Chromosomal Abnormalities in Miscarriages and Maternal Age: New Insights from the Study of 7118 Cases
<p>The incidence of chromosomal abnormalities in miscarriages in women aged 23 to 44 years with natural conceptions. The beta coefficients show the average growth in the incidence of abnormal karyotype in miscarriages for a one-year increase in maternal age at the spans of 23–37 years and 38–44 years.</p> "> Figure 2
<p>The proportions of different cytogenetic categories in karyotypically abnormal miscarriages in women aged 23 to 44 years with natural conceptions.</p> "> Figure 3
<p>Correlations between the maternal age and the incidence of different chromosomal abnormalities in miscarriages with an abnormal karyotype. Statistically significant correlations are framed (<span class="html-italic">p</span> < 0.05, the nonparametric Spearman test). The beta coefficients show the average change in the incidence of chromosomal abnormality for a one-year increase in maternal age.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Samples
2.2. Karyotyping of Chorionic Villi
2.3. Statistical Analysis
3. Results
3.1. Incidence of Abnormal Karyotype in Miscarriages and Maternal Age
3.2. The Spectrum of Chromosomal Abnormalities in Miscarriages and Maternal Age
3.3. Maternal-Age-Associated Changes Across Proportions of Chromosomal Abnormalities in Karyotypically Abnormal Miscarriages
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohno, M.; Maeda, T.; Matsunobu, A. A cytogenetic study of spontaneous abortions with direct analysis of chorionic villi. Obstet. Gynecol. 1991, 77, 394–398. [Google Scholar] [PubMed]
- Dejmek, J.; Vojtassák, J.; Malová, J. Cytogenetic analysis of 1508 spontaneous abortions originating from south Slovakia. Eur. J. Obstet. Gynecol. Reprod. Biol. 1992, 46, 129–136. [Google Scholar] [CrossRef]
- Genest, D.R.; Roberts, D.; Boyd, T.; Bieber, F.R. Fetoplacental histology as a predictor of karyotype: A controlled study of spontaneous first trimester abortions. Hum. Pathol. 1995, 26, 201–209. [Google Scholar] [CrossRef]
- Stern, J.J.; Dorfmann, A.D.; Gutiérrez-Najar, A.J.; Cerrillo, M.; Coulam, C.B. Frequency of abnormal karyotypes among abortuses from women with and without a history of recurrent spontaneous abortion. Fertil. Steril. 1996, 65, 250–253. [Google Scholar] [CrossRef]
- Griffin, D.K.; Millie, E.A.; Redline, R.W.; Hassold, T.J.; Zaragoza, M.V. Cytogenetic analysis of spontaneous abortions: Comparison of techniques and assessment of the incidence of confined placental mosaicism. Am. J. Med. Genet. 1997, 72, 297–301. [Google Scholar] [CrossRef]
- Gao, J.; Liu, C.; Yao, F.; Hao, N.; Zhou, J.; Zhou, Q.; Zhang, L.; Liu, X.; Bian, X.; Liu, J. Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion. Mol. Cytogenet. 2012, 5, 33. [Google Scholar] [CrossRef]
- Werner, M.; Reh, A.; Grifo, J.; Perle, M.A. Characteristics of chromosomal abnormalities diagnosed after spontaneous abortions in an infertile population. J. Assist. Reprod. Genet. 2012, 29, 817–820. [Google Scholar] [CrossRef]
- Lathi, R.B.; Gustin, S.L.; Keller, J.; Maisenbacher, M.K.; Sigurjonsson, S.; Tao, R.; Demko, Z. Reliability of 46,XX results on miscarriage specimens: A review of 1222 first-trimester miscarriage specimens. Fertil. Steril. 2014, 101, 178–182. [Google Scholar] [CrossRef]
