Classification and Analysis of Agaricus bisporus Diseases with Pre-Trained Deep Learning Models
<p>General View and Lighting System Details of the Portable Imaging Apparatus. (<b>a</b>) General View of the Portable Imaging Apparatus, highlighting the modular design, power supply compartment, and lighting platform setup. (<b>b</b>) Detailed View of the Lighting System of the Portable Imaging Apparatus, highlighting the specially designed 45-degree angled lighting channels equipped with diffusers to minimize glare and ensure uniform illumination, specifically tailored for optimal imaging conditions of the mushroom specimen.</p> "> Figure 2
<p>Top and Front View of the Custom Portable Imaging Apparatus, illustrating the internal lighting platform, smartphone-based imaging system, and mushroom placement.</p> "> Figure 3
<p>Development Process of the Portable Imaging Apparatus, illustrating key stages from development to final design.</p> "> Figure 4
<p>Example Images of <span class="html-italic">Agaricus bisporus</span> Classes (Healthy, Bacterial Blotch, Dry Bubble, Cobweb, Wet Bubble), Captured Under Controlled Conditions for Dataset Creation.</p> "> Figure 5
<p>Image acquisition process showing mushrooms photographed from random angles (α°) and in an upright position (90°) for dataset creation. The dotted lines indicate the camera’s field of view.</p> "> Figure 6
<p>Workflow Diagram for <span class="html-italic">Agaricus bisporus</span> Disease Classification: From Image Acquisition to Model Evaluation Using CNN Architectures.</p> "> Figure 7
<p>Confusion Matrices for Evaluated CNN Models. Confusion matrices illustrating the classification performance of evaluated CNN models across the five categories: w0hl (Healthy), w<sub>b</sub>b (Bacterial Blotch), w<sub>d</sub>b (Dry Bubble), w<sub>c</sub>w(Cobweb) and w<sub>w</sub>b (Wet Bubble). Each matrix highlights the model’s ability to distinguish between true and predicted labels, with minimal misclassifications across all disease categories and the healthy class.</p> "> Figure 8
<p>ROC Curves for Evaluated CNN Models. Receiver Operating Characteristic (ROC) curves illustrating the classification performance of evaluated CNN models across the five categories five categories: w0hl (Healthy), w<sub>b</sub>b (Bacterial Blotch), w<sub>d</sub>b (Dry Bubble), w<sub>c</sub>w (Cobweb) and w<sub>w</sub>b (Wet Bubble). The curves display the relationship between the true positive rate (sensitivity) and false positive rate for each class, highlighting the models’ ability to discriminate between diseased and healthy samples, with AUC values indicating overall performance.</p> "> Figure 9
<p>AUC Heatmap for Classifiers and Classes, Showing the Area Under the Curve (AUC) Across Disease Categories for Various Models.</p> "> Figure 10
<p>F1-Score Heatmap for Classifiers and Classes, Highlighting the Balance Between Precision and Recall Across Disease Categories for Various Models.</p> "> Figure 11
<p>Precision Heatmap for Classifiers and Classes, Depicting the Accuracy of Positive Predictions Across Disease Categories for Various Models.</p> "> Figure 12
<p>Recall Heatmap for Classifiers and Classes, Representing the Sensitivity in Identifying True Positives Across Disease Categories for Various Models.</p> "> Figure 13
<p>Specificity Heatmap for Classifiers and Classes, Displaying the Ability to Identify True Negatives Across Disease Categories for Various Models.</p> "> Figure 14
<p>AP Heatmap for Classifiers and Classes, Illustrating Average Precision Across Disease Categories for Various Models.</p> "> Figure 15
<p>Overall Average Precision (AP) for Classifiers.</p> "> Figure 16
<p>Overall Area Under the Curve (AUC) for Classifiers.</p> "> Figure 17
<p>Overall F1-Score for Classifiers.</p> "> Figure 18
<p>Overall Precision for Classifiers.</p> "> Figure 19
<p>Overall Recall for Classifiers.</p> "> Figure 20
<p>Overall Specificity for Classifiers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Creation Methodology
2.2. Dataset Composition
2.3. Challenges and Mitigation Techniques
2.4. Annotation Methodology
2.5. Experimental Configuration and Preprocessing Workflow
2.6. Training Parameters
2.7. Data Splitting
2.8. Aggregate Score Calculation and Evaluation Metrics
2.9. MATLAB-Python Hybrid Workflow
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasban, A.; Mohebbi, M.; Pourazarang, H.; Varidi, M. Effects of Endemic Hydrocolloids and Xanthan Gum on Foaming Properties of White Button Mushroom Puree Studied by Cluster Analysis: A Comparative Study. J. Taibah Univ. Sci. 2014, 8, 31–38. [Google Scholar] [CrossRef]
- Sesli, E.; Asan, A.; Selçuk, F.; Abacı Günyar, Ö.; Akata, I.; Akgül, H.; Aktaş, S.; Alkan, S.; Allı, H.; Aydoğdu, H.; et al. Türkiye Mantarları Listesi; Sesli, E., Asan, A., Selçuk, F., Eds.; Ali Nihat Gökyiğit Vakfı: İstanbul, Turkey, 2020; p. 1175. [Google Scholar]
- Albayrak, Ü.; Gölcük, A.; Aktaş, S. Agaricus bisporus’ta Görüntü Tabanlı Hastalık Sınıflandırması Için Kapsamlı Veri Seti. J. Fungus 2024, 15, 29–42. [Google Scholar] [CrossRef]
- Ayimbila, F.; Keawsompong, S. Nutritional Quality and Biological Application of Mushroom Protein as a Novel Protein Alternative. Curr. Nutr. Rep. 2023, 12, 290–307. [Google Scholar] [CrossRef] [PubMed]
- Lincoln, S.P.; Fermor, T.R.; Tindall, B.J. Janthinobacterium agaricidamnosum Sp. Nov., a Soft Rot Pathogen of Agaricus bisporus. Int. J. Syst. Evol. Microbiol. 1999, 49, 1577–1589. [Google Scholar] [CrossRef]
- Largeteau, M.L.; Savoie, J.-M. Effect of the Fungal Pathogen Verticillium Fungicola1 on Fruiting Initiation of Its Host, Agaricus bisporus. Mycol. Res. 2008, 112, 825–828. [Google Scholar] [CrossRef]
- McKay, G.J.; Egan, D.; Morris, E.; Scott, C.; Brown, A.E. Genetic and Morphological Characterization of Cladobotryum Species Causing Cobweb Disease of Mushrooms. Appl. Environ. Microbiol. 1999, 65, 606–610. [Google Scholar] [CrossRef]
- Novikova, I.; Titova, J. Antifungal Activity of Industrial Bacillus Strains against Mycogone perniciosa, the Causative Agent of Wet Bubble Disease in White Button Mushrooms. Microorganisms 2023, 11, 2056. [Google Scholar] [CrossRef]
- Amin, Z.; Wani, F.F.; Gulzar, H.; Dar, W.A.; Sheikh, P.A. Diseases of White Button Mushroom (Agaricus bisporus)—A Potential Threat to Mushroom Industry. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 2076–2085. [Google Scholar]
- Öztürk, N.; Basim, E.; Basim, H.; Üniversitesi, A.; Myo, K.; Programı, M.; Tarımı Programı, B.; Fakültesi, Z.; Koruma Bölümü, B.; Yazar, S. Yemeklik Kültür Mantarında (Agaricus bisporus (J. Lge) Imbach) Yaygın Görülen Mikrobiyal Hastalıkla. Harran Tarım ve Gıda Bilimleri Dergisi 2017, 21, 112–125. [Google Scholar] [CrossRef]
- Eren, E.; Pekşen, A. Türkiye’de Kültür Mantarı Üretimi ve Teknolojik Gelişmeler. J. Fungus 2019, 10, 225–233. [Google Scholar]
- Ab Rhaman, S.M.S.; Naher, L.; Siddiquee, S. Mushroom Quality Related with Various Substrates’ Bioaccumulation and Translocation of Heavy Metals. J. Fungi 2021, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, L.; Zhang, Y.; Han, X.; Deveci, M.; Parmar, M. A Review of Convolutional Neural Networks in Computer Vision. Artif. Intell. Rev. 2024, 57, 99. [Google Scholar] [CrossRef]
- Assad, A.; Bhat, M.R.; Bhat, Z.A.; Ahanger, A.N.; Kundroo, M.; Dar, R.A.; Ahanger, A.B.; Dar, B.N. Apple Diseases: Detection and Classification Using Transfer Learning. Qual. Assur. Saf. Crops Foods 2023, 15, 27–37. [Google Scholar] [CrossRef]
- Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep Learning for Tomato Diseases: Classification and Symptoms Visualization. Appl. Artif. Intell. 2017, 31, 299–315. [Google Scholar] [CrossRef]
- Khan, H.; Haq, I.U.; Munsif, M.; Mustaqeem; Khan, S.U.; Lee, M.Y. Automated Wheat Diseases Classification Framework Using Advanced Machine Learning Technique. Agriculture 2022, 12, 1226. [Google Scholar] [CrossRef]
- Yasar, A.; Golcuk, A.; Sari, O.F. Classification of Bread Wheat Varieties with a Combination of Deep Learning Approach. Eur. Food Res. Technol. 2023, 250, 181–189. [Google Scholar] [CrossRef]
- Golcuk, A.; Yasar, A. Classification of Bread Wheat Genotypes by Machine Learning Algorithms. J. Food Compos. Anal. 2023, 119, 105253. [Google Scholar] [CrossRef]
- Abade, A.; Ferreira, P.A.; de Barros Vidal, F. Plant Diseases Recognition on Images Using Convolutional Neural Networks: A Systematic Review. Comput. Electron. Agric. 2021, 185, 106125. [Google Scholar] [CrossRef]
- Gea, F.J.; Navarro, M.J.; Santos, M.; Diánez, F.; Carrasco, J. Control of Fungal Diseases in Mushroom Crops While Dealing with Fungicide Resistance: A Review. Microorganisms 2021, 9, 585. [Google Scholar] [CrossRef]
- Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification. Comput. Intell. Neurosci. 2016, 2016, 3289801. [Google Scholar] [CrossRef]
- Yin, H.; Yi, W.; Hu, D. Computer Vision and Machine Learning Applied in the Mushroom Industry: A Critical Review. Comput. Electron. Agric. 2022, 198, 107015. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2016; pp. 2261–2269. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. In Computer Vision and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–6. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 2017, 59, 65–98. [Google Scholar] [CrossRef]
- Pane, C.; Manganiello, G.; Nicastro, N.; Cardi, T.; Carotenuto, F. Powdery Mildew Caused by Erysiphe Cruciferarum on Wild Rocket (Diplotaxis tenuifolia): Hyperspectral Imaging and Machine Learning Modeling for Non-Destructive Disease Detection. Agriculture 2021, 11, 337. [Google Scholar] [CrossRef]
- Xie, Y.; Plett, D.; Liu, H. The Promise of Hyperspectral Imaging for the Early Detection of Crown Rot in Wheat. AgriEngineering 2021, 3, 924–941. [Google Scholar] [CrossRef]
- Shah, S.R.; Qadri, S.; Bibi, H.; