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Abstract: Point cloud segmentation is necessary for obtaining highly precise morphological
traits in plant phenotyping. Although a huge development has occurred in point cloud
segmentation, the segmentation of point clouds from complex plant leaves still remains
challenging. Rapeseed leaves are critical in cultivation and breeding, yet traditional two-
dimensional imaging is susceptible to reduced segmentation accuracy due to occlusions
between plants. The current study proposes the use of binocular stereo-vision technology
to obtain three-dimensional (3D) point clouds of rapeseed leaves at the seedling and bolting
stages. The point clouds were colorized based on elevation values in order to better process
the 3D point cloud data and extract rapeseed phenotypic parameters. Denoising methods
were selected based on the source and classification of point cloud noise. However, for
ground point clouds, we combined plane fitting with pass-through filtering for denoising,
while statistical filtering was used for denoising outliers generated during scanning. We
found that, during the seedling stage of rapeseed, a region-growing segmentation method
was helpful in finding suitable parameter thresholds for leaf segmentation, and the Locally
Convex Connected Patches (LCCP) clustering method was used for leaf segmentation at the
bolting stage. Furthermore, the study results show that combining plane fitting with pass-
through filtering effectively removes the ground point cloud noise, while statistical filtering
successfully denoises outlier noise points generated during scanning. Finally, using the
region-growing algorithm during the seedling stage with a normal angle threshold set at
5.0/180.0* M_PI and a curvature threshold set at 1.5 helps to avoid the under-segmentation
and over-segmentation issues, achieving complete segmentation of rapeseed seedling
leaves, while the LCCP clustering method fully segments rapeseed leaves at the bolting
stage. The proposed method provides insights to improve the accuracy of subsequent point
cloud phenotypic parameter extraction, such as rapeseed leaf area, and is beneficial for the
3D reconstruction of rapeseed.

Keywords: rapeseed; point cloud denoising; point cloud segmentation; binocular stereo vision

1. Introduction
Rapeseed is one of the most important oil crops globally, after oil palm and soybean,

and is also a major source of biofuel [1,2]. During 2023, rapeseed occupied the largest
planted area among oilseed crops in China, reaching 7253 thousand hectares while also
achieving a huge production volume of 15.53 million tons [3]. After oil extraction, the

Agronomy 2025, 15, 245 https://doi.org/10.3390/agronomy15010245

https://doi.org/10.3390/agronomy15010245
https://doi.org/10.3390/agronomy15010245
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0009-0007-4568-0598
https://orcid.org/0000-0002-8073-6282
https://orcid.org/0000-0003-0873-3922
https://doi.org/10.3390/agronomy15010245
https://www.mdpi.com/article/10.3390/agronomy15010245?type=check_update&version=1


Agronomy 2025, 15, 245 2 of 19

resulting rapeseed cake is rich in amino acids and other substances, which can not only
be used as animal feed [4,5] but also to improve the soil around the roots of plants [6].
Phenotypic traits of rapeseed reflect the quality and growth status of rapeseed [7] and
also facilitate precision breeding [8,9]. Among these traits, leaf area and leaf area index
reflect the canopy structure [10], monitor crop growth [11,12], and are closely related to
yield [8]. In field production, obtaining leaf data often relies on visual estimation and
destructive sampling methods. These methods are time-consuming, laborious, and can
damage crops [13]. Therefore, non-destructive automated monitoring of rapeseed leaves is
of great research significance.

In recent years, remote sensing technology has provided technical support for efficiently
obtaining images on large-scale farmland [14]. Compared to 2D images, 3D images can capture
the spatial morphology of crops, which can be used to analyze and study the morphological
structure and growth process of crops [15–17]. Three-dimensional scanning technology is also
of great significance for extracting crop phenotypic features and conducting 3D visualization.
Furthermore, compared with active sensors such as ultrasonic and LiDAR, binocular stereo
vision is a passive sensor that mainly uses the principle of binocular disparity to obtain
three-dimensional spatial information with low cost and high resolution [18]. Previously,
binocular stereo vision has been successfully applied to many plants [19–23]. Ge et al. [24]
integrated binocular stereo vision technology with a Gaussian mixture model to successfully
identify broccoli seedlings under various weed conditions. The instance segmentation model,
YOLO-TomatoSeg, developed by Zheng et al. [25], in combination with the parameters of a
binocular camera, attained precision in tomato localization that complied with the positioning
demands of harvesting robots.

During the acquisition process, a large amount of noise is generated due to equipment
and the collection environment, which has a detrimental effect on the subsequent point
cloud stitching and analysis. At the same time, under the scenario of huge point cloud
data, direct processing and feature extraction of the point cloud are challenging, requiring
point cloud segmentation. Point cloud segmentation is the process of classifying point
clouds based on local features, grouping points with similar attributes into regions, and
dividing point clouds into blocks for further processing [26]. Point cloud segmentation can
be categorized into the following types: region-growing-based [27,28], edge-based [29,30],
model-based [31,32], point cloud clustering-based [33,34], and deep learning-based seg-
mentation algorithm [35–37]. Accurate and effective segmentation of 3D point cloud data
is a crucial step in point cloud processing, as it directly impacts the accuracy of subsequent
processing tasks. Different factors, such as the quantity and structure of the point cloud,
may pose challenges in segmentation. Thus, point cloud denoising and segmentation are
important steps in point cloud processing. Liu et al. [38] removed background noise and
outliers through pass-through filtering and statistical filtering, followed by reconstructing a
3D model of peanut plants using point cloud spatial coordinates. Wang et al. [39] acquired
a potato 3D point cloud based on binocular stereo vision, removed outliers through filtering
and k-means clustering, and calculated the crop water stress index (CWSI). Bao et al. [40]
utilized steps, including voxel grid downsampling, ground plane fitting with the random
sample consensus (RANSAC) algorithm, statistical filtering, and Euclidean clustering to
eliminate noise points and obtain the sorghum plant height. The application of filtering
algorithms to reduce the noise of point clouds has been widely used in many plant 3D
reconstruction studies [41–43].

Achieving accurate and efficient segmentation remains a serious research hotspot in the
field. Miao et al. [44] utilized the RANSAC algorithm and Euclidean clustering to remove
ground points from point clouds and proposed a point cloud image conversion method
to achieve stem and leaf segmentation. Zhu et al. [45] employed conditional filtering and
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statistical outlier removal filtering to remove the background point cloud based on a three-
dimensional reconstruction of the tomato canopy and effectively obtained clear point clouds
of the tomato canopy and leaves. Wang et al. [46] successfully achieved the extraction
of organ-level parameters in maize without the need for organ-level segmentation by
employing a distance-field-based segmentation pipeline. Hao et al. [47] developed a high-
throughput method for cotton 3D phenotype acquisition and analysis using the PointSegAt
deep learning network model. This method includes models for segmenting plant stems
and leaves based on point cloud data, as well as an automatic segmentation algorithm. The
study findings demonstrate the model’s strong performance in stem-leaf segmentation and
single-leaf segmentation while also achieving automated measurements of plant height,
leaf number, and wilting leaf area.

There have been significant achievements in 3D visualization of crops such as maize
and cotton, but research on rapeseed is relatively scarce, and studies on rapeseed leaves
are limited to a single stage [48]. Qiao et al. [49] used a DGCNN-sparse-dense point cloud
mapping method to segment the crown siliques, which improved point cloud recognition
and counting accuracy for rapeseed siliques. Xiong et al. [50] accurately quantified the 3D
canopy structure and single-leaf traits in rapeseed seedlings, achieving a mean absolute
percentage error of 3.68% for automated leaf area measurements; however, rapeseed plants
in other growth stages have not yet been verified. Teng et al. [51] utilized an RGB-D camera
for the 3D reconstruction of rapeseed and proposed an improved method based on the
classical iterative closest point with a success rate of cloud registration of 92.5%. Therefore,
we planned a study to obtain 3D point clouds of rapeseed leaves at the seedling and bolting
stages. We removed background noise using pass-through and statistical filtering. Then, we
extracted rapeseed leaves at different stages using region-growing and LCCP algorithms.
The objectives of the study were as follows: (a) to obtain rapeseed point clouds using
binocular stereo vision technology; (b) to combine different filtering methods to remove
ground point clouds and outliers, filtering out most noise points; and (c) to segment the
rapeseed leaves at seedling and bolting stages with the aim of improving the accuracy of
subsequent point cloud phenotypic parameter extraction such as rapeseed leaf area.

2. Materials and Methods
2.1. Study Site and Experiment Design

The experiment was conducted in an experimental field of the College of Agriculture,
Yangzhou University, Yangzhou City, Jiangsu Province, China (32◦38′ N, 119◦42′ E) during
the 2021–2022 growing season. Three rapeseed varieties, namely Huyou 039, Qinyou 7,
and Zheyouza 108, were selected for the experiment. The planting method involved strip
sowing with a soil covering of 2–4 cm in depth. The experiment was replicated three times,
with each plot area measuring 9 square meters, and a 0.5 m-wide isolation strip was set up
between each plot. Standard irrigation and fertilization practices were followed throughout
the experiment, and, due to the late sowing period for rapeseed, plastic film was used for
protection during extremely low temperatures.

2.2. Point Cloud Data Acquisition

In this experiment, we utilized the Weijing Intelligent Stereo Vision Technology (Vizum,
Beijing, China), which integrated various sensors, such as hyperspectral cameras, texture
cameras, and infrared cameras, into a smart phenotyping platform. This equipment em-
ployed line laser binocular stereo vision technology with multiple high-precision wide-field
stereo cameras. Four cameras were mounted on the top and two on the side. Table 1
presents the specific parameters of the stereo camera. During the camera installation
process, the cameras were fixed in place while the laser emitter’s angle was kept per-
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pendicular to the cameras. Data were output to a 5G transmission device via Ethernet
cables, and the results were transmitted to a control room for overall management using
5G communication technology.

Table 1. The specific parameters of the stereo camera.

Parameter Names Detailed Descriptions Parameter Names Detailed Descriptions

Camera size (L × W × H) Topside 400 × 66 × 75 mm
Sidebar 260 × 66 × 75 mm Output data X/Y/Z depth point cloud data

Weight 0.75 kg Baseline distance Topside 320 mm
Sidebar 160 mm

Resolution 1536 × 2048 Lens focus 6 mm

Detection accuracy Spatial resolution ± 1 mm
Positional repeatability ± 0.5 mm Lens interface M12

Maximum scanning frequency 2000 Hz Exposure mode Global shutter
External interface Gigabit Ethernet port Laser perspective 60◦

communication method Communication SDK Laser wavelength 850 nm
Temperature Working temperature: −10~50 ◦C

Storage temperature: −20~70 ◦C Laser power 1000 mW

Data collection was conducted at the seedling and bolting stages of rapeseed. To
minimize external noise interference, 3D scans were performed during favorable weather
conditions with suitable lighting and no wind. The scanning mechanism of the smart
phenotyping platform is shown in Figure 1. The specific steps were as follows: (1) Power
on and access the main interface of the device. (2) Release the emergency stop mode to
allow the vehicle to automatically leave the warehouse, then manually zero the X and Z
axes of the scanning mechanism. (3) Perform region of interest (ROI) detection from each
camera. (4) After setting the position of the plot, ensure the crop to be photographed is in
the camera’s field of view by moving the vehicle to the plot and adjusting the position of
the scanning mechanism with the height set to around one meter above the crop top. If
the point cloud image quality is poor, check if the laser line is within the camera; if not,
redefine the ROI. (5) Complete the scan and power off the device for storage.
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Figure 1. Diagram of the scanning process in the field: (a) a smart phenotyping platform; (b) a sidebar
camera; (c) a data flow diagram.

2.3. Point Cloud Coloring

After acquiring the point cloud data, processing was performed using PCL1.11.1
software (https://pointclouds.org/downloads/, accessed on 16 January 2025) on the
Windows 10 operating system. The point cloud data were saved in TXT format with six
columns. The last three columns, representing color information, were all set to 0, indicating
no color variation for visualizing the point cloud data. In this experiment, elevation-based

https://pointclouds.org/downloads/
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rendering was used to color the point cloud, where the principle involves rendering the
point cloud based on selected fields and establishing the relationship between coordinate
changes and color changes, typically using the red, green, and blue colors. The specific
steps for coloring the point cloud in this experiment were as follows: First, by calculating
the maximum, median, and minimum elevation values of the point cloud in the z-axis
direction, red, green, and blue colors were selected for rendering. The point with the
minimum coordinate was set to blue, the middle coordinate was set to green, and the
maximum coordinate was set to red. For the lower part of the point cloud, the ratio of
each laser point elevation value in the interval between the minimum and median values
was calculated, and then green was added to blue based on this ratio. Similarly, for the
upper part of the point cloud, red was added to green based on the ratio of each laser point
elevation value in the green zone. The effect of the colored point cloud is shown in Figure 2.
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Figure 2. The colored point clouds diagram: (a) cross-section of point clouds, (b) three-dimensional
(3D) view of rapeseed.

2.4. Point Cloud Denoising
2.4.1. Pass-Through Filtering to Filter Ground Point Cloud

It is challenging to manually remove the non-target point clouds, such as weeds, in
the field, when the soil level is inconsistent. Therefore, before analyzing the rapeseed point
cloud data, noise data needs to be processed. Visualizing the scanned rapeseed point cloud
reveals that some ground points are similar in height to the plants. Thus, filtering the
ground point cloud based on height would also result in filtering out parts of the rapeseed
plants. By slicing the entire point cloud along the z-axis, there is always be a plane with
only soil points. Therefore, the entire rapeseed plot point cloud was first subjected to plane
fitting based on RANSAC. The main idea of this method is to select the minimum number
of points from the point cloud data that can form a plane, calculate the parameters of the
plane, and determine the distance ‘l’ from the remaining points to this plane. A threshold ‘L’
was set, and if ‘l < L’, then the point was considered to be on this plane. When the number
of points on this plane reached ‘n’, the plane was saved and the points on the plane were
considered matched. This process was repeated, and when ‘n’ was maximized, the plane
with the best fitting effect was output as the main plane of the point cloud, as shown in
Figure 3, where the shaded grid represents the fitted plane.
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In this experiment, pass-through filtering was used to filter the noise of the ground
point cloud. The principle of pass-through filtering is to first specify a dimension and set a
threshold range. Then, iterate through each point in the point cloud and determine if the
value of that point in the specified dimension is within the threshold. Points with values
outside the threshold range are directly filtered out, and the remaining points after the
iteration are considered the filtered point cloud. Since the coloring of the point cloud was
performed based on elevation along the z-axis, the elevation values were used to determine
the threshold range for denoising during pass-through filtering. The soil noise scanned in
each plot was different, so the threshold range had to be selected accordingly.

2.4.2. Statistical Filtering for Denoising

During the scanning process, due to equipment issues and other factors, unevenly
dense point cloud datasets are often generated. Within these datasets, there are outliers,
which are points that deviate significantly from the majority of the data. These outliers
are sparsely distributed in space and need to be filtered out promptly during point cloud
preprocessing to reduce the difficulty of subsequent processing.

The main idea of statistical filtering is to statistically analyze the neighborhood of
each point and calculate the average distance from each point to its k nearest neighbors.
Assuming the distances of all points follow a Gaussian distribution, the mean and standard
deviation become key factors. By setting the mean and variance in the algorithm, outliers
can be filtered out. The main algorithm for statistical filtering is as follows:

(1) Set up the neighborhood as k and calculate the average distance (Si) from each
point to all points within the k distance. For any two non-overlapping points P1 (Xi, Yi, ZI)
and P2 (Xj, Yj, Zj) in the point cloud, Equation (1) shows the formula to iterate through
each point to find the average distance to the k neighborhood.

Si =
∑k

j=1

√(
Xi − Xj

)2
+

(
Yi − Yj

)2
+

(
ZI − Zj

)2

k
(1)

Here, (Xi, Yi, ZI) represents the coordinates of point P1, while (Xj, Yj, Zj) denotes the
coordinates of point P2.

(2) Equations (2) and (3) show the formulas to calculate the mean distance (µ) and
sample standard deviation (σ) of the entire point cloud dataset.

µ =
1
n∑n

i=1 Si (2)

σ =

√
1
n∑n

i=1(Si − µ)2 (3)

(3) Once the mean distance and standard deviation were calculated, the distance
threshold (dmax) was determined using Equation (4).

dmax = µ + α × µ (4)

Here, α is the standard deviation multiple used to control the effect of the distance
standard deviation on the distance threshold. In the algorithm, by inputting the values of k
and α, if the average distance of the points in the k-neighborhood of a particular point falls
within the range of (µ − α × µ, µ + α × µ), the point is retained.
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2.5. Target Point Cloud Extraction
2.5.1. Segmentation of Rapeseed Leaves at Seedling Stage

The segmentation of the main stems and leaves of individual rapeseed plants was
carried out using conditional filtering. During the seedling stage, a region-growing algo-
rithm was applied to segment the leaves. The specific algorithmic process (Algorithm 1) is
outlined as follows:

Algorithm 1. Pseudocode for Conditional Filtering

1. FUNCTION VisualizeCloud(cloud, filter_cloud)
2. create viewer for point cloud visualization
3. CREATE two viewports (v1, v2)
4. SET the background color for v1 to black
5. ADD text “point clouds” to v1
6. SET the background color for v2 to dark gray
7. ADD text “filtered point clouds” to v2
8. DEFINE color handler for cloud based on z field
9. ADD cloud to v1 with color handler
10. ADD filter_cloud to v2 with green color
11. WHILE viewer is not stopped
12. UPDATE viewer
13. SLEEP for a short duration
14. FUNCTION main()
15. CREATE cloud_in and cloud_conditional point clouds
16. LOAD point cloud data from “HY-1p.pcd” into cloud_in
17. IF loading fails THEN
18. RETURN -1
19. PRINT the number of points in cloud_in
20. CREATE a condition filter (range_cond)
21. ADD conditions for filtering based on x, y, and z fields
22. CREATE conditional removal filter (condrem)
23. SET condition for condrem
24. SET input cloud for condrem
25. SET keep organized to true
26. APPLY filter to cloud_conditional
27. PRINT the number of points in cloud_conditional before removing NaNs
28. REMOVE NaN points from cloud_conditional
29. PRINT the number of points in cloud_conditional after removing NaNs
30. CALL VisualizeCloud with cloud_in and cloud_conditional
31. RETURN 0