- Vlachadis, N.; Papadopoulou, T.; Vrachnis, D.; Manolakos, E.; Loukas, N.; Christopoulos, P.; Pappa, K.; Vrachnis, N. Incidence and Types of Chromosomal Abnormalities in First Trimester Spontaneous Miscarriages: A Greek Single-Center Prospective Study. Maedica 2023, 18, 35–41. [Google Scholar] [CrossRef]
- Grande, M.; Borrell, A.; Garcia-Posada, R.; Borobio, V.; Muñoz, M.; Creus, M.; Soler, A.; Sanchez, A.; Balasch, J. The effect of maternal age on chromosomal anomaly rate and spectrum in recurrent miscarriage. Hum. Reprod. 2012, 27, 3109–3117. [Google Scholar] [CrossRef]
- Pylyp, L.Y.; Spynenko, L.O.; Verhoglyad, N.V.; Mishenko, A.O.; Mykytenko, D.O.; Zukin, V.D. Chromosomal abnormalities in products of conception of first-trimester miscarriages detected by conventional cytogenetic analysis: A review of 1000 cases. J. Assist. Reprod. Genet. 2018, 35, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, N.; Ogawa, K.; Sasaki, A.; Mitsui, M.; Wada, S.; Sago, H. Maternal age, history of miscarriage, and embryonic/fetal size are associated with cytogenetic results of spontaneous early miscarriages. J. Assist. Reprod. Genet. 2019, 36, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Nikitina, T.V.; Sazhenova, E.A.; Zhigalina, D.I.; Tolmacheva, E.N.; Sukhanova, N.N.; Lebedev, I.N. Karyotype evaluation of repeated abortions in primary and secondary recurrent pregnancy loss. J. Assist. Reprod. Genet. 2020, 37, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Zhao, N.; Liu, P.; Huang, J. Variations in chromosomal aneuploidy rates in IVF blastocysts and early spontaneous abortion chorionic villi. J. Assist. Reprod. Genet. 2020, 37, 527–537. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, J.; Shi, N.; Luo, C.; Bo, L.; Lu, X.; Gao, S.; Mao, C. Association of maternal risk factors with fetal aneuploidy and the accuracy of prenatal aneuploidy screening: A correlation analysis based on 12,186 karyotype reports. BMC Pregnancy Childbirth 2023, 23, 136. [Google Scholar] [CrossRef]
- Gaulden, M.E. Maternal age effect: The enigma of Down syndrome and other trisomic conditions. Mutat. Res. 1992, 296, 69–88. [Google Scholar] [CrossRef]
- Vialard, F.; Petit, C.; Bergere, M.; Gomes, D.M.; Martel-Petit, V.; Lombroso, R.; Ville, Y.; Gerard, H.; Selva, J. Evidence of a high proportion of premature unbalanced separation of sister chromatids in the first polar bodies of women of advanced age. Hum. Reprod. 2006, 21, 1172–1178. [Google Scholar] [CrossRef]
- Handyside, A.H.; Montag, M.; Magli, M.C.; Repping, S.; Harper, J.; Schmutzler, A.; Vesela, K.; Gianaroli, L.; Geraedts, J. Multiple meiotic errors caused by predivision of chromatids in women of advanced maternal age undergoing in vitro fertilisation. Eur. J. Hum. Genet. 2012, 20, 742–747. [Google Scholar] [CrossRef]
- Franasiak, J.M.; Forman, E.J.; Hong, K.H.; Werner, M.D.; Upham, K.M.; Treff, N.R.; Scott, R.T. The nature of aneuploidy with increasing age of the female partner: A review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 2014, 101, 656–663. [Google Scholar] [CrossRef]
- Penrose, L.S. The relative effects of paternal and maternal age in mongolism. 1933. J Genet. 2009, 88, 9–14. [Google Scholar] [CrossRef]
- Martin, R.H.; Mahadevan, M.M.; Taylor, P.J.; Hildebrand, K.; Long-Simpson, L.; Peterson, D.; Yamamoto, J.; Fleetham, J. Chromosomal analysis of unfertilized human oocytes. J. Reprod. Fertil. 1986, 78, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Angell, R.R.; Ledger, W.; Yong, E.L.; Harkness, L.; Baird, D.T. Cytogenetic analysis of unfertilized human oocytes. Hum. Reprod. 1991, 6, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Hassold, T.; Merrill, M.; Adkins, K.; Freeman, S.; Sherman, S. Recombination and maternal age-dependent nondisjunction: Molecular studies of trisomy 16. Am. J. Hum. Genet. 1995, 57, 867–874. [Google Scholar] [PubMed] [PubMed Central]
- Patel, J.; Tan, S.L.; Hartshorne, G.M.; McAinsh, A.D. Unique geometry of sister kinetochores in human oocytes during meiosis I may explain maternal age-associated increases in chromosomal abnormalities. Biol. Open 2015, 5, 178–184. [Google Scholar] [CrossRef]
- Ottolini, C.S.; Newnham, L.; Capalbo, A.; Natesan, S.A.; Joshi, H.A.; Cimadomo, D.; Griffin, D.K.; Sage, K.; Summers, M.C.; Thornhill, A.R.; et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 2015, 47, 727–735. [Google Scholar] [CrossRef]
- So, C.; Menelaou, K.; Uraji, J.; Harasimov, K.; Steyer, A.M.; Seres, K.B.; Bucevičius, J.; Lukinavičius, G.; Möbius, W.; Sibold, C.; et al. Mechanism of spindle pole organization and instability in human oocytes. Science 2022, 375, eabj3944. [Google Scholar] [CrossRef]
- Risch, N.; Stein, Z.; Kline, J.; Warburton, D. The relationship between maternal age and chromosome size in autosomal trisomy. Am. J. Hum. Genet. 1986, 39, 68–78. [Google Scholar] [PubMed Central]
- Zielinska, A.P.; Holubcova, Z.; Blayney, M.; Elder, K.; Schuh, M. Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect. eLife 2015, 4, e11389. [Google Scholar] [CrossRef]
- Lagirand-Cantaloube, J.; Ciabrini, C.; Charrasse, S.; Ferrieres, A.; Castro, A.; Anahory, T.; Lorca, T. Loss of centromere cohesion in aneuploid human oocytes correlates with decreased kinetochore localization of the Sac proteins Bub1 and Bubr1. Sci. Rep. 2017, 7, 44001. [Google Scholar] [CrossRef]
- Gruhn, J.R.; Zielinska, A.P.; Shukla, V.; Blanshard, R.; Capalbo, A.; Cimadomo, D.; Nikiforov, D.; Chan, A.C.; Newnham, L.J.; Vogel, I.; et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 2019, 365, 1466–1469. [Google Scholar] [CrossRef]
- Wartosch, L.; Schindler, K.; Schuh, M.; Gruhn, J.R.; Hoffmann, E.R.; McCoy, R.C.; Xing, J. Origins and mechanisms leading to aneuploidy in human eggs. Prenat. Diagn. 2021, 41, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Gruhn, J.R.; Hoffmann, E.R. Errors of the Egg: The Establishment and Progression of Human Aneuploidy Research in the Maternal Germline. Annu. Rev. Genet. 2022, 56, 369–390. [Google Scholar] [CrossRef] [PubMed]
- Essers, R.; Lebedev, I.N.; Kurg, A.; Fonova, E.A.; Stevens, S.J.C.; Koeck, R.M.; von Rango, U.; Brandts, L.; Deligiannis, S.P.; Nikitina, T.V.; et al. Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss. Nat. Med. 2023, 29, 3233–3242. [Google Scholar] [CrossRef] [PubMed]
- Pendina, A.A.; Efimova, O.A.; Chiryaeva, O.G.; Tikhonov, A.V.; Petrova, L.I.; Dudkina, V.S.; Sadik, N.A.; Fedorova, I.D.; Galembo, I.A.; Kuznetzova, T.V.; et al. A comparative cytogenetic study of miscarriages after IVF and natural conception in women aged under and over 35 years. J. Assist. Reprod. Genet. 2014, 31, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Efimova, O.A.; Pendina, A.A.; Krapivin, M.I.; Kopat, V.V.; Tikhonov, A.V.; Petrovskaia-Kaminskaia, A.V.; Navodnikova, P.M.; Talantova, O.E.; Glotov, O.S.; Baranov, V.S. Inter-Cell and Inter-Chromosome Variability of 5-Hydroxymethylcytosine Patterns in Noncultured Human Embryonic and Extraembryonic Cells. Cytogenet. Genome Res. 2018, 156, 150–157. [Google Scholar] [CrossRef]
- Krapivin, M.I.; Tikhonov, A.V.; Efimova, O.A.; Pendina, A.A.; Smirnova, A.A.; Chiryaeva, O.G.; Talantova, O.E.; Petrova, L.I.; Dudkina, V.S.; Baranov, V.S. Telomere Length in Chromosomally Normal and Abnormal Miscarriages and Ongoing Pregnancies and Its Association with 5-hydroxymethylcytosine Patterns. Int. J. Mol. Sci. 2021, 22, 6622. [Google Scholar] [CrossRef]
- Segawa, T.; Kuroda, T.; Kato, K.; Kuroda, M.; Omi, K.; Miyauchi, O.; Watanabe, Y.; Okubo, T.; Osada, H.; Teramoto, S. Cytogenetic analysis of the retained products of conception after missed abortion following blastocyst transfer: A retrospective, large-scale, single-centre study. Reprod. Biomed. Online 2017, 34, 203–210. [Google Scholar] [CrossRef]
- Fisher, J.M.; Harvey, J.F.; Morton, N.E.; Jacobs, P.A. Trisomy 18: Studies of the parent and cell division of origin and the effect of aberrant recombination on nondisjunction. Am. J. Hum. Genet. 1995, 56, 669–675. [Google Scholar] [PubMed Central]
- Robinson, W.P.; Kuchinka, B.D.; Bernasconi, F.; Petersen, M.B.; Schulze, A.; Brondum-Nielsen, K.; Christian, S.L.; Ledbetter, D.H.; Schinzel, A.A.; Horsthemke, B.; et al. Maternal meiosis I non-disjunction of chromosome 15: Dependence of the maternal age effect on level of recombination. Hum. Mol. Genet. 1998, 7, 1011–1019. [Google Scholar] [CrossRef]
- Hassold, T.; Sherman, S. Down syndrome: Genetic recombination and the origin of the extra chromosome 21. Clin. Genet. 2000, 57, 95–100. [Google Scholar] [CrossRef]
- Hall, H.E.; Surti, U.; Hoffner, L.; Shirley, S.; Feingold, E.; Hassold, T. The origin of trisomy 22: Evidence for acrocentric chromosome-specific patterns of nondisjunction. Am. J. Med. Genet. 2007, 143, 2249–2255. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.; Duncan, F.E.; Schindler, K.; Schultz, R.M.; Lampson, M.A. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol. 2010, 20, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- Duncan, F.E.; Hornick, J.E.; Lampson, M.A.; Schultz, R.M.; Shea, L.D.; Woodruff, T.K. Chromosome cohesion decreases in human eggs with advanced maternal age. Aging Cell 2012, 11, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Boué, A.; Boué, J.; Gropp, A. Cytogenetics of pregnancy wastage. Adv. Hum. Genet. 1985, 14, 1–57. [Google Scholar] [CrossRef]
- Hassold, T.J.; Matsuyama, A.; Newlands, I.M.; Matsuura, J.S.; Jacobs, P.A.; Manuel, B.; Tsuei, J.A. cytogenetic study of spontaneous abortions in Hawaii. Ann. Hum. Genet. 1978, 41, 443–454. [Google Scholar] [CrossRef]
