, S.M.; Lee, H.S.; Kang, H.C.; Lee, J.Y.; Lee, W.S.; et al. Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death Dis. 2018, 9, 401. [Google Scholar] [CrossRef]
- Koch, A.E. Angiogenesis as a target in rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 60–67. [Google Scholar] [CrossRef]
- D’Aura Swanson, C.; Paniagua, R.T.; Lindstrom, T.M.; Robinson, W.H. Tyrosine kinases as targets for the treatment of rheumatoid arthritis. Nat. Rev. Rheumatol. 2009, 5, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, G.; Wang, X.; Zhao, Z.; Wang, T.; Wang, X.; Li, X.F. Early detection of rheumatoid arthritis in rats and humans with 99mTc-3PRGD2 scintigraphy: Imaging synovial neoangiogenesis. Oncotarget 2017, 8, 5753–5760. [Google Scholar] [CrossRef] [PubMed]
- Verweij, N.J.F.; Yaqub, M.; Bruijnen, S.T.G.; Pieplenbosch, S.; Ter Wee, M.M.; Jansen, G.; Chen, Q.; Low, P.S.; Windhorst, A.D.; Lammertsma, A.A.; et al. First in man study of [(18)F]fluoro-PEG-folate PET: A novel macrophage imaging technique to visualize rheumatoid arthritis. Sci. Rep. 2020, 10, 1047. [Google Scholar] [CrossRef]
- van der Krogt, J.M.A.; van Binsbergen, W.H.; van der Laken, C.J.; Tas, S.W. Novel positron emission tomography tracers for imaging of rheumatoid arthritis. Autoimmun. Rev. 2021, 20, 102764. [Google Scholar] [CrossRef]
- Maracle, C.X.; Kucharzewska, P.; Helder, B.; van der Horst, C.; Correa de Sampaio, P.; Noort, A.R.; van Zoest, K.; Griffioen, A.W.; Olsson, H.; Tas, S.W. Targeting non-canonical nuclear factor-kappaB signalling attenuates neovascularization in a novel 3D model of rheumatoid arthritis synovial angiogenesis. Rheumatology 2017, 56, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Prigozhina, N.L.; Heisel, A.; Wei, K.; Noberini, R.; Hunter, E.A.; Calzolari, D.; Seldeen, J.R.; Pasquale, E.B.; Ruiz-Lozano, P.; Mercola, M.; et al. Characterization of a novel angiogenic model based on stable, fluorescently labelled endothelial cell lines amenable to scale-up for high content screening. Biol. Cell 2011, 103, 467–481. [Google Scholar] [CrossRef]
- Furuya, K.; Kaku, Y.; Yoshida, K.; Joh, K.; Kurosaka, D. Therapeutic effects of sunitinib, one of the anti-angiogenetic drugs, in a murine arthritis. Mod. Rheumatol. 2014, 24, 487–491. [Google Scholar] [CrossRef]
- Czokolyova, M.; Hamar, A.; Pusztai, A.; Tajti, G.; Vegh, E.; Petho, Z.; Bodnar, N.; Horvath, A.; Soos, B.; Szamosi, S.; et al. Effects of One-Year Tofacitinib Therapy on Lipids and Adipokines in Association with Vascular Pathophysiology in Rheumatoid Arthritis. Biomolecules 2022, 12, 1483. [Google Scholar] [CrossRef]
- Di Benedetto, P.; Ruscitti, P.; Berardicurti, O.; Panzera, N.; Grazia, N.; Di Vito Nolfi, M.; Di Francesco, B.; Navarini, L.; Maurizi, A.; Rucci, N.; et al. Blocking Jak/STAT signalling using tofacitinib inhibits angiogenesis in experimental arthritis. Arthritis Res. Ther. 2021, 23, 213. [Google Scholar] [CrossRef]
- Fragoulis, G.E.; Brock, J.; Basu, N.; McInnes, I.B.; Siebert, S. The role for JAK inhibitors in the treatment of immune-mediated rheumatic and related conditions. J. Allergy Clin. Immunol. 2021, 148, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Jeucken, K.C.M.; van Rooijen, C.C.N.; Kan, Y.Y.; Kocken, L.A.; Jongejan, A.; van Steen, A.C.I.; van Buul, J.D.; Olsson, H.K.; van Hamburg, J.P.; Tas, S.W. Differential Contribution of NF-kappaB Signaling Pathways to CD4(+) Memory T Cell Induced Activation of Endothelial Cells. Front. Immunol. 2022, 13, 860327. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, Y.; Shen, Y.; Wang, A.; Wang, S.; Xie, T. The functions and applications of RGD in tumor therapy and tissue engineering. Int. J. Mol. Sci. 2013, 14, 13447–13462. [Google Scholar] [CrossRef]
- Yin, L.Y.; Li, X.C.; Wang, R.R.; Zeng, Y.Y.; Zeng, Z.W.; Xie, T. Recent Research Progress of RGD Peptide-Modified Nanodrug Delivery Systems in Tumor Therapy. Int. J. Pept. Res. Ther. 2023, 29, 53. [Google Scholar] [CrossRef]
- Battle, M.R.; Goggi, J.L.; Allen, L.; Barnett, J.; Morrison, M.S. Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-fluciclatide, an 18F-labeled alphaVbeta3-integrin and alphaV beta5-integrin imaging agent. J. Nucl. Med. 2011, 52, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Ades, E.W.; Candal, F.J.; Swerlick, R.A.; George, V.G.; Summers, S.; Bosse, D.C.; Lawley, T.J. HMEC-1: Establishment of an immortalized human microvascular endothelial cell line. J. Investig. Dermatol. 1992, 99, 683–690. [Google Scholar] [CrossRef] [PubMed]
- van Beijnum, J.R.; van der Linden, E.; Griffioen, A.W. Angiogenic profiling and comparison of immortalized endothelial cells for functional genomics. Exp. Cell Res. 2008, 314, 264–272. [Google Scholar] [CrossRef]
- Kraan, M.C.; Reece, R.J.; Smeets, T.J.; Veale, D.J.; Emery, P.; Tak, P.P. Comparison of synovial tissues from the knee joints and the small joints of rheumatoid arthritis patients: Implications for pathogenesis and evaluation of treatment. Arthritis Rheum. 2002, 46, 2034–2038. [Google Scholar] [CrossRef] [PubMed]
- van Beijnum, J.R.; Thijssen, V.L.; Läppchen, T.; Wong, T.J.; Verel, I.; Engbersen, M.; Schulkens, I.A.; Rossin, R.; Grüll, H.; Griffioen, A.W.; et al. A key role for galectin-1 in sprouting angiogenesis revealed by novel rationally designed antibodies. Int. J. Cancer 2016, 139, 824–835. [Google Scholar] [CrossRef]
- Nowak-Sliwinska, P.; Alitalo, K.; Allen, E.; Anisimov, A.; Aplin, A.C.; Auerbach, R.; Augustin, H.G.; Bates, D.O.; van Beijnum, J.R.; Bender, R.H.F.; et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018, 21, 425–532. [Google Scholar] [CrossRef] [PubMed]
- Philippon, E.M.L.; van Rooijen, L.J.E.; Khodadust, F.; van Hamburg, J.P.; van der Laken, C.J.; Tas, S.W. A novel 3D spheroid model of rheumatoid arthritis synovial tissue incorporating fibroblasts, endothelial cells, and macrophages. Front. Immunol. 2023, 14, 1188835. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernandez, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- van Meerloo, J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ding, Y.; Li, Y.; Luo, W.M.; Zhang, Z.F.; Snider, J.; Vandenbeldt, K.; Qian, C.N.; Teh, B.T. Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. Cancer Res. 2010, 70, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Gallego, G.; Blanco, M.; Figueroa, A.; Garcia-Campelo, R.; Valladares-Ayerbes, M.; Grande-Pulido, E.; Anton-Aparicio, L. New insights into molecular mechanisms of sunitinib-associated side effects. Mol. Cancer Ther. 2011, 10, 2215–2223. [Google Scholar] [CrossRef]
- Huang, M.; Lin, Y.; Wang, C.; Deng, L.; Chen, M.; Assaraf, Y.G.; Chen, Z.S.; Ye, W.; Zhang, D. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resist. Updat. 2022, 64, 100849. [Google Scholar] [CrossRef] [PubMed]
