Epigenetic Inhibitors Differentially Impact TGF-β1 Signaling Cascades in COPD Airway Smooth Muscle Cells
"> Figure 1
<p><b>CXCL8 production (pg/mL) from TGF-β1-stimulated (10 ng/mL) non-COPD (gray) and COPD (black) ASM cells.</b> Cells were pre-treated with either trichostatin A (TSA, 100 nM) (<b>a</b>,<b>b</b>) or 5-azacytidine (5-aza, 10 μM) (<b>c</b>,<b>d</b>) and incubated for 24 or 48 h. CXCL8 was determined in cell-free supernatant by ELISA. Data are presented as the median with the interquartile range and analyzed by two-way ANOVA with post hoc Fisher’s LSD test for multiple comparisons; <span class="html-italic">n</span> = 5–7. Statistical significance is represented by * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 and **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 2
<p><b>Western blot quantification of total and phosphorylated NF</b>-κB <b>abundance in non-COPD (gray) and COPD (black) ASM cells.</b> Shown are total (<b>a</b>,<b>b</b>)/phosphorylated (<b>c</b>,<b>d</b>) NF-κB after 10 min TGF-β1 stimulation (10 ng/mL) in the presence and absence of trichostatin A (TSA, 100 nM) or 5-azacytidine (5-aza, 10 μM). Data are presented as median and the interquartile range and analyzed by two-way ANOVA with post hoc Fisher’s LSD test for multiple comparisons; <span class="html-italic">n</span> = 6–7. Statistical significance is represented as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 3
<p><b>Western blot quantification of total and phosphorylated p38 MAPK abundance in non-COPD (gray) and COPD (black) ASM cells.</b> Shown are total (<b>a</b>,<b>b</b>)/phosphorylated (<b>c</b>,<b>d</b>) p38 MAPK after 10 min TGF-β1 stimulation (10 ng/mL) in the presence and absence of trichostatin A (TSA, 100 nM) or 5-azacytidine (5-aza, 10 μM). Data are presented as median and the interquartile range and analyzed by two-way ANOVA with post hoc Fisher’s LSD test for multiple comparisons; <span class="html-italic">n</span> = 6–7. Statistical significance is represented as ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 4
<p><b>Western blot quantification of total and phosphorylated JNK abundance in non-COPD (gray) and COPD (black) ASM cells.</b> Shown are total (<b>a</b>,<b>b</b>)/phosphorylated (<b>c</b>,<b>d</b>) JNK was measured after 20 min TGF-β1 stimulation (10 ng/mL) in the presence and absence of trichostatin A (TSA, 100 nM) or 5-azacytidine (5-aza, 10 μM). Data are presented as median and the interquartile range and analyzed by two-way ANOVA with post hoc Fisher’s LSD test for multiple comparisons; <span class="html-italic">n</span> = 6–7. Statistical significance is represented as ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 5
<p><b>Schematic of the TGF-β1 signaling cascade.</b> The straight solid arrows represent the direction of protein interactions and activation of signaling molecules. The dotted arrows represent signaling proteins translocating from the cytosol to the nucleus. The bent solid arrows represent the initiation of gene expression for CXCL8 due to activation of the respective transcription factor. The red circles containing a ‘P’ represent proteins that have been phosphorylated. <span class="html-italic">Figure generated using Biorender</span>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Airway Smooth Muscle Cell Isolation and Treatments
2.3. ELISA
2.4. Western Blot
2.5. Statistical Analysis
3. Results
3.1. TGF-β1 with TSA or 5-Aza Induces Greater CXCL8 Production from Non-COPD ASM
3.2. TGF-β1 and 5-Aza Alter Total NF-κB Levels in Non-COPD ASM Cells
3.3. TGF-β1 Alters p38 MAPK Phosphorylation in Non-COPD-Derived ASM Cells Alone
3.4. TGF-β1 Combined with TSA or 5-Aza Alters JNK Phosphorylation in Non-COPD-Derived ASM Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnes, P.J. Small airway fibrosis in COPD. Int. J. Biochem. Cell Biol. 2019, 116, 105598. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Gao, H.; Zhao, H.; Bhatia, M.; Zeng, Y. Roles of airway smooth muscle dysfunction in chronic obstructive pulmonary disease. J. Transl. Med. 2018, 16, 262. [Google Scholar] [CrossRef]
- Jarai, G.; Sukkar, M.; Garrett, S.; Duroudier, N.; Westwick, J.; Adcock, I.; Chung, K.F. Effects of interleukin-1β, interleukin-13 and transforming growth factor-β on gene expression in human airway smooth muscle using gene microarrays. Eur. J. Pharmacol. 2004, 497, 255–265. [Google Scholar] [CrossRef]
- Chung, K. Airway smooth muscle cells: Contributing to and regulating airway mucosal inflammation? Eur. Respir. J. 2000, 15, 961–968. [Google Scholar] [CrossRef]
- Svedružić, Ž.M. Chapter 6—Dnmt1: Structure and Function. In Progress in Molecular Biology and Translational Science; Cheng, X., Blumenthal, R.M., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 101, pp. 221–254. [Google Scholar]
- Nightingale, K.P.; O’Neill, L.P.; Turner, B.M. Histone modifications: Signalling receptors and potential elements of a heritable epigenetic code. Curr. Opin. Genet. Dev. 2006, 16, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Ramesh, V.; Locasale, J.W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 2020, 21, 737–753. [Google Scholar] [CrossRef]
- Kiselev, I.S.; Kulakova, O.G.; Boyko, A.N.; Favorova, O.O. DNA methylation as an epigenetic mechanism in the development of multiple sclerosis. Acta Nat. 2021, 13, 45. [Google Scholar] [CrossRef]
- Liu, R.; Wu, J.; Guo, H.; Yao, W.; Li, S.; Lu, Y.; Jia, Y.; Liang, X.; Tang, J.; Zhang, H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm 2023, 4, e292. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Baccarelli, A.; Carey, V.J.; Boutaoui, N.; Bacherman, H.; Klanderman, B.; Rennard, S.; Agusti, A.; Anderson, W.; Lomas, D.A. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am. J. Respir. Crit. Care Med. 2012, 185, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Vucic, E.A.; Chari, R.; Thu, K.L.; Wilson, I.M.; Cotton, A.M.; Kennett, J.Y.; Zhang, M.; Lonergan, K.M.; Steiling, K.; Brown, C.J. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways. Am. J. Respir. Cell Mol. Biol. 2014, 50, 912–922. [Google Scholar] [CrossRef]
- Ito, K.; Ito, M.; Elliott, W.M.; Cosio, B.; Caramori, G.; Kon, O.M.; Barczyk, A.; Hayashi, S.; Adcock, I.M.; Hogg, J.C.; et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 2005, 352, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Zakarya, R.; Chan, Y.L.; Rutting, S.; Reddy, K.; Bozier, J.; Woldhuis, R.R.; Xenaki, D.; Van Ly, D.; Chen, H.; Brandsma, C.-A.; et al. BET Proteins Are Associated with the Induction of Small Airway Fibrosis in COPD. Thorax 2021, 76, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Kaminskas, E.; Farrell, A.T.; Wang, Y.C.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 2005, 10, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 2007, 12, 1247–1252. [Google Scholar] [CrossRef]
- Weintraub, K. Take two: Combining immunotherapy with epigenetic drugs to tackle cancer. Nat. Med. 2016, 22, 8–10. [Google Scholar] [CrossRef]
- Ganesan, A. Multitarget drugs: An epigenetic epiphany. ChemMedChem 2016, 11, 1227–1241. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, L.; Sevinç, K.; Papazoglou, I.M.; Tildy, B.; Detillieux, K.; Halayko, A.J.; Chung, K.F.; Perry, M.M. Airway smooth muscle inflammation is regulated by microRNA-145 in COPD. FEBS Lett. 2016, 590, 1324–1334. [Google Scholar] [CrossRef]