- Cheng, E.Y.; Hunt, P.A.; Naluai-Cecchini, T.A.; Fligner, C.L.; Fujimoto, V.Y.; Pasternack, T.L.; Schwartz, J.M.; Steinauer, J.E.; Woodruff, T.J.; Cherry, S.M.; et al. Meiotic recombination in human oocytes. PLoS Genet. 2009, 5, e1000661. [Google Scholar] [CrossRef]
- Hardy, K.; Hardy, P.J.; Jacobs, P.A.; Lewallen, K.; Hassold, T.J. Temporal changes in chromosome abnormalities in human spontaneous abortions: Results of 40 years of analysis. Am. J. Med. Genet. A 2016, 170, 2671–2680. [Google Scholar] [CrossRef]
- Soler, A.; Morales, C.; Mademont-Soler, I.; Margarit, E.; Borrell, A.; Borobio, V.; Muñoz, M.; Sánchez, A. Overview of Chromosome Abnormalities in First Trimester Miscarriages: A Series of 1,011 Consecutive Chorionic Villi Sample Karyotypes. Cytogenet. Genome Res. 2017, 152, 81–89. [Google Scholar] [CrossRef]
- Carp, H.; Toder, V.; Aviram, A.; Daniely, M.; Mashiach, S.; Barkai, G. Karyotype of the abortus in recurrent miscarriage. Fertil. Steril. 2001, 75, 678–682. [Google Scholar] [CrossRef]
- Nagaoka, S.I.; Hassold, T.J.; Hunt, P.A. Human aneuploidy: Mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 2012, 13, 493–504. [Google Scholar] [CrossRef]
- Kudryavtseva, E.V.; Fedenev, S.N.; Kanivets, I.V.; Troitskaya, A.N.; Kovalev, V.V. Miscarriages after Natural Conception & IVF: Comparative Study of Genetic Analysis of Products of Conception. OBM Genet. 2024, 8, 1–16. [Google Scholar] [CrossRef]
- Jacobs, P.A.; Angell, R.R.; Buchanan, I.M.; Hassold, T.J.; Matsuyama, A.M.; Manuel, B. The origin of human triploids. Ann. Hum. Genet. 1978, 42, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza, M.V.; Surti, U.; Redline, R.W.; Millie, E.; Chakravarti, A.; Hassold, T.J. Parental origin and phenotype of triploidy in spontaneous abortions: Predominance of diandry and association with the partial hydatidiform mole. Am. J. Hum. Genet. 2000, 66, 1807–1820. [Google Scholar] [CrossRef] [PubMed]
- Rosenbusch, B.; Schneider, M.; Sterzik, K. The chromosomal constitution of multipronuclear zygotes resulting from in-vitro fertilization. Hum. Reprod. 1997, 12, 2257–2262. [Google Scholar] [CrossRef]
- Plachot, M.; Veiga, A.; Montagut, J.; de Grouchy, J.; Calderon, G.; Lepretre, S.; Junca, A.M.; Santalo, J.; Carles, E.; Mandelbaum, J.; et al. Are clinical and biological IVF parameters correlated with chromosomal disorders in early life: A multicentric study. Hum. Reprod. 1988, 3, 627–635. [Google Scholar] [CrossRef]
- Maudlin, I.; Fraser, L.R. The effect of PMSG dose on the incidence of chromosomal anomalies in mouse embryos fertilized in vitro. J. Reprod. Fertil. 1977, 50, 275–280. [Google Scholar] [CrossRef]
- Webster, B.W.; Wentz, A.C.; Osteen, K.G.; Rogers, B.J.; Vaughn, W.K. Hormonal correlates with polyspermy. Ann. N. Y Acad. Sci. 1985, 442, 332–335. [Google Scholar] [CrossRef]
- Ho, P.C.; Yeung, W.S.; Chan, Y.F.; So, W.W.; Chan, S.T. Factors affecting the incidence of polyploidy in a human in vitro fertilization program. Int. J. Fertil. Menopausal Stud. 1994, 39, 14–19. [Google Scholar] [PubMed]
- van der Ven, H.H.; Al-Hasani, S.; Diedrich, K.; Hamerich, U.; Lehmann, F.; Krebs, D. Polyspermy in in vitro fertilization of human oocytes: Frequency and possible causes. Ann. N. Y. Acad. Sci. 1985, 442, 88–95. [Google Scholar] [CrossRef]
- Badenas, J.; Santaló, J.; Calafell, J.M.; Estop, A.M.; Egozcue, J. Effect of the degree of maturation of mouse oocytes at fertilization: A source of chromosome imbalance. Gamete Res. 1989, 24, 205–218. [Google Scholar] [CrossRef]
- Wang, W.H.; Abeydeera, L.R.; Prather, R.S.; Day, B.N. Morphologic comparison of ovulated and in vitro-matured porcine oocytes, with particular reference to polyspermy after in vitro fertilization. Mol. Reprod. Dev. 1998, 49, 308–316. [Google Scholar] [CrossRef]
- Englert, Y.; Puissant, F.; Camus, M.; Degueldre, M.; Leroy, F. Factors leading to tripronucleate eggs during human in-vitro fertilization. Hum. Reprod. 1986, 1, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Weghofer, A.; Kushnir, V.A.; Darmon, S.K.; Jafri, H.; Lazzaroni-Tealdi, E.; Zhang, L.; Albertini, D.F.; Barad, D.H.; Gleicher, N. Age, body weight and ovarian function affect oocyte size and morphology in non-PCOS patients undergoing intracytoplasmic sperm injection (ICSI). PLoS ONE 2019, 14, e0222390. [Google Scholar] [CrossRef] [PubMed]
- Hassold, T.J.; Hunt, P.A. Missed connections: Recombination and human aneuploidy. Prenat. Diagn. 2021, 41, 584–590. [Google Scholar] [CrossRef]
- Ariad, D.; Madjunkova, S.; Madjunkov, M.; Chen, S.; Abramov, R.; Librach, C.; McCoy, R.C. Aberrant landscapes of maternal meiotic crossovers contribute to aneuploidies in human embryos. Genome Res. 2024, 34, 70–84. [Google Scholar] [CrossRef]
- Hodges, C.A.; Revenkova, E.; Jessberger, R.; Hassold, T.J.; Hunt, P.A. SMC1beta-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat. Genet. 2005, 37, 1351–1355. [Google Scholar] [CrossRef]
- Nagaoka, S.I. Meiosis: Cohesin’s hidden role in the checkpoint revealed. Curr. Biol. 2013, 23, R1105–R1108. [Google Scholar] [CrossRef]
- Holubcová, Z.; Blayney, M.; Elder, K.; Schuh, M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 2015, 348, 1143–1147. [Google Scholar] [CrossRef]
- Nagaoka, S.I.; Hodges, C.A.; Albertini, D.F.; Hunt, P.A. Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr. Biol. 2011, 21, 651–657. [Google Scholar] [CrossRef]
Maternal Age, Years | Miscarriages with Abnormal Karyotype, n | Miscarriages with Normal Karyotype, n | Total Number of Miscarriages, n | Frequency of Abnormal Karyotype in Miscarriages, % | p-Value (Chi-Square with Yates’ Correction) |
---|---|---|---|---|---|
23 | 72 | 58 | 130 | 55.38 | - |
24 | 120 | 80 | 200 | 60.00 | 0.47 |
25 | 162 | 109 | 271 | 59.78 | 0.96 |
26 | 203 | 117 | 320 | 63.44 | 0.41 |
27 | 220 | 146 | 366 | 60.11 | 0.41 |
28 | 281 | 159 | 440 | 63.86 | 0.31 |
29 | 281 | 182 | 463 | 60.69 | 0.36 |
30 | 308 | 206 | 514 | 59.92 | 0.86 |
31 | 323 | 171 | 494 | 65.38 | 0.08 |
32 | 289 | 166 | 455 | 63.52 | 0.59 |
33 | 292 | 159 | 451 | 64.75 | 0.75 |
34 | 285 | 139 | 424 | 67.22 | 0.48 |
35 | 294 | 129 | 423 | 69.50 | 0.52 |
36 | 293 | 132 | 425 | 68.94 | 0.92 |
37 | 228 | 127 | 355 | 64.23 | 0.19 |
38 | 256 | 68 | 324 | 79.01 | <0.0001 |
39 | 253 | 50 | 303 | 83.50 | 0.18 |
40 | 207 | 58 | 265 | 78.11 | 0.13 |
41 | 155 | 36 | 191 | 81.15 | 0.50 |
42 | 126 | 24 | 150 | 84.00 | 0.59 |
43 | 78 | 11 | 89 | 87.64 | 0.56 |
44 | 61 | 4 | 65 | 93.85 | 0.31 |