- Kucharz, E.J.; Stajszczyk, M.; Kotulska-Kucharz, A.; Batko, B.; Brzosko, M.; Jeka, S.; Leszczynski, P.; Majdan, M.; Olesinska, M.; Samborski, W.; et al. Tofacitinib in the treatment of patients with rheumatoid arthritis: Position statement of experts of the Polish Society for Rheumatology. Reumatologia 2018, 56, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Kerekes, G.; Czokolyova, M.; Hamar, A.; Pusztai, A.; Tajti, G.; Katko, M.; Vegh, E.; Petho, Z.; Bodnar, N.; Horvath, A.; et al. Effects of 1-year tofacitinib therapy on angiogenic biomarkers in rheumatoid arthritis. Rheumatology 2023, 62, SI304–SI312. [Google Scholar] [CrossRef]
- Anjiki, K.; Hayashi, S.; Ikuta, K.; Suda, Y.; Kamenaga, T.; Tsubosaka, M.; Kuroda, Y.; Nkano, N.; Maeda, T.; Tsumiyama, K.; et al. JAK inhibitors inhibit angiogenesis by reducing VEGF production from rheumatoid arthritis-derived fibroblast-like synoviocytes. Clin. Rheumatol. 2024, 43, 3525–3536. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S. Tofacitinib: A Review in Rheumatoid Arthritis. Drugs 2017, 77, 1987–2001. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Waguri-Nagaya, Y.; Tatematsu, N.; Oguri, Y.; Kobayashi, M.; Nozaki, M.; Asai, K.; Aoyama, M.; Otsuka, T. The Janus kinase inhibitor tofacitinib inhibits TNF-alpha-induced gliostatin expression in rheumatoid fibroblast-like synoviocytes. Clin. Exp. Rheumatol. 2018, 36, 559–567. [Google Scholar]
- Traves, P.G.; Murray, B.; Campigotto, F.; Galien, R.; Meng, A.; Di Paolo, J.A. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib. Ann. Rheum. Dis. 2021, 80, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Maracle, C.X.; Jeucken, K.C.M.; Helder, B.; van Gulik, T.M.; Steins, A.; van Laarhoven, H.W.M.; Tas, S.W. Silencing NIK potentiates anti-VEGF therapy in a novel 3D model of colorectal cancer angiogenesis. Oncotarget 2018, 9, 28445–28455. [Google Scholar] [CrossRef]
- Noort, A.R.; van Zoest, K.P.M.; Weijers, E.M.; Koolwijk, P.; Maracle, C.X.; Novack, D.V.; Siemerink, M.J.; Schlingemann, R.O.; Tak, P.P.; Tas, S.W. NF-κB-inducing kinase is a key regulator of inflammation-induced and tumour-associated angiogenesis. J. Pathol. 2014, 234, 375–385. [Google Scholar] [CrossRef]
- Chen, H.; Niu, G.; Wu, H.; Chen, X. Clinical Application of Radiolabeled RGD Peptides for PET Imaging of Integrin alphavbeta3. Theranostics 2016, 6, 78–92. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khodadust, F.; Philippon, E.M.L.; Steinz, M.M.; van Hamburg, J.P.; van Meerloo, J.; van Beijnum, J.R.; Jansen, G.; Tas, S.W.; van der Laken, C.J. Unveiling the Anti-Angiogenic Potential of Small-Molecule (Kinase) Inhibitors for Application in Rheumatoid Arthritis. Cells 2025, 14, 102. https://doi.org/10.3390/cells14020102
Khodadust F, Philippon EML, Steinz MM, van Hamburg JP, van Meerloo J, van Beijnum JR, Jansen G, Tas SW, van der Laken CJ. Unveiling the Anti-Angiogenic Potential of Small-Molecule (Kinase) Inhibitors for Application in Rheumatoid Arthritis. Cells. 2025; 14(2):102. https://doi.org/10.3390/cells14020102
Chicago/Turabian StyleKhodadust, Fatemeh, Eva M. L. Philippon, Maarten M. Steinz, Jan Piet van Hamburg, Johan van Meerloo, Judy R. van Beijnum, Gerrit Jansen, Sander W. Tas, and Conny J. van der Laken. 2025. "Unveiling the Anti-Angiogenic Potential of Small-Molecule (Kinase) Inhibitors for Application in Rheumatoid Arthritis" Cells 14, no. 2: 102. https://doi.org/10.3390/cells14020102
APA StyleKhodadust, F., Philippon, E. M. L., Steinz, M. M., van Hamburg, J. P., van Meerloo, J., van Beijnum, J. R., Jansen, G., Tas, S. W., & van der Laken, C. J. (2025). Unveiling the Anti-Angiogenic Potential of Small-Molecule (Kinase) Inhibitors for Application in Rheumatoid Arthritis. Cells, 14(2), 102. https://doi.org/10.3390/cells14020102