Biomass Identification from Proximate Analysis: Characterization of Residual Vegetable Materials in Andean Areas
<p>LSD intervals of the analysis of variance on the HHV at the 95% confidence level.</p> "> Figure 2
<p>Two-phase diagram for variable influence analysis.</p> "> Figure 3
<p>Biphasic diagrams of the principal components: (<b>a</b>) for 8 species (<b>b</b>) for 6 species.</p> "> Figure 3 Cont.
<p>Biphasic diagrams of the principal components: (<b>a</b>) for 8 species (<b>b</b>) for 6 species.</p> "> Figure 4
<p>Decision areas for species identification: (<b>a</b>) 8 species and (<b>b</b>) 6 species based on proximate analysis and calculation of principal components.</p> "> Figure 5
<p>Variation in ash content with the percentage of leaves in the sample.</p> "> Figure 6
<p>Variation in higher heating value with the percentage of leaves in the sample.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Analysis
2.2. Biomass Identifier
3. Results and Discussion
3.1. Calorific Power
3.2. Elemental and Proximate Analysis
3.3. Structural Analysis
- (a).
- Species with high cellulose content: lime tree, pine tree, eucalyptus, cypress, and arupo;
- (b).
- Species with low cellulose content: caper spurge, alder, and poplar.
3.4. Regression Models
3.5. Principal Component Analysis
3.6. Implementation of the Probabilistic Neural Network
3.7. The Effect of the Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferre, A.J.C.; Martínez, J.A.L. Briquettes of plant remains from the greenhouses of Almería (Spain). Span. J. Agric. Res. 2009, 7, 525–534. [Google Scholar] [CrossRef]
- Callejón-Ferre, A.J.; Velázquez-Martí, B.; López-Martínez, J.A.; Manzano-Agugliaro, F. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renew. Sustain. Energy Rev. 2011, 15, 948–955. [Google Scholar] [CrossRef]
- Callejón-Ferre, A.J.; Carreño-Sánchez, J.; Suárez-Medina, F.J.; Pérez-Alonso, J.; Velázquez-Martí, B. Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel 2014, 116, 377–387. [Google Scholar] [CrossRef]
- Demirbas, A.H.; Demirbas, I. Importance of rural bioenergy for developing countries. Energy Convers. Manag. 2007, 48, 2386–2398. [Google Scholar] [CrossRef]
- Manzano-Agugliaro, F.; Alcayde, A.; Montoya, F.G.; Zapata-Sierra, A.; Gil, C. Scientific production of renewable energies worldwide: An overview. Renew. Sustain. Energy Rev. 2013, 18, 134–143. [Google Scholar] [CrossRef]
- Demirbas, M.F. Biorefineries for biofuel upgrading: A critical review. Appl. Energy 2009, 86, S151–S161. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 2010, 51, 969–982. [Google Scholar] [CrossRef]
- Yin, C.-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132. [Google Scholar] [CrossRef]
- Vargas-Moreno, J.M.; Callejón-Ferre, A.J.; Pérez-Alonso, J.; Velázquez-Martí, B. A review of the mathematical models for predicting the heating value of biomass materials. Renew. Sustain. Energy Rev. 2012, 16, 3065–3083. [Google Scholar] [CrossRef]
- Velázquez-Martí, B. Aprovechamiento de la Biomasa Para Uso Energético, 2nd ed.; Barcelona: Reverté, Spain, 2018. [Google Scholar]
- Van Soest, P.J.; Wine, R.H. Determination of lignin and cellulose in acid-detergent fiber with permanganate. J. Assoc. Off. Anal. Chem. 1968, 51, 780–785. [Google Scholar] [CrossRef]
- Specht, D.F. Probabilistic neural networks. Neural Netw. 1990, 3, 109–118. [Google Scholar] [CrossRef]
- Sajdak, M.; Velazquez-Marti, B. Estimation of pruned biomass form dendrometric parameters on urban forests: Case study of Sophora japonica. Renew. Energy 2012, 47, 188–193. [Google Scholar] [CrossRef]
- Telmo, C.; Lousada, J.; Moreira, N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour. Technol. 2010, 101, 3808–3815. [Google Scholar] [CrossRef]
- Pérez-Arévalo, J.J.; Callejón-Ferre, A.J.; Velázquez-Martí, B.; Suárez-Medina, M.D. Prediction models based on higher heating value from the elemental analysis of neem, mango, avocado, banana, and carob trees in Guayas (Ecuador). J. Renew. Sustain. Energy 2015, 7, 053122. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Estornell, J.; López-Cortés, I.; Martí-Gavilá, J. Calculation of biomass volume of citrus trees from an adapted dendrometry. Biosyst. Eng. 2012, 112, 285–292. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Arin, G.; Demirbas, A. Mathematical modeling the relations of pyrolytic products from lignocellulosic materials. Energy Sources 2004, 26, 1023–1032. [Google Scholar] [CrossRef]
- Khan, A.A.; de Jong, W.; Jansens, P.J.; Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Pardão, J.; Diaz, I.; Raposo, S.; Manso, T.; Lima-Costa, M.E. Sustainable bioethanol production using agro-industrial by-products. In Proceedings of the 4th IASME/WSEAS International Conference Energy, Environment, Ecosystems and Sustainable Development, Crete Island, Greece, 24–26 July 2007; pp. 149–153. [Google Scholar]
- Sarris, D.; Matsakas, L.; Aggelis, G.; Koutinas, A.A.; Papanikolaou, S. Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions. Ind. Crops Prod. 2014, 56, 83–93. [Google Scholar] [CrossRef]
- Yu, M.; Li, J.; Chang, S.; Du, R.; Li, S.; Zhang, L.; Fan, G.; Yan, Z.; Cui, T.; Cong, G.; et al. Optimization of ethanol production from NaOH-pretreated solid state fermented sweet sorghum bagasse. Energies 2014, 7, 4054–4067. [Google Scholar] [CrossRef]
Percentage of Wood by Mass | Percentage of Leaf by Mass |
---|---|
100% | 0% |
90% | 10% |
80% | 20% |
70% | 30% |
60% | 40% |
50% | 50% |
0% | 100% |
Standard Reference | Title |
---|---|
UNE EN ISO 16559 | Solid Biofuels—Terminology, definitions and descriptions |
UNE EN ISO 14778 | Solid Biofuels—Sampling—Part 1: Sampling methods |
UNE EN ISO 14780 | Solid Biofuels—Methods for sample preparation |
UNE EN ISO 18134-2 | Solid Biofuels—Determination of moisture content—oven drying method. Part 2. Simplified method: Total moisture content. |
UNE EN ISO 18125 | Solid Biofuels—Determination of calorific value |
UNE EN ISO 18123 | Solid Biofuels—Determination of Volatile Matter Content |
UNE EN ISO 18122 | Solid Biofuels—Determination of ash content |
UNE EN ISO 16948 | Solid Biofuels—Determination of total carbon, hydrogen and nitrogen content—Instrumental Methods |
UNE-EN ISO 16995 | Solid Biofuels—Methods for determining the water-soluble content of chlorine, sodium and potassium |
UNE-EN ISO 16994 | Solid Biofuels—Determination of total Sulfur and Chlorine content |
UNE-EN ISO 16967 | Solid Biofuels—Determination of major elements |
Average | Standard Deviation | Variation Coefficient | Minimum | Maximum | Standard Bias | Standardized Kurtosis | |
---|---|---|---|---|---|---|---|
(MJ/kg) | |||||||
Alder | 18.36 | 0.45 | 2.47 | 17.37 | 19.51 | −1.18 | 1.10 |
Poplar | 18.61 | 0.55 | 2.95 | 17.70 | 19.12 | −1.36 | 1.19 |
Arupo | 18.41 | 0.34 | 1.87 | 18.08 | 18.97 | 1.32 | 1.11 |
Cypress | 17.50 | 0.31 | 1.74 | 17.12 | 17.87 | −0.04 | −0.71 |
Eucalyptus | 17.46 | 0.33 | 1.89 | 17.25 | 18.04 | 1.89 | 2.02 |
Pine | 18.52 | 0.39 | 2.11 | 18.14 | 19.03 | 0.51 | −1.13 |
Caper spurge | 18.82 | 0.33 | 1.77 | 18.37 | 19.21 | −0.34 | −0.55 |
Lime tree | 18.22 | 0.65 | 3.57 | 17.12 | 19.21 | −0.46 | −1.36 |
Average (MJ/kg) | Standard Deviation | Variation Coefficient | Minimum | Maximum | Standard Bias | Standardized Kurtosis | |
---|---|---|---|---|---|---|---|
Alder | 16.73 | 0.32 | 1.92% | 16.82 | 17.50 | −0.81 | −0.78 |
Poplar | 16.94 | 0.37 | 1.84% | 16.32 | 17.11 | −0.18 | −0.94 |
Arupo | 16.59 | 0.32 | 1.97% | 16.25 | 17.12 | 1.15 | 0.99 |
Cypress | 15.39 | 0.29 | 1.89% | 15.06 | 15.75 | 0.13 | −0.95 |
Eucalyptus | 15.40 | 0.28 | 1.84% | 15.21 | 15.89 | 1.83 | 1.91 |
Pine | 16.59 | 0.37 | 2.26% | 16.28 | 17.07 | 0.46 | −1.11 |
Caper spurge | 16.84 | 0.32 | 1.91% | 16.02 | 17.20 | −0.28 | −0.82 |
Lime tree | 16.16 | 0.71 | 4.39% | 15.06 | 17.74 | −0.35 | −1.41 |
% Ashes | % Volatiles | % Fixed Carbon | %C | %N | %H | %O | HHV (MJ/kg) | ||
---|---|---|---|---|---|---|---|---|---|
Poplar | Average | 1.29 | 82.21 | 16.5 | 44.152 | 0.642 | 3.917 | 0.873 | 18.334 |
Standard deviation | 0.04 | 0.32 | 0.317 | 1.042 | 0.0295 | 0.235 | 1.571 | 0.081 | |
Alder | Average | 1.05 | 82.126 | 16.824 | 51.354 | 0.483 | 3.562 | 38.96 | 18.558 |
Standard deviation | 0.06 | 0.438 | 0.383 | 0.649 | 0.016 | 0.086 | 0.684 | 0.466 | |
Arupo | Average | 1.76 | 83.453 | 14.787 | 49.275 | 0.578 | 3.453 | 41.546 | 18.503 |
Standard deviation | 0.07 | 0.257 | 0.237 | 1.101 | 0.016 | 0.073 | 0.987 | 0.408 | |
Cypress | Average | 2.19 | 81.341 | 16.469 | 49.446 | 0.459 | 3.769 | 39.68 | 17.306 |
Standard deviation | 0.06 | 0.136 | 0.09 | 1.517 | 0.025 | 0.0225 | 1.454 | 0.201 | |
Eucalyptus | Average | 2.19 | 83.45 | 14.36 | 48.998 | 0.477 | 3.405 | 40.519 | 17.554 |
Standard deviation | 0.06 | 0.66 | 0.663 | 1.4476 | 0.022 | 0.179 | 1.4692 | 0.422 | |
Caper spurge | Average | 5.44 | 83.04 | 11.52 | 44.97 | 0.51 | 4.777 | 0.417 | 18.64 |
Standard deviation | 1.18 | 1.17 | 1.826 | 0.4 | 0.065 | 0.455 | 0.3099 | 0.556 | |
Pine | Average | 1.05 | 82.13 | 16.82 | 51.354 | 0.483 | 3.563 | 38.96 | 18.525 |
Standard deviation | 0.06 | 0.44 | 0.383 | 0.649 | 0.016 | 0.086 | 0.684 | 0.467 | |
Lime tree | Average | 2.22 | 80.07 | 17.71 | 50.999 | 0.981 | 3.715 | 38.522 | 18.838 |
Standard deviation | 0.05 | 0.39 | 0.33 | 0.41 | 0.03 | 0.05 | 0.48 | 0.32 |
% Ashes | % Volatiles | % Fixed Carbon | % C | % N | % H | % O | HHV (MJ/kg) | |
---|---|---|---|---|---|---|---|---|
% Ashes | −0.49 * | −0.03 | −0.07 | −0.02 | 0.0023 | −0.09 | −0.10 | |
% Volatiles | −0.49 * | −0.85 * | −0.35 | −0.45 | −0.60 * | 0.54 * | −0.23 | |
% Fine carbon | −0.03 | −0.85 * | 0.44 | 0.53 * | 0.69 * | −0.57 * | 0.33 | |
% C | −0.07 | −0.35 | 0.44 | 0.13 | 0.2675 | −0.93 * | 0.86 * | |
% N | −0.014 | −0.45 | 0.53 * | 0.13 | 0.3214 | −0.17 | 0.51 * | |
% H | 0.0023 | −0.60 * | 0.69 * | 0.27 | 0.32 | −0.45 | 0.04 | |
% O | −0.09 | 0.54 * | −0.57 * | −0.93 * | −0.17 | −0.4455 | −0.19 | |
HHV (MJ/kg) | −0.10 | −0.23 | 0.33 | 0.86 * | 0.51 * | 0.0395 | −0.19 |
% Wood | % Sheets | % Cellulose | % Hemicellulose | % Lignin | % Extractives | |
---|---|---|---|---|---|---|
Poplar | 100 | 0 | 46.16 ± 0.49 | 19.98 ± 0.20 | 7.25 ± 0.25 | 26.60 ± 0.68 |
50 | 50 | 32.04 ± 0.41 | 15.67 ± 0.54 | 8.95 ± 0.38 | 43.33 ± 0.36 | |
0 | 100 | 21.59 ± 1.10 | 12.01 ± 0.22 | 12.21 ± 0.13 | 54.18 ± 0.24 | |
Alder | 100 | 0 | 47.57 ± 1.41 | 16.63 ± 0.11 | 7.97 ± 0.32 | 28.87 ± 0.47 |
50 | 50 | 36.28 ± 0.42 | 14.07 ± 0.22 | 7.85 ± 0.05 | 41.80 ± 0.35 | |
0 | 100 | 15.72 ± 0.93 | 15.76 ± 0.93 | 6.49 ± 0.60 | 62.02 ± 0.34 | |
Arupo | 100 | 0 | 52.18 ± 0.47 | 19.27 ± 0.21 | 5.30 ± 0.17 | 23.24 ± 0.47 |
50 | 50 | 37.93 ± 0.50 | 15.22 ± 0.23 | 5.55 ± 0.14 | 41.29 ± 0.74 | |
0 | 100 | 22.31 ± 1.69 | 12.69 ± 2.49 | 14.49 ± 3.47 | 59.60 ± 0.19 | |
Cypress | 100 | 0 | 54.43 ± 1.81 | 14.32 ± 0.42 | 19.13 ± 0.71 | 12.12 ± 0.31 |
50 | 50 | 30.09 ± 1.63 | 12.13 ± 0.86 | 10.08 ± 0.15 | 47.70 ± 0.18 | |
0 | 100 | 17.63 ± 0.62 | 9.48 ± 0.10 | 11.40 ± 0.26 | 64.55 ± 0.24 | |
Eucalyptus | 100 | 0 | 54.64 ± 1.19 | 24.62 ± 0.24 | 5.57 ± 0.21 | 15.17 ± 0.28 |
50 | 50 | 35.15 ± 1.23 | 13.39 ± 0.51 | 3.86 ± 0.52 | 47.60 ± 0.14 | |
0 | 100 | 22.88 ± 0.51 | 6.57 ± 0.78 | 2.48 ± 0.37 | 68.06 ± 0.28 | |
Caper spurge | 100 | 0 | 37.18 ± 0.58 | 15.05 ± 0.64 | 7.59 ± 0.85 | 33.27 ± 0.38 |
50 | 50 | 23.46 ± 0.18 | 12.05 ± 0.17 | 5.10 ± 0.24 | 56.16 ± 0.63 | |
0 | 100 | 10.79 ± 0.044 | 7.24 ± 0.29 | 2.48 ± 0.15 | 78.50 ± 0.34 | |
Pine | 100 | 0 | 54.74 ± 0.31 | 39.67 ± 1.52 | 14.28 ± 0.37 | 13.93 ± 0.12 |
50 | 50 | 37.06 ± 1.31 | 28.48 ± 0.96 | 10.93 ± 0.47 | 37.41 ± 0.28 | |
0 | 100 | 20.67 ± 0.68 | 16.63 ± 0.53 | 8.19 ± 0.25 | 58.63 ± 0.45 | |
Lime tree | 100 | 0 | 51.18 ± 0.56 | 17.48 ± 0.54 | 10.81 ± 0.33 | 20.52 ± 0.65 |
50 | 50 | 27.43 ± 0.90 | 14.45 ± 0.50 | 8.72 ± 0.22 | 49.40 ± 0.35 | |
0 | 100 | 12.43 ± 0.61 | 10.68 ± 0.38 | 6.08 ± 0.27 | 70.81 ± 1.21 |
Component | Component | |
---|---|---|
1 | 2 | |
% Ashes | 0.488337 | 0.716929 |
% Volatiles | 0.503154 | −0.697145 |
% Fixed carbon | −0.712996 | −0.000936423 |
Component | Component | |
---|---|---|
1 | 2 | |
HHV (MJ/kg) | 0.307495 | 0.563214 |
% Ashes | 0.262354 | −0.76697 |
% Volatiles | −0.674207 | 0.184166 |
% Fixed carbon | 0.618112 | 0.246231 |
Current | Sample Size | Prediction | |||||||
---|---|---|---|---|---|---|---|---|---|
Species | Poplar | Alder | Arupo | Cypress | Eucalyptus | Caper Spurge | Pine | Lime Tree | |
Poplar | 25 | 23 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
(92%) | (0.00%) | (0.00%) | (0.00%) | (8%) | (0.00%) | (0.00%) | (0.00%) | ||
Alder | 25 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 |
(0.00%) | (100%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | ||
Arupo | 25 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 |
(0.00%) | (0.00%) | (100%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | ||
Cypress | 25 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 |
(0.00%) | (0.00%) | (0.00%) | (100%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | ||
Eucalyptus | 25 | 3 | 0 | 22 | 0 | 0 | 0 | 0 | 0 |
(12%) | (0.00%) | (88%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | ||
Caper spurge | 25 | 2 | 0 | 0 | 0 | 0 | 23 | 0 | 0 |
(8%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (92%) | (0.00%) | (0.00%) | ||
Pine | 25 | 4 | 0 | 0 | 0 | 0 | 0 | 21 | 0 |
(6%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (94%) | (0.00%) | ||
Lime tree | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 |
(0.00%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (100%) |
Current | Prediction | ||||||
---|---|---|---|---|---|---|---|
Species | Alder | Arupo | Cypress | Eucalyptus | Caper Spurge | Pine | |
Alder | 25 | 25 | 0 | 0 | 0 | 0 | 0 |
(100%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | ||
Arupo | 25 | 25 | 25 | 0 | 0 | 0 | 0 |
(0.00%) | (100%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | ||
Cypress | 25 | 0 | 0 | 25 | 0 | 0 | 0 |
(0.00%) | (0.00%) | (100.%) | (0.00%) | (0.00%) | (0.00%) | ||
Eucalyptus | 25 | 0 | 8 | 0 | 17 | 0 | 0 |
(0.00%) | (32.00%) | (0.00%) | (68.00%) | (0.00%) | (0.00%) | ||
Caper spurge | 25 | 0 | 0 | 0 | 0 | 25 | 0 |
(0.00%) | (0.00%) | (0.00%) | (0.00%) | (100%) | (0.00%) | ||
Pine | 25 | 0 | 0 | 0 | 0 | 0 | 25 |
(0.00%) | (0.00%) | (0.00%) | (0.00%) | (0.00%) | (100%) |
% Wood | % Leaves | PC (MJ/kg) | %N | %S | |
---|---|---|---|---|---|
Poplar | 100 | 0 | 18.33 | 0.69 | 0.12 |
50 | 50 | 18.35 | 1.50 | 0.21 | |
0 | 100 | 18.55 | 2.20 | 0.37 | |
Alder | 100 | 0 | 18.61 | 0.83 | 0.00 |
50 | 50 | 19.31 | 1.94 | 0.00 | |
0 | 100 | 18.42 | 3.63 | 0.04 | |
Arupo | 100 | 0 | 18.41 | 0.59 | 0.00 |
50 | 50 | 17.92 | 1.05 | 0.00 | |
0 | 100 | 18.79 | 2.59 | 0.04 | |
Cypress | 100 | 0 | 17.50 | 0.48 | 0.00 |
50 | 50 | 19.04 | 0.63 | 0.00 | |
0 | 100 | 19.36 | 0.98 | 0.00 | |
Eucalyptus | 100 | 0 | 17.46 | 0.50 | 0.00 |
50 | 50 | 18.49 | 0.71 | 0.00 | |
0 | 100 | 20.05 | 1.34 | 0.00 | |
Caper spurge | 100 | 0 | 18.64 | 0.55 | 0.42 |
50 | 50 | 18.56 | 1.75 | 0.06 | |
0 | 100 | 18.68 | 2.73 | 0.07 | |
Pine | 100 | 0 | 18.52 | 0.47 | 0.00 |
50 | 50 | 19.43 | 0.89 | 0.00 | |
0 | 100 | 19.42 | 1.13 | 0.00 | |
Lime tree | 100 | 0 | 18.82 | 1.06 | 0.00 |
50 | 50 | 17.50 | 2.16 | 0.01 | |
0 | 100 | 16.52 | 3.72 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velázquez Martí, B.; Gaibor-Chávez, J.; Franco Rodríguez, J.E.; López Cortés, I. Biomass Identification from Proximate Analysis: Characterization of Residual Vegetable Materials in Andean Areas. Agronomy 2023, 13, 2347. https://doi.org/10.3390/agronomy13092347
Velázquez Martí B, Gaibor-Chávez J, Franco Rodríguez JE, López Cortés I. Biomass Identification from Proximate Analysis: Characterization of Residual Vegetable Materials in Andean Areas. Agronomy. 2023; 13(9):2347. https://doi.org/10.3390/agronomy13092347
Chicago/Turabian StyleVelázquez Martí, Borja, Juan Gaibor-Chávez, John Eloy Franco Rodríguez, and Isabel López Cortés. 2023. "Biomass Identification from Proximate Analysis: Characterization of Residual Vegetable Materials in Andean Areas" Agronomy 13, no. 9: 2347. https://doi.org/10.3390/agronomy13092347
APA StyleVelázquez Martí, B., Gaibor-Chávez, J., Franco Rodríguez, J. E., & López Cortés, I. (2023). Biomass Identification from Proximate Analysis: Characterization of Residual Vegetable Materials in Andean Areas. Agronomy, 13(9), 2347. https://doi.org/10.3390/agronomy13092347