- Damera, G.; Tliba, O.; Panettieri, R.A., Jr. Airway smooth muscle as an immunomodulatory cell. Pulm. Pharmacol. Ther. 2009, 22, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ge, Q.; Tjin, G.; Alkhouri, H.; Deng, L.; Brandsma, C.A.; Adcock, I.; Timens, W.; Postma, D.; Burgess, J.K.; et al. Effects of Cigarette Smoke Extract on Human Airway Smooth Muscle Cells in COPD. Eur. Respir. J. 2014, 44, 634–646. [Google Scholar] [CrossRef]
- Malhotra, R.; Kurian, N.; Zhou, X.-H.; Jiang, F.; Monkley, S.; DeMicco, A.; Clausen, I.G.; Delgren, G.; Edenro, G.; Ahdesmäki, M.J. Altered regulation and expression of genes by BET family of proteins in COPD patients. PLoS ONE 2017, 12, e0173115. [Google Scholar]
- Chung, K.F. The role of airway smooth muscle in the pathogenesis of airway wall remodeling in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2005, 2, 347–354. [Google Scholar] [CrossRef]
- Barnes, P.; Adcock, I.; Ito, K. Histone acetylation and deacetylation: Importance in inflammatory lung diseases. Eur. Respir. J. 2005, 25, 552–563. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, C. The significance of serum interleukin-8 in acute exacerbations of chronic obstructive pulmonary disease. Tanaffos 2018, 17, 13. [Google Scholar] [PubMed]
- Zhang, X.; Zheng, H.; Zhang, H.; Ma, W.; Wang, F.; Liu, C.; He, S. Increased interleukin (IL)-8 and decreased IL-17 production in chronic obstructive pulmonary disease (COPD) provoked by cigarette smoke. Cytokine 2011, 56, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Nadigel, J.; Audusseau, S.; Baglole, C.J.; Eidelman, D.H.; Hamid, Q. IL-8 production in response to cigarette smoke is decreased in epithelial cells from COPD patients. Pulm. Pharmacol. Ther. 2013, 26, 596–602. [Google Scholar] [CrossRef] [PubMed]
- de Boer, W.I.; van Schadewijk, A.; Sont, J.K.; Sharma, H.S.; Stolk, J.; Hiemstra, P.S.; van Krieken, J.H.J. Transforming growth factor β1 and recruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998, 158, 1951–1957. [Google Scholar] [CrossRef]
- Pons, A.; Sauleda, J.; Noguera, A.; Pons, J.; Barcelo, B.; Fuster, A.; Agusti, A. Decreased macrophage release of TGF-β and TIMP-1 in chronic obstructive pulmonary disease. Eur. Respir. J. 2005, 26, 60–66. [Google Scholar] [CrossRef]
- Tomita, K.; Barnes, P.; Adcock, I. The effect of oxidative stress on histone acetylation and IL-8 release. Biochem. Biophys. Res. Commun. 2003, 301, 572–577. [Google Scholar] [CrossRef]
- Shan, L.; Redhu, N.S.; Saleh, A.; Halayko, A.J.; Chakir, J.; Gounni, A.S. Thymic stromal lymphopoietin receptor-mediated IL-6 and CC/CXC chemokines expression in human airway smooth muscle cells: Role of MAPKs (ERK1/2, p38, and JNK) and STAT3 pathways. J. Immunol. 2010, 184, 7134–7143. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Liu, S.; Ye, D.; Bai, G.; Guo, M.; Sun, R.; Ran, P. PM2.5 induces lung inflammation and fibrosis via airway smooth muscle cell expression of the Wnt5a/JNK pathway. J. Thorac. Dis. 2023, 15, 6094. [Google Scholar] [CrossRef]
- Eynott, P.R.; Nath, P.; Leung, S.Y.; Adcock, I.M.; Bennett, B.L.; Chung, K.F. Allergen-induced inflammation and airway epithelial and smooth muscle cell proliferation: Role of Jun N-terminal kinase. Br. J. Pharmacol. 2003, 140, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Troester, M.A.; Hoadley, K.A.; D’arcy, M.; Cherniack, A.D.; Stewart, C.; Koboldt, D.C.; Robertson, A.G.; Mahurkar, S.; Shen, H.; Wilkerson, M.D. DNA defects, epigenetics, and gene expression in cancer-adjacent breast: A study from The Cancer Genome Atlas. NPJ Breast Cancer 2016, 2, 16007. [Google Scholar] [CrossRef]
- Koka, H.; Bodelon, C.; Horvath, S.; Lee, P.M.Y.; Wang, D.; Song, L.; Zhang, T.; Hurson, A.N.; Guida, J.L.; Zhu, B. DNA methylation age in paired tumor and adjacent normal breast tissue in Chinese women with breast cancer. Clin. Epigenetics 2023, 15, 55. [Google Scholar] [CrossRef]
- Feng, Q.; Hawes, S.E.; Stern, J.E.; Wiens, L.; Lu, H.; Dong, Z.M.; Jordan, C.D.; Kiviat, N.B.; Vesselle, H. DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol. Biomark. Prev. 2008, 17, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.A.; Akman, K.; Calimport, S.R.; Wuttke, D.; Stolzing, A.; De Magalhaes, J.P. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012, 15, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.-C.; Glastonbury, C.A.; Eliot, M.N.; Bollepalli, S.; Yet, I.; Castillo-Fernandez, J.E.; Carnero-Montoro, E.; Hardiman, T.; Martin, T.C.; Vickers, A. Smoking induces coordinated DNA methylation and gene expression changes in adipose tissue with consequences for metabolic health. Clin. Epigenetics 2018, 10, 126. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Pausova, Z. Cigarette smoking and DNA methylation. Front. Genet. 2013, 4, 132. [Google Scholar] [CrossRef] [PubMed]
- Sundar, I.K.; Nevid, M.Z.; Friedman, A.E.; Rahman, I. Cigarette smoke induces distinct histone modifications in lung cells: Implications for the pathogenesis of COPD and lung cancer. J. Proteome Res. 2014, 13, 982–996. [Google Scholar] [CrossRef] [PubMed]
- Milne, K.M.; Mitchell, R.A.; Ferguson, O.N.; Hind, A.S.; Guenette, J.A. Sex-differences in COPD: From biological mechanisms to therapeutic considerations. Front. Med. 2024, 11, 1289259. [Google Scholar] [CrossRef] [PubMed]
- Salviano Soares de Amorim, Í.; Rodrigues, J.A.; Nicolau, P.; König, S.; Panis, C.; de Souza da Fonseca, A.; Mencalha, A.L. 5-Aza-2’-deoxycytidine induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment. Mol. Biol. Rep. 2021, 48, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-F.; Sheu, J.-R.; Lin, C.-H.; Chen, W.-C.; Hsiao, G.; Ou, G.; Chiu, P.-T.; Hsu, M.-J. MAPK phosphatase-1 contributes to trichostatin A inhibition of cyclooxygenase-2 expression in human umbilical vascular endothelial cells exposed to lipopolysaccharide. Biochim. Biophys. Acta (BBA) Gen. Subj. 2011, 1810, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Mnasri, N.; Mamarbachi, M.; Allen, B.G.; Mayer, G. 5-Azacytidine engages an IRE1α-EGFR-ERK1/2 signaling pathway that stabilizes the LDL receptor mRNA. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2018, 1861, 29–40. [Google Scholar] [CrossRef]
Details | COPD | Non-COPD |
---|---|---|
All Patients | n = 7 | n = 7 |
Age Range (Mean ± SD) | 44–60 (54.8 ± 6.2) | 60–75 (66.5 ± 6.1) |
Diagnosis | COPD | Normal Adjacent Tissue |
Smoking History | >40 pack years | >40 pack years |
Gender (M:F) | 4:3 | 4:3 |
FEV1/FVC | <0.4 | >0.80 |
Surgery | Transplant | Resection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, K.D.; Xenaki, D.; Adcock, I.M.; Oliver, B.G.G.; Zakarya, R. Epigenetic Inhibitors Differentially Impact TGF-β1 Signaling Cascades in COPD Airway Smooth Muscle Cells. Cells 2025, 14, 31. https://doi.org/10.3390/cells14010031
Reddy KD, Xenaki D, Adcock IM, Oliver BGG, Zakarya R. Epigenetic Inhibitors Differentially Impact TGF-β1 Signaling Cascades in COPD Airway Smooth Muscle Cells. Cells. 2025; 14(1):31. https://doi.org/10.3390/cells14010031
Chicago/Turabian StyleReddy, Karosham Diren, Dikaia Xenaki, Ian M. Adcock, Brian G. G. Oliver, and Razia Zakarya. 2025. "Epigenetic Inhibitors Differentially Impact TGF-β1 Signaling Cascades in COPD Airway Smooth Muscle Cells" Cells 14, no. 1: 31. https://doi.org/10.3390/cells14010031
APA StyleReddy, K. D., Xenaki, D., Adcock, I. M., Oliver, B. G. G., & Zakarya, R. (2025). Epigenetic Inhibitors Differentially Impact TGF-β1 Signaling Cascades in COPD Airway Smooth Muscle Cells. Cells, 14(1), 31. https://doi.org/10.3390/cells14010031