Maternal Age, Years | Chromosomal Abnormalities in Miscarriages, Number of Cases | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trisomy 13 | Trisomy 15 | Trisomy 16 | Trisomy 18 | Trisomy 21 | Trisomy 22 | Regular Trisomies (2–12; 14; 17; 20), Disomy X and Y | Multiple Aneuploidies | Monosomy X | Polyploidies | Structural Rearrangements | Autosomal Monosomies (15; 18; 21) | Mosaic Aneuploidies | Total | |
23 | 0 | 3 | 14 | 2 | 1 | 2 | 7 | 1 | 18 | 16 | 5 | 2 | 1 | 72 |
24 | 2 | 3 | 19 | 1 | 2 | 4 | 19 | 1 | 18 | 38 | 8 | 0 | 5 | 120 |
25 | 2 | 4 | 33 | 1 | 2 | 3 | 28 | 4 | 22 | 48 | 7 | 2 | 6 | 162 |
26 | 3 | 2 | 37 | 6 | 2 | 9 | 41 | 4 | 34 | 43 | 9 | 1 | 12 | 203 |
27 | 2 | 11 | 50 | 1 | 4 | 11 | 25 | 9 | 28 | 51 | 18 | 1 | 9 | 220 |
28 | 4 | 5 | 59 | 1 | 7 | 11 | 54 | 9 | 34 | 70 | 10 | 4 | 13 | 281 |
29 | 9 | 9 | 57 | 3 | 9 | 16 | 34 | 5 | 37 | 65 | 23 | 1 | 13 | 281 |
30 | 3 | 6 | 75 | 3 | 12 | 18 | 49 | 6 | 33 | 71 | 16 | 2 | 14 | 308 |
31 | 4 | 7 | 68 | 4 | 9 | 14 | 68 | 6 | 42 | 74 | 17 | 3 | 7 | 323 |
32 | 8 | 17 | 46 | 4 | 14 | 27 | 45 | 4 | 41 | 50 | 22 | 2 | 9 | 289 |
33 | 10 | 12 | 58 | 4 | 12 | 31 | 42 | 3 | 39 | 56 | 13 | 2 | 10 | 292 |
34 | 11 | 19 | 53 | 6 | 18 | 32 | 48 | 9 | 25 | 38 | 12 | 2 | 12 | 285 |
35 | 11 | 13 | 72 | 3 | 8 | 26 | 59 | 7 | 27 | 46 | 9 | 4 | 9 | 294 |
36 | 11 | 24 | 56 | 9 | 13 | 33 | 61 | 18 | 16 | 25 | 11 | 3 | 13 | 293 |
37 | 9 | 18 | 49 | 7 | 7 | 26 | 40 | 9 | 18 | 25 | 15 | 1 | 4 | 228 |
38 | 13 | 20 | 55 | 12 | 15 | 28 | 46 | 14 | 13 | 29 | 6 | 3 | 2 | 256 |
39 | 9 | 23 | 46 | 4 | 19 | 35 | 47 | 17 | 10 | 23 | 9 | 3 | 8 | 253 |
40 | 11 | 20 | 18 | 8 | 18 | 27 | 39 | 19 | 9 | 18 | 7 | 5 | 8 | 207 |
41 | 4 | 19 | 24 | 8 | 9 | 16 | 34 | 22 | 4 | 9 | 3 | 0 | 3 | 155 |
42 | 4 | 16 | 9 | 5 | 8 | 21 | 29 | 21 | 2 | 6 | 1 | 2 | 2 | 126 |
43 | 6 | 11 | 7 | 2 | 7 | 2 | 13 | 16 | 0 | 8 | 2 | 1 | 3 | 78 |
44 | 2 | 7 | 3 | 0 | 4 | 7 | 17 | 16 | 1 | 2 | 1 | 1 | 0 | 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pendina, A.A.; Krapivin, M.I.; Chiryaeva, O.G.; Petrova, L.I.; Pashkova, E.P.; Golubeva, A.V.; Tikhonov, A.V.; Koltsova, A.S.; Trusova, E.D.; Staroverov, D.A.; et al. Chromosomal Abnormalities in Miscarriages and Maternal Age: New Insights from the Study of 7118 Cases. Cells 2025, 14, 8. https://doi.org/10.3390/cells14010008
Pendina AA, Krapivin MI, Chiryaeva OG, Petrova LI, Pashkova EP, Golubeva AV, Tikhonov AV, Koltsova AS, Trusova ED, Staroverov DA, et al. Chromosomal Abnormalities in Miscarriages and Maternal Age: New Insights from the Study of 7118 Cases. Cells. 2025; 14(1):8. https://doi.org/10.3390/cells14010008
Chicago/Turabian StylePendina, Anna A., Mikhail I. Krapivin, Olga G. Chiryaeva, Lubov’ I. Petrova, Elizaveta P. Pashkova, Arina V. Golubeva, Andrei V. Tikhonov, Alla S. Koltsova, Ekaterina D. Trusova, Dmitrii A. Staroverov, and et al. 2025. "Chromosomal Abnormalities in Miscarriages and Maternal Age: New Insights from the Study of 7118 Cases" Cells 14, no. 1: 8. https://doi.org/10.3390/cells14010008
APA StylePendina, A. A., Krapivin, M. I., Chiryaeva, O. G., Petrova, L. I., Pashkova, E. P., Golubeva, A. V., Tikhonov, A. V., Koltsova, A. S., Trusova, E. D., Staroverov, D. A., Glotov, A. S., Bespalova, O. N., & Efimova, O. A. (2025). Chromosomal Abnormalities in Miscarriages and Maternal Age: New Insights from the Study of 7118 Cases. Cells, 14(1), 8. https://doi.org/10.3390/cells14010008