In summary, region-growing segmentation involves the establishment of seed regions
and region growth [52]. While establishing seed regions, we selected the point with
the smallest curvature value as the initial seed point to ensure a smooth region, thereby
reducing the number of segments during region growth. We utilized a method based on
local surface fitting for estimating normal vectors and curvature values. Initially, each point
in the point cloud was searched for its k nearest neighbors, and the least squares local
plane was calculated for these points. By decomposing the covariance matrix, the smallest
eigenvalue corresponds to the normal vector of the plane. When the eigenvalues were
obtained, if they satisfy the condition λ1 ≤ λ2 ≤ λ3, Equation (5) shows the formula for
curvature value.

H =
λ1

λ1 + λ2 + λ3
(5)

2.5.2. Segmentation of Rapeseed Leaves at Bolting Stage

While using the region-growing algorithm for leaf segmentation during the bolting
stage of rapeseed, it was discovered that certain leaves were overlapping due to the growth
habit of the plant. Therefore, this study employed the LCCP algorithm for segmenting
rapeseed leaves in the bolting stage. The LCCP algorithm is an image segmentation
method based on the concavity and convexity of neighboring points in a point cloud. The
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algorithm consists of two main parts: dividing the point cloud into supervoxels based on
the angle between normal vectors and spatial distance, determining the connectivity of
adjacent supervoxels in the recorded adjacency graph of supervoxels, and finally merging
all convexly connected supervoxels to form the segmentation result.

When over-segmenting the point cloud into supervoxels, the data was initially divided
into voxels, and a voxel cloud with a specific resolution was created. The voxel cloud was
then gridded, and the voxel closest to the center of each grid was selected as the initial
seed voxel. After filtering out isolated seed points, a search region was established for the
remaining seed voxels on the object surface. The number of voxels within the neighborhood
radius of the seed point was calculated, and seed voxels with a voxel count below a fixed
threshold in the intersecting region with the search range were removed. Following the
initialization of the clustering algorithm, the edge properties, geometric features, and spatial
distance of the point cloud were comprehensively considered to measure the similarity
between voxels in the feature space. The voxel data were then clustered in the feature
space, and an over-segmentation of the voxel data was performed using a flow-constrained
clustering algorithm to obtain supervoxel data. After over-segmenting the point cloud,
the Extended Convexity Criterion (CC) and Sanity Criterion (SC) were used to determine
the concavity and convexity relationships between different blocks. The CC determines
whether two adjacent supervoxels are concave or convex based on the vector and normal
vector of the line connecting their centers. Stein et al. [53] provided a criterion graph for
CC, as shown in Figure 4.

Agronomy 2025, 15, x FOR PEER REVIEW 8 of 20 
 

 

reducing the number of segments during region growth. We utilized a method based on 

local surface fi�ing for estimating normal vectors and curvature values. Initially, each 

point in the point cloud was searched for its k nearest neighbors, and the least squares 

local plane was calculated for these points. By decomposing the covariance matrix, the 

smallest eigenvalue corresponds to the normal vector of the plane. When the eigenvalues 

were obtained, if they satisfy the condition λ1 ≤ λ2 ≤ λ3, Equation (5) shows the formula 

for curvature value. 

H =
��

�� + �� + ��

 (5)

2.5.2. Segmentation of Rapeseed Leaves at Bolting Stage 

While using the region-growing algorithm for leaf segmentation during the bolting 

stage of rapeseed, it was discovered that certain leaves were overlapping due to the 

growth habit of the plant. Therefore, this study employed the LCCP algorithm for seg-

menting rapeseed leaves in the bolting stage. The LCCP algorithm is an image segmenta-

tion method based on the concavity and convexity of neighboring points in a point cloud. 

The algorithm consists of two main parts: dividing the point cloud into supervoxels based 

on the angle between normal vectors and spatial distance, determining the connectivity 

of adjacent supervoxels in the recorded adjacency graph of supervoxels, and finally merg-

ing all convexly connected supervoxels to form the segmentation result. 

When over-segmenting the point cloud into supervoxels, the data was initially di-

vided into voxels, and a voxel cloud with a specific resolution was created. The voxel 

cloud was then gridded, and the voxel closest to the center of each grid was selected as 

the initial seed voxel. After filtering out isolated seed points, a search region was estab-

lished for the remaining seed voxels on the object surface. The number of voxels within 

the neighborhood radius of the seed point was calculated, and seed voxels with a voxel 

count below a fixed threshold in the intersecting region with the search range were re-

moved. Following the initialization of the clustering algorithm, the edge properties, geo-

metric features, and spatial distance of the point cloud were comprehensively considered 

to measure the similarity between voxels in the feature space. The voxel data were then 

clustered in the feature space, and an over-segmentation of the voxel data was performed 

using a flow-constrained clustering algorithm to obtain supervoxel data. After over-seg-

menting the point cloud, the Extended Convexity Criterion (CC) and Sanity Criterion (SC) 

were used to determine the concavity and convexity relationships between different 

blocks. The CC determines whether two adjacent supervoxels are concave or convex 

based on the vector and normal vector of the line connecting their centers. Stein et al. [53] 

provided a criterion graph for CC, as shown in Figure 4. 

 

Figure 4. Illustration of the Extended Convexity Criterion (CC) theory. 

Figure 4 shows that when α1 < α2, the two supervoxels are connected convexly; oth-

erwise, they are connected concavely. In the process of using the algorithm, Equations (6) 

Figure 4. Illustration of the Extended Convexity Criterion (CC) theory.

Figure 4 shows that when α1 < α2, the two supervoxels are connected convexly; otherwise,
they are connected concavely. In the process of using the algorithm, Equations (6) and (7)
were used for the CC criterion to reduce misjudgments of concave–convex relationships.

CCb =

(→
Pi −

→
Pj

)
=

true
(→

n1 −
→
n2

)
·
→
d > 0 ∨ (β < βThresh)

f alse otherwise
(6)

CCe

(→
Pi,

→
Pj

)
= CCb

(→
Pi,

→
Pj

)
∧ CCb

(→
Pi,

→
Pc

)
∧ CCb

(→
Pj,

→
Pc

)
(7)

where CCb is the basic convexity criterion, β is the spatial distance, βThresh is the concavity

threshold,
→
d indicates the vector from point

→
x2 to point

→
x1, CCe is the extended convexity

criterion, and
→
n1,

→
n2 are the normals of two adjacent supervoxels [53].

If two adjacent supervoxels are not connected and have one side isolated, the SC is
introduced with the following Equations (8)–(10).

Agronomy 2025, 15, x FOR PEER REVIEW 9 of 20 
 

 

and (7) were used for the CC criterion to reduce misjudgments of concave–convex rela-

tionships. 

CC� = ���
��⃗ − ��

��⃗ � = �
���� (������⃗ − ������⃗ ) ∙ �⃗ > 0 ∨ (� < �������)

����� ��ℎ������
  (6)

CC����
��⃗ , ��

��⃗ � = CC����
��⃗ , ��

��⃗ � ∧ CC����
��⃗ , ��

���⃗ � ∧ CC����
��⃗ , ��

���⃗ �  (7)

where CC� is the basic convexity criterion, β is the spatial distance, βThresh is the concavity 

threshold, �⃗ indicates the vector from point ������⃗  to point �����⃗ , CCe is the extended convex-

ity criterion, and ������⃗ , ������⃗  are the normals of two adjacent supervoxels [53]. 

If two adjacent supervoxels are not connected and have one side isolated, the SC is 

introduced with the following Equations (8)–(10). 

ϑ�P�
��⃗ , P�

��⃗ � = min �∡�d�⃗ , s⃗�, ∡�d�⃗ , −s⃗�� = min �∡�d�⃗ , s⃗�, 180。, ∡ − �d�⃗ , s⃗��  (8)

ϑ������(�) = �������
��� ∙ (1+exp�−� ∙ �� − �������

��
  (9)

SC���
��⃗ , ��

��⃗ � = �
���� ϑ�P�

��⃗ , P�
��⃗ � > ϑ��������(������⃗ ,������⃗ )�

����� ��ℎ������
  (10)

where � is the minimum angle between two directions, �������
���  is 60°, � is 0.25, and βoff 

is 25° [53]. 

Equation (11) shows the formula for the convex edge criterion between two adjacent 

supervoxels. 

conv�P�
��⃗ , P�

��⃗ � = CC�,����
��⃗ , ��

��⃗ �⋀SC���
��⃗ , ��

��⃗ � (11)

where conv�P�
��⃗ , P�

��⃗ �  refers to the concave–convex relationship between two supervoxels, 

CC�,����
��⃗ , ��

��⃗ � refers to the result of using the CC between two supervoxels, and SC���
��⃗ , ��

��⃗ � 

refers to the result of using the SC between two supervoxels. 

After marking the concave–convex relationships of each small region, these regions 

were clustered into larger objects using a region-growing algorithm, completing the seg-

mentation process. 

3. Results 

3.1. Evaluation of Point Cloud Denoising Accuracy 

3.1.1. Evaluation of Pass-Through Filtering Denoising Accuracy 

Taking the denoising effect of the first plot of rapeseed in Huyou 039 as an example, 

the rapeseed point cloud was filtered using pass-through filtering based on the elevation 

values. The same steps were followed for the subsequent plots. Figure 5a shows the orig-

inal rapeseed point cloud, where the red box highlights the target point cloud. When col-

oring the point cloud, the z-axis direction was colored from blue to green to red, with the 

z-coordinate of a randomly selected point from the fi�ed plane serving as one limit of the 

pass-through filtering threshold. The blue value was used as the other limit, and denoising 

was performed using this threshold. The filtered point cloud is shown in Figure 5b. The 

z-axis direction of the filtered point cloud was colored from red to green to blue. The blank 

areas in the image indicate that the low points of the ground point cloud have been filtered 

out. If filtering continues upwards, the rapeseed point cloud will also be filtered out. 

Therefore, the appearance of blank areas in the denoised point cloud image serves as the 

criterion for the end of pass-through filtering. 

(8)

ϑthresh(β) = ϑmax
thresh·(1 + exp

[
−a·

(
β − βo f f

)])−1
(9)



Agronomy 2025, 15, 245 9 of 19

SC
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Pj
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true ϑ
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Pi,
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> ϑthresh

(
β
(→

n1,
→
n2

))
f alse otherwise

(10)

where ϑ is the minimum angle between two directions, ϑmax
thresh is 60◦, a is 0.25, and βoff is

25◦ [53].
Equation (11) shows the formula for the convex edge criterion between two adjacent

supervoxels.

conv
(→

Pi,
→
Pj

)
= CCb,e

(→
Pi,

→
Pj

)
∧ SC

(→
Pi,

→
Pj

)
(11)

where conv
(→

Pi,
→
Pj

)
refers to the concave–convex relationship between two supervoxels,

CCb,e

(→
Pi,

→
Pj

)
refers to the result of using the CC between two supervoxels, and SC

(→
Pi,

→
Pj

)
refers to the result of using the SC between two supervoxels.

After marking the concave–convex relationships of each small region, these regions
were clustered into larger objects using a region-growing algorithm, completing the seg-
mentation process.

3. Results
3.1. Evaluation of Point Cloud Denoising Accuracy
3.1.1. Evaluation of Pass-Through Filtering Denoising Accuracy

Taking the denoising effect of the first plot of rapeseed in Huyou 039 as an example,
the rapeseed point cloud was filtered using pass-through filtering based on the elevation
values. The same steps were followed for the subsequent plots. Figure 5a shows the
original rapeseed point cloud, where the red box highlights the target point cloud. When
coloring the point cloud, the z-axis direction was colored from blue to green to red, with the
z-coordinate of a randomly selected point from the fitted plane serving as one limit of the
pass-through filtering threshold. The blue value was used as the other limit, and denoising
was performed using this threshold. The filtered point cloud is shown in Figure 5b. The
z-axis direction of the filtered point cloud was colored from red to green to blue. The
blank areas in the image indicate that the low points of the ground point cloud have been
filtered out. If filtering continues upwards, the rapeseed point cloud will also be filtered
out. Therefore, the appearance of blank areas in the denoised point cloud image serves as
the criterion for the end of pass-through filtering.
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The point cloud structure scanned in this experiment was complex, with a lot of noise.
Point cloud filtering was performed to improve the quality and accuracy of point cloud
data. The denoising ratio served as an evaluation metric to verify the effectiveness of
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pass-through filtering on denoising point cloud data. Equation (12) shows the formula for
the denoising ratio.

α =
p − pi

p
(12)

where α represents the percentage of removed points compared to the total number of
original points, p is the total number of original points, and pi is the number of points
after denoising.

Six parts of scanned point cloud data were denoised using pass-through filtering in
this experiment. The number of denoised points and denoising ratios are shown in Table 2.

Table 2. Denoising accuracy of the rapeseed point cloud using pass-through filtering method.

Point Number 1 2 3 4 5 6

Number of original points 18,386,979 20,343,619 20,404,340 20,356,679 20,226,673 20,337,138
Number of denoised points 9,526,272 10,274,000 10,428,856 11,763,012 10,844,220 10,093,445

Denoising ratio α (%) 48.2 49.5 48.9 42.2 46.4 50.4

A comparison between the denoised point cloud image and the original point cloud
image reveals that ground noise was successfully removed through pass-through filtering.
Results presented in Table 2 show that the original point cloud data were very large, and
even after pass-through filtering, the lowest denoising ratio was only 42.2%. This result
helps streamline the large point cloud data for further processing.

3.1.2. Evaluation of Statistical Filtering Denoising Accuracy

The previous denoising of the point cloud was only aimed at filtering the ground
point cloud of the entire rapeseed plot. Noise generated by the rapeseed plants during
scanning was not addressed. When segmenting the point cloud of individual rapeseed
plants using conditional filtering, small-scale noise needed to be filtered out to reduce errors
in subsequent point cloud processing. Therefore, statistical filtering was also required.

To prevent incomplete denoising or over-denoising, suitable threshold ranges needed
to be selected for statistical filtering. The parameters involved were the number of neigh-
boring points (k) and the standard deviation multiple (α). In this study, values of 5, 10, 20,
30, 50, and 100 were selected for k, and values of 0.01, 0.05, 0.1, 0.5, 1, 5, and 10 were selected
for α. Combinations of k and α were tested for statistical filtering. A single rapeseed plant
was selected as a demonstration, and line graphs of the standard deviation multiple, the
number of neighboring points, and the filtered point cloud count were plotted, as shown
in Figure 6.

From the graph, it can be observed that under constant neighboring points, the number
of removed points decreases as the standard deviation multiple increases. However, when
α reaches 5 or higher, the decreasing trend in the number of removed points tends to
stabilize. When α is between 0.01 and 0.1, the number of removed points with a k value of
5 significantly exceeds the number removed than other values of k. However, when α is
0.1, the number of removed points under k = 100 significantly exceeds that for other values.
When the α is between 0.1 and 0.5, the number of removed points with k = 5 decreases
noticeably. Additionally, when the standard deviation multiple was between 0.5 and 5, the
number of removed points increased as the k values increased. The line graph provides a
rough understanding of the relationship between the number of removed points and the
standard deviation multiple under different neighboring point counts. However, further
precision is needed to determine the ranges of these two parameters. The comparison of
the point cloud images after statistical filtering is shown in Figure 7.
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We found that, when the standard deviation multiple is 0.01, as the number of neigh-
boring points increases, not only were the noise point clouds removed, but valid point
clouds were also significantly filtered out, as shown in Figure 7a,b. Therefore, it is important
to determine the upper limit of k. Comparing Figure 7a,c,d, it is evident that when the
number of neighboring points k remains constant, as α increases, the filtering effect on the
noise point clouds (represented by the red portion) becomes less pronounced, while the
filtering of valid points is not as significant. Additionally, it was observed that only a small
number of valid points were removed under low α values (Figure 7a,c).

Further, the above results reveal that in statistical filtering, the number of neighboring
points mainly affects the filtering of non-target noise. At the same time, the standard
deviation multiple primarily influences the removal of target noise. Therefore, k values of
5 and 100 can be excluded, and α values of 0.01, 5, and 10 can also be excluded. Setting
the k values to 10, 20, 30, and 50 and the α to 0.05, 0.1, 0.5, and 1.0 would be a suitable
approach. Additionally, when α is set to 0.1, regardless of the different values of k, the
four lines almost overlap, indicating minimal variation in the number of removed points.
Hence, this study selects α as 0.1. Subsequently, a comparison of the number of points
before and after statistical filtering for k values of 10, 20, 30, and 50 was conducted, and the
experimental results are shown in Table 3.
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Table 3. Comparison of the total number of points before and after statistical filtering.

Typology
The Number of Neighboring Points k

10 20 30 50

Total number of points in the point cloud before denoising 20,259 20,259 20,259 20,259
Total number of points in the point cloud after denoising 17,190 17,182 17,192 17,177

Number of points removed 3069 3077 3067 3082
Percentage of points removed (%) 15.15 15.19 15.14 15.21

We found that when k is set to 50, the proportion of removed points to the total points
before filtering was the highest (15.21%), as presented in Table 3. Therefore, this study
sets the number of neighboring points to 50 and the standard deviation multiple to 0.1 for
statistical filtering processing.

3.2. Evaluation of Segmentation Accuracy in Target Point Clouds
3.2.1. Evaluation of Rapeseed Leaf Segmentation Accuracy at the Seedling Stage

Leaf-related parameters were extracted from the point cloud of a single rapeseed plant
after segmentation algorithms were applied. Since the number of leaves in the rapeseed
seedlings was small and the leaves did not overlap, the region-growing algorithm was
used for segmenting individual rapeseed plant leaves. This method requires determining
suitable normal angle thresholds and curvature thresholds. In this study, normal angle
thresholds were taken as 3.0/180.0*M_PI, 5.0/180.0*M_PI, and 7.0/180.0*M_PI, and cur-
vature thresholds were taken as 0.5, 1.0, and 1.5. The constant “M_PI” represents the
numerical value of pi (approximately 3.1416) in programming languages.

Firstly, measurements were taken on different normal angle threshold values, and it
was found that segmentation was not possible when the normal angle threshold was set to
7.0/180.0*M_PI. As the rapeseed plants at the seedling stage had four leaves, the normal
angle threshold was set to 3.0/180.0*M_PI, and the segmented regions were fewer than
four, leading to incorrect segmentation. However, when the normal angle threshold was
set to 5.0/180.0*M_PI, it was observed that four regions could be accurately segmented;
hence, this threshold was chosen.

During point cloud segmentation, the entire point cloud was divided into target
point clouds and non-target point clouds, where non-target point clouds could also be
considered as background points outside the target. Segmentation is often not perfect in
a single step, and under-segmentation and over-segmentation are common issues. Gen-
erally, under-segmentation occurs when target point clouds are mistakenly segmented as
background point clouds, leading to incomplete segmentation of the target point clouds.
Over-segmentation occurs when background point clouds are mistakenly considered as
target point clouds and segmented as such. After setting the normal angle threshold to
5.0/180.0*M_PI, tests were conducted with curvature thresholds of 0.5, 1.0, and 1.5. Dif-
ferent colors in the segmentation results represent different segmented regions, and the
results are shown in Figure 8.

The results presented in Figure 8 reveal that under all three curvature values, most of
the leaves could be segmented. However, when the curvature values were set to 0.5 and
1.0, the leaf edges and petiole parts were mistakenly identified as background point clouds,
leading to under-segmentation. Setting the curvature value to 1.5 helped to alleviate this
issue. Thus, based on the tuning results of this study, we set the normal angle threshold to
5.0/180.0*M_PI and the curvature threshold to 1.5.

Figure 9 shows the accuracy assessment of the Huyou039 leaf area, comparing the
manually measured leaf area with the leaf area extracted from the point cloud. The R2 and
RMSE were 0.995 and 0.2589 cm2, respectively.
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3.2.2. Evaluation of Rapeseed Leaf Segmentation Accuracy at the Bolting Stage

Due to the unique characteristics of rapeseed leaves at the bolting stage, using the
same segmentation method as in the seedling stage resulted in uneven segmentation of
overlapping leaves, as shown in Figure 10. Different colors in the segmentation results
represent different segmented regions. Therefore, this study employed the LCCP algorithm
for leaf segmentation of rapeseed plants at the bolting stage. The main parameters involved
in this algorithm are voxel resolution, seed resolution, concavity tolerance threshold, and
smoothness threshold. Through experimentation with different parameter values, it was
found that the best segmentation results were achieved when the values of these four
parameters were set to 2.0, 100.0, 100, and 10, respectively. The results of the LCCP
algorithm are shown in Figure 10.
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After the segmentation using LCCP, rapeseed leaves were segmented and differenti-
ated by different colors. By zooming in on a region where leaves overlap, it was observed
that there is no over- or under-segmentation; rather, complete segmentation of the overlap-
ping leaves occurs, as shown in Figure 11.

Agronomy 2025, 15, x FOR PEER REVIEW 14 of 20 
 

 

3.2.2. Evaluation of Rapeseed Leaf Segmentation Accuracy at the Bolting Stage 

Due to the unique characteristics of rapeseed leaves at the bolting stage, using the 

same segmentation method as in the seedling stage resulted in uneven segmentation of 

overlapping leaves, as shown in Figure 10. Different colors in the segmentation results 

represent different segmented regions. Therefore, this study employed the LCCP algo-

rithm for leaf segmentation of rapeseed plants at the bolting stage. The main parameters 

involved in this algorithm are voxel resolution, seed resolution, concavity tolerance 

threshold, and smoothness threshold. Through experimentation with different parameter 

values, it was found that the best segmentation results were achieved when the values of 

these four parameters were set to 2.0, 100.0, 100, and 10, respectively. The results of the 

LCCP algorithm are shown in Figure 10. 

 

Figure 10. Segmentation results of rapeseed leaves at the bolting stage using (a) the region-growing 

algorithm and (b) the LCCP algorithm. 

After the segmentation using LCCP, rapeseed leaves were segmented and differenti-

ated by different colors. By zooming in on a region where leaves overlap, it was observed 

that there is no over- or under-segmentation; rather, complete segmentation of the over-

lapping leaves occurs, as shown in Figure 11. 

 

Figure 11. The point cloud of the leaf overlaps: (a) the red circle highlights the overlapping region, 

and (b) an enlarged view of this overlapping area. 

4. Discussion 

4.1. Denoising of Rapeseed 3D Point Clouds 

This study aimed to address the challenges of noise removal and leaf segmentation 

in rapeseed 3D reconstruction, providing methodologies for subsequent 3D reconstruc-

tions to obtain more comprehensive phenotypic parameters. The experimental design uti-

lized rapeseed cultivated under field conditions as the data source. Previously, most re-

search on rapeseed phenotypes relied on unmanned aerial vehicles equipped with an RGB 

Figure 11. The point cloud of the leaf overlaps: (a) the red circle highlights the overlapping region,
and (b) an enlarged view of this overlapping area.

4. Discussion
4.1. Denoising of Rapeseed 3D Point Clouds

This study aimed to address the challenges of noise removal and leaf segmentation in
rapeseed 3D reconstruction, providing methodologies for subsequent 3D reconstructions
to obtain more comprehensive phenotypic parameters. The experimental design utilized
rapeseed cultivated under field conditions as the data source. Previously, most research
on rapeseed phenotypes relied on unmanned aerial vehicles equipped with an RGB cam-
era [54], or LiDAR [55], which do not facilitate the convenient acquisition of 3D structural
information about rapeseed. While utilizing 3D scanning technologies like LiDAR for
object scanning, a substantial volume of point cloud data is acquired [56]. Furthermore, this
process creates significant noise, leading to a considerable workload. Research on 3D crops
has predominantly focused on species such as maize and cotton, with relatively few studies
dedicated to the three-dimensional analysis of rapeseed leaves. The binocular stereo vision
technology utilized in this study enabled the simultaneous acquisition of both color and
structural information about the target while also being more cost-effective [34].

The point cloud acquired in this study contained a large number of non-target point
clouds, such as ground point clouds, as well as outliers surrounding the primary point
cloud. Since crops grew on the ground, in order to ensure the integrity of the crops, the
ground point clouds were inevitably included in the scan. To address this noise, a com-
bination of RANSAC and pass-through filtering algorithms was employed for denoising,
while statistical filtering was applied to eliminate outliers. The RANSAC algorithm was
used to fit a ground plane [57,58]. This approach of using pass-through filtering for set-
ting z-axis thresholds effectively removed large areas of noisy point clouds, which was
similar to the results of Teng, Zhou, Wu, Huang, Dong, and Xu [51]. In comparison to
the research conducted by Hu, Lin, Peng, Wang, and Zhai [48], the primary distinction
of this study lies in the adoption of the RANSAC algorithm for fitting the ground plane.
This method demonstrates greater robustness compared to conventional techniques and
further optimizes the z-axis threshold setting during the pass-through filtering process,
leading to a more pronounced filtering effect. Additionally, the colorization of point clouds
allowed for the visualization of noise removal effectiveness, providing a more intuitive and
convenient reference for data analysis and subsequent processing. However, the number of
points affected the speed of the denoising operation, and parameter thresholds needed to
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be fine-tuned. Therefore, future research needs to focus on improving the speed and other
aspects of this method to achieve faster and more accurate denoising of point clouds.

4.2. Segmentation of Rapeseed Leaf

In the field of point cloud segmentation, the region-growing algorithm can successfully
segment small plants such as green beans [59] and greenhouse ornamentals [60]. This
study further supports the capability of the algorithm to efficiently maintain the integrity of
rapeseed leaves at the seedling stage, and our results align with the successful application of
this technique by Li, Liu, Zhang, Wang, Yao, Zhang, Fan, Li, Hai, and Fan [42] in segmenting
the stalk of corn seedlings. However, rapeseed undergoes morphological changes as it
grows, particularly at the bolting stage when the leaf surface greatly undulates, and there
is significant leaf overlap. Thus, employing traditional region-growing segmentation to
separate rapeseed leaves at the bolting stage into a whole single leaf is challenging.

In light of the aforementioned challenges, this study explores the application of the
LCCP algorithm for leaf segmentation at the bolting stage. The research conducted by Wang
and Chen [61] on the 3D reconstruction of early-stage green pepper seedlings inspired this
investigation, as they observed that LCCP effectively leverages the natural concave–convex
relationships between stems and leaves for segmentation. In this experiment, the LCCP
algorithm was used to segment the leaves of rapeseed plants during the bolting stage. The
results showed that the leaves were segmented accurately without any over-segmentation
in the overlapping regions. This effectiveness is particularly notable in managing struc-
tural variations in complex plant morphologies. In contrast to the sophisticated methods
that rely on deep learning approaches [62], the LCCP algorithm employed in this study
does not require a large-scale training dataset, thereby reducing computational resource
consumption and implementation complexity while significantly shortening processing
times. This finding enriches the technical tools for plant point cloud segmentation. It
also provides an efficient and cost-effective solution for monitoring and analyzing leaf
conditions throughout the growth period of crops like rapeseed.

Zhang et al. [37] used the PointNet++ network to automatically segment the tip point
cloud of the fringe branch. They achieved Intersection over Union (IoU), precision, and
recall values of 96.29, 96.36, and 93.01, respectively. By combining PointNet++ to quantify
canopy height and extracting dynamic numerical phenotypes, Chen et al. [63] investigated
and analyzed a genome-wide association study of 160 wheat varieties to find reliable loci
associated with height and NUE. The blade segmentation method proposed in this paper
demonstrates significant effectiveness in addressing the issue of overlapping rapeseed
leaves, thereby providing a technical foundation for the subsequent accurate extraction
of leaf area and 3D morphological reconstruction. However, the current work has certain
limitations, primarily reflected in its focus on processing point cloud data from only two
growth stages of the rapeseed plants without a comprehensive analysis covering the entire
growth period. Therefore, to enhance the universality and applicability of this segmentation
algorithm, future research must urgently explore how to adjust and optimize algorithm
parameters and strategies. This will ensure that the algorithm can effectively cope with
and accurately segment the complex leaf shapes and dense overlapping characteristics
exhibited by rapeseed plants in different late growth stages, thereby comprehensively
advancing the development of rapeseed growth monitoring and precision agricultural
management technologies.

5. Conclusions
The current study combined line laser binocular stereo vision technology, filtering

algorithms, and segmentation algorithms to separate the point cloud of rapeseed leaves
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from the original rapeseed field and to segment rapeseed leaves at seedling and bolting
stages. The study results demonstrated that integrating color filtering and filtering al-
gorithms could effectively eliminate ground point clouds and outliers, resulting in the
acquisition of relatively smooth point cloud data, thereby enhancing the quality and clarity
of the point cloud. The region-growing algorithm performed well during the seedling
stage but struggled to segment overlapping leaves during the bolting stage. The LCCP
clustering method proved to be a more effective solution to address this issue. The leaf
segmentation algorithms perform well at different growth stages, but a universal method
for leaf segmentation has not been established. The method proposed in this study has pro-
duced satisfactory results in the early developmental stages of rapeseed, offering feasibility
for extracting subsequent point cloud phenotypic parameters such as leaf area. Different
segmentation algorithms are required for rapeseed leaves at different growth stages due to
variations in plant morphology. Future research endeavors must aim to identify a universal
algorithm for leaf segmentation, thereby streamlining the process of leaf segmentation.
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