Detection of Human Bladder Epithelial Cancerous Cells with Atomic Force Microscopy and Machine Learning
<p>Representative examples of HCV29 and TCCSUP cells. (<b>a</b>) Optical images of the cells; the scale bar is 100 µm (one can also see a triangle shadow of the AFM cantilever). Shown are 10 × 10 µm<sup>2</sup> AFM images recorded in five channels used for the cell classification. (<b>b</b>) Height (Nanoscope channel), (<b>c</b>) adhesion (Nanoscope channel), (<b>d</b>) restored adhesion (ringing mode channel), (<b>e</b>) neck size (ringing mode channel), (<b>f</b>) disconnection distance (ringing mode channel).</p> "> Figure 2
<p>Ranking of surface parameters by Gini importance index. The height (Nanoscope channel), adhesion (Nanoscope channel), restored adhesion (ringing mode channel), neck size (ringing mode channel), and disconnection distance (ringing mode channel) channels, as well as the combined channels, are shown.</p> "> Figure 3
<p>ROC curves described in the classification of nonmalignant and cancerous cells when using the height (Nanoscope channel), adhesion (Nanoscope channel), restored adhesion (ringing mode channel), neck size (ringing mode channel), and disconnection distance (ringing mode channel) channels, as well as the combined channels.</p> "> Figure 4
<p>Multiple ROC curves and histograms of the AUCs obtained when the ML algorithm was developed on and applied to the data set with randomly assigned class to each cell. “No Classification” lines are drawn in the graphs showing ROC curves.</p> "> Figure 5
<p>Graphical description of the ringing mode channels used in this work. (<b>a</b>) Trajectory of the AFM probe scanning in subresonance tapping. (<b>b</b>) Graphical presentation of the neck size and disconnection distance channels. (<b>c</b>) Explanation of the restored adhesion.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Section
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.cancer.org/cancer/bladder-cancer/about/key-statistics.html (accessed on 12 December 2024).
- Weber, A.; Vignat, J.; Shah, R.; Morgan, E.; Laversanne, M.; Nagy, P.; Kenessey, I.; Znaor, A. Global burden of bladder cancer mortality in 2020 and 2040 according to GLOBOCAN estimates. World J. Urol. 2024, 42, 237. [Google Scholar] [CrossRef] [PubMed]
- Grossman, H.B.; Messing, E.; Soloway, M.; Tomera, K.; Katz, G.; Berger, Y.; Shen, Y. Detection of bladder cancer using a point-of-care proteomic assay. JAMA 2005, 293, 810–816. [Google Scholar] [CrossRef]
- Isfoss, B.L. The sensitivity of fluorescent-light cystoscopy for the detection of carcinoma in situ (CIS) of the bladder: A meta-analysis with comments on gold standard. BJU Int. 2011, 108, 1703–1707. [Google Scholar] [CrossRef]
- Yeung, C.; Dinh, T.; Lee, J. The health economics of bladder cancer: An updated review of the published literature. Pharmacoeconomics 2014, 32, 1093–1104. [Google Scholar] [CrossRef]
- Guz, N.; Dokukin, M.; Kalaparthi, V.; Sokolov, I. If Cell Mechanics Can Be Described by Elastic Modulus: Study of Different Models and Probes Used in Indentation Experiments. Biophys. J. 2014, 107, 564–575. [Google Scholar] [CrossRef]
- Haase, K.; Pelling, A.E. Investigating cell mechanics with atomic force microscopy. J. R. Soc. Interface 2015, 12, 20140970. [Google Scholar] [CrossRef]
- Dufrene, Y.F.; Martinez-Martin, D.; Medalsy, I.; Alsteens, D.; Muller, D.J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Methods 2013, 10, 847–854. [Google Scholar] [CrossRef]
- Suresh, S.; Spatz, J.; Mills, J.P.; Micoulet, A.; Dao, M.; Lim, C.T.; Beil, M.; Seufferlein, T. Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater. 2005, 1, 15–30. [Google Scholar] [CrossRef]
- Guz, N.V.; Patel, S.J.; Dokukin, M.E.; Clarkson, B.; Sokolov, I. Biophysical differences between chronic myelogenous leukemic quiescent and proliferating stem/progenitor cells. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2429–2437. [Google Scholar] [CrossRef]
- Guz, N.V.; Patel, S.J.; Dokukin, M.E.; Clarkson, B.; Sokolov, I. AFM study shows prominent physical changes in elasticity and pericellular layer in human acute leukemic cells due to inadequate cell-cell communication. Nanotechnology 2016, 27, 494005. [Google Scholar] [CrossRef] [PubMed]
- Peters, W.; Kusche-Vihrog, K.; Oberleithner, H.; Schillers, H. Cystic fibrosis transmembrane conductance regulator is involved in polyphenol-induced swelling of the endothelial glycocalyx. Nanomedicine 2015, 11, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Padberg, J.S.; Wiesinger, A.; di Marco, G.S.; Reuter, S.; Grabner, A.; Kentrup, D.; Lukasz, A.; Oberleithner, H.; Pavenstadt, H.; Brand, M.; et al. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 2014, 234, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Lekka, M.; Laidler, P.; Gil, D.; Lekki, J.; Stachura, Z.; Hrynkiewicz, A.Z. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J. 1999, 28, 312–316. [Google Scholar] [CrossRef]
- Cross, S.E.; Jin, Y.S.; Rao, J.; Gimzewski, J.K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2007, 2, 780–783. [Google Scholar] [CrossRef]
- Cross, S.E.; Jin, Y.S.; Tondre, J.; Wong, R.; Rao, J.; Gimzewski, J.K. AFM-based analysis of human metastatic cancer cells. Nanotechnology 2008, 19, 384003. [Google Scholar] [CrossRef]
- Makarova, N.; Kalaparthi, V.; Wang, A.; Williams, C.; Dokukin, M.E.; Kaufman, C.K.; Zon, L.; Sokolov, I. Difference in biophysical properties of cancer-initiating cells in melanoma mutated zebrafish. J. Mech. Behav. Biomed. 2020, 107, 103746. [Google Scholar] [CrossRef]
- Targosz-Korecka, M.; Jaglarz, M.; Malek-Zietek, K.E.; Gregorius, A.; Zakrzewska, A.; Sitek, B.; Rajfur, Z.; Chlopicki, S.; Szymonski, M. AFM-based detection of glycocalyx degradation and endothelial stiffening in the db/db mouse model of diabetes. Sci. Rep. 2017, 7, 15951. [Google Scholar] [CrossRef]
- Dokukin, M.E.; Guz, N.V.; Sokolov, I. Mechanical properties of cancer cells depend on number of passages: Atomic force microscopy indentation study. Jpn. J. Appl. Phys. 2017, 56, 08LB01. [Google Scholar] [CrossRef]
- Dokukin, M.E.; Guz, N.V.; Woodworth, C.D.; Sokolov, I. Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer. New J. Phys. 2015, 17, 033019. [Google Scholar] [CrossRef]
- Berdyyeva, T.; Woodworth, C.D.; Sokolov, I. Visualization of cytoskeletal elements by the atomic force microscope. Ultramicroscopy 2005, 102, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Dokukin, M.E.; Guz, N.V.; Gaikwad, R.M.; Woodworth, C.D.; Sokolov, I. Cell Surface as a Fractal: Normal and Cancerous Cervical Cells Demonstrate Different Fractal Behavior of Surface Adhesion Maps at the Nanoscale. Phys. Rev. Lett. 2011, 107, 028101. [Google Scholar] [CrossRef] [PubMed]
- ISO 4287/1; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 1997.
- Guz, N.V.; Dokukin, M.E.; Woodworth, C.D.; Cardin, A.; Sokolov, I. Towards early detection of cervical cancer: Fractal dimension of AFM images of human cervical epithelial cells at different stages of progression to cancer. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.; Sokolov, I. Machine Learning Allows for Distinguishing Precancerous and Cancerous Human Epithelial Cervical Cells Using High-Resolution AFM Imaging of Adhesion Maps. Cells 2023, 12, 2536. [Google Scholar] [CrossRef]
- Prasad, S.; Rankine, A.; Prasad, T.; Song, P.; Dokukin, M.E.; Makarova, N.; Backman, V.; Sokolov, I. Atomic Force Microscopy Detects the Difference in Cancer Cells of Different Neoplastic Aggressiveness via Machine Learning. Adv. NanoBiomed Res. 2021, 1, 2000116. [Google Scholar] [CrossRef]
- Ewoldt, J.K.; DePalma, S.J.; Jewett, M.E.; Karakan, M.C.; Lin, Y.M.; Hashemian, P.M.; Gao, X.N.; Lou, L.H.; McLellan, M.A.; Tabares, J.; et al. Induced pluripotent stem cell-derived cardiomyocyte in vitro models: Benchmarking progress and ongoing challenges. Nat. Methods 2024. [Google Scholar] [CrossRef]
- Dokukin, M.E.; Sokolov, I. Nanoscale compositional mapping of cells, tissues, and polymers with ringing mode of atomic force microscopy. Sci. Rep. 2017, 7, 11828. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr.; Lee, K.L.; Califf, R.M.; Pryor, D.B.; Rosati, R.A. Regression modelling strategies for improved prognostic prediction. Stat. Med. 1984, 3, 143–152. [Google Scholar] [CrossRef]
- Sokolov, I.; Dokukin, M.E.; Kalaparthi, V.; Miljkovic, M.; Wang, A.; Seigne, J.D.; Grivas, P.; Demidenko, E. Noninvasive diagnostic imaging using machine-learning analysis of nanoresolution images of cell surfaces: Detection of bladder cancer. Proc. Natl. Acad. Sci. USA 2018, 115, 12920–12925. [Google Scholar] [CrossRef]
- ASME B46.1; Surface Texture (Surface Roughness, Waviness, and Lay). The American Society of Mechanical Engineers: New York, NY, USA, 2019.
- Nembrini, S.; Konig, I.R.; Wright, M.N. The revival of the Gini importance? Bioinformatics 2018, 34, 3711–3718. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hu, J.; Szymczak, S. A review on longitudinal data analysis with random forest. Brief. Bioinform. 2023, 24, bbad002. [Google Scholar] [CrossRef] [PubMed]
- Demidenko, E. Mixed Models: Theory and Applications with R, 2nd ed.; Wiley: Hoboken, NJ, USA, 2013; p. xxvii. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; p. xiii. 600p. [Google Scholar]
- Jung, Y.; Hu, J. A K-fold Averaging Cross-validation Procedure. J. Nonparametr. Stat. 2015, 27, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, I. On machine learning analysis of atomic force microscopy images for image classification, sample surface recognition. Phys. Chem. Chem. Phys. 2024, 26, 11263–11270. [Google Scholar] [CrossRef] [PubMed]
- Szlasa, W.; Zendran, I.; Zalesinska, A.; Tarek, M.; Kulbacka, J. Lipid composition of the cancer cell membrane. J. Bioenerg. Biomembr. 2020, 52, 321–342. [Google Scholar] [CrossRef]
- Llado, V.; Lopez, D.J.; Ibarguren, M.; Alonso, M.; Soriano, J.B.; Escriba, P.V.; Busquets, X. Regulation of the cancer cell membrane lipid composition by NaCHOleate: Effects on cell signaling and therapeutical relevance in glioma. Biochim. Biophys. Acta 2014, 1838, 1619–1627. [Google Scholar] [CrossRef]
- Iyer, S.; Gaikwad, R.M.; Subba-Rao, V.; Woodworth, C.D.; Sokolov, I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat. Nanotechnol. 2009, 4, 389–393. [Google Scholar] [CrossRef]
- Kang, H.; Wu, Q.; Sun, A.; Liu, X.; Fan, Y.; Deng, X. Cancer Cell Glycocalyx and Its Significance in Cancer Progression. Int. J. Mol. Sci. 2018, 19, 2484. [Google Scholar] [CrossRef]
- Paszek, M.J.; DuFort, C.C.; Rossier, O.; Bainer, R.; Mouw, J.K.; Godula, K.; Hudak, J.E.; Lakins, J.N.; Wijekoon, A.C.; Cassereau, L.; et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 2014, 511, 319–325. [Google Scholar] [CrossRef]
- Irani, J.; Desgrandchamps, F.; Millet, C.; Toubert, M.E.; Bon, D.; Aubert, J.; Le Duc, A. BTA stat and BTA TRAK: A comparative evaluation of urine testing for the diagnosis of transitional cell carcinoma of the bladder. Eur. Urol. 1999, 35, 89–92. [Google Scholar] [CrossRef]
- Ahangar, M.; Mahjoubi, F.; Mowla, S.J. Bladder cancer biomarkers: Current approaches and future directions. Front. Oncol. 2024, 14, 1453278. [Google Scholar] [CrossRef] [PubMed]
- Ecke, T.H.; Meisl, C.J.; Schlomm, T.P.; Rabien, A.; Labonte, F.; Rong, D.; Hofbauer, S.; Friedersdorff, F.P.; Sommerfeldt, L.; Gagel, N.; et al. BTA stat®, NMP22® BladderChek®, UBC® Rapid Test, and CancerCheck® UBC® rapid VISUAL as urinary marker for bladder cancer: Final results of a German multicenter study. Urol. Oncol. 2023, 41, 484.e17–484.e26. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Zhang, G.; Li, W.; Wang, J.; Sheng, S. Comparison of the diagnostic performance of fluorescence in situ hybridization (FISH), nuclear matrix protein 22 (NMP22), and their combination model in bladder carcinoma detection: A systematic review and meta-analysis. OncoTargets Ther. 2019, 12, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.G.; Kim, H.Y.; Byun, D.S.; Lee, S.J.; Lee, C.H.; Kim, J.I.; Chang, S.G.; Chi, S.G. Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res. 2001, 61, 6688–6692. [Google Scholar] [PubMed]
- Shariat, S.F.; Casella, R.; Khoddami, S.M.; Hernandez, G.; Sulser, T.; Gasser, T.C.; Lerner, S.P. Urine detection of survivin is a sensitive marker for the noninvasive diagnosis of bladder cancer. J. Urol. 2004, 171, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.D.; Wheeler, M.A.; Plescia, J.; Colberg, J.W.; Weiss, R.M.; Altieri, D.C. Urine detection of survivin and diagnosis of bladder cancer. JAMA 2001, 285, 324–328. [Google Scholar] [CrossRef]
- Maas, M.; Todenhofer, T.; Black, P.C. Urine biomarkers in bladder cancer—Current status and future perspectives. Nat. Rev. Urol. 2023, 20, 597–614. [Google Scholar] [CrossRef]
- Kong, T.; Qu, Y.; Zhao, T.; Niu, Z.; Lv, X.; Wang, Y.; Ding, Q.; Wei, P.; Fu, J.; Wang, L.; et al. Identification of novel protein biomarkers from the blood and urine for the early diagnosis of bladder cancer via proximity extension analysis. J. Transl. Med. 2024, 22, 314. [Google Scholar] [CrossRef]
- Sokolov, I.; Dokukin, M.E. Imaging of Soft and Biological Samples Using AFM Ringing Mode. Nanoscale Imaging Methods Protoc. 2018, 1814, 469–482. [Google Scholar] [CrossRef]
- Petrov, M.; Canena, D.; Kulachenkov, N.; Kumar, N.; Nickmilder, P.; Leclère, P.; Sokolov, I. Mechanical spectroscopy of materials using atomic force microscopy (AFM-MS). Mater. Today, 2024; in press. [Google Scholar] [CrossRef]
- ISO/DIS 25178-2; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2012.
- Sariyar, M.; Borg, A.; Pommerening, K. Active learning strategies for the deduplication of electronic patient data using classification trees. J. Biomed. Inform. 2012, 45, 893–900. [Google Scholar] [CrossRef]
- Azer, S.A.; Frauman, A.G. Seeing the wood for the trees: Approaches to teaching and assessing clinical pharmacology and therapeutics in a problem-based learning course. Ann. Acad. Med. Singap. 2008, 37, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Dunn-Walters, D.K.; Edelman, H.; Mehr, R. Immune system learning and memory quantified by graphical analysis of B-lymphocyte phylogenetic trees. Biosystems 2004, 76, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Kokol, P.; Zorman, M.; Stiglic, M.M.; Maleiae, I. The limitations of decision trees and automatic learning in real world medical decision making. Stud. Health Technol. Inf. 1998, 52 Pt 1, 529–533. [Google Scholar]
- Zorman, M.; Stiglic, M.M.; Kokol, P.; Malcic, I. The limitations of decision trees and automatic learning in real world medical decision making. J. Med. Syst. 1997, 21, 403–415. [Google Scholar] [CrossRef]
- Zavrsnik, J.; Kokol, P.; Maleiae, I.; Kancler, K.; Mernik, M.; Bigec, M. ROSE: Decision trees, automatic learning and their applications in cardiac medicine. Medinfo 1995, 8 Pt 2, 1688. [Google Scholar]
- Kokol, P.; Mernik, M.; Zavrsnik, J.; Kancler, K.; Malcic, I. Decision trees based on automatic learning and their use in cardiology. J. Med. Syst. 1994, 18, 201–206. [Google Scholar] [CrossRef]
- Wolf, F.M. Problem-based learning and meta-analysis: Can we see the forest through the trees? Acad. Med. 1993, 68, 542–544. [Google Scholar] [CrossRef]
Height | Adhesion | Restored Adhesion | Neck Size | Disconnection Distance | Combined Channels | ||
---|---|---|---|---|---|---|---|
AUC | Area under the ROC curve | 0.91 | 0.97 | 0.95 | 0.94 | 0.93 | 0.99 |
TN | 80% | 91% | 90% | 86% | 84% | 93% | |
FP | 20% | 9% | 10% | 14% | 16% | 7% | |
FN | 13% | 10% | 14% | 14% | 17% | 7% | |
TP | True positive | 87% | 90% | 86% | 86% | 83% | 93% |
Accuracy | 83% | 91% | 88% | 85% | 83% | 93% | |
Sensitivity | 87% | 90% | 86% | 85% | 82% | 93% | |
Specificity | 80% | 91% | 90% | 86% | 84% | 92% | |
PPV | 81% | 91% | 90% | 86% | 84% | 93% | |
NPV | 86% | 90% | 86% | 85% | 83% | 93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, M.; Makarova, N.; Monemian, A.; Pham, J.; Lekka, M.; Sokolov, I. Detection of Human Bladder Epithelial Cancerous Cells with Atomic Force Microscopy and Machine Learning. Cells 2025, 14, 14. https://doi.org/10.3390/cells14010014
Petrov M, Makarova N, Monemian A, Pham J, Lekka M, Sokolov I. Detection of Human Bladder Epithelial Cancerous Cells with Atomic Force Microscopy and Machine Learning. Cells. 2025; 14(1):14. https://doi.org/10.3390/cells14010014
Chicago/Turabian StylePetrov, Mikhail, Nadezhda Makarova, Amir Monemian, Jean Pham, Małgorzata Lekka, and Igor Sokolov. 2025. "Detection of Human Bladder Epithelial Cancerous Cells with Atomic Force Microscopy and Machine Learning" Cells 14, no. 1: 14. https://doi.org/10.3390/cells14010014
APA StylePetrov, M., Makarova, N., Monemian, A., Pham, J., Lekka, M., & Sokolov, I. (2025). Detection of Human Bladder Epithelial Cancerous Cells with Atomic Force Microscopy and Machine Learning. Cells, 14(1), 14. https://doi.org/10.3390/cells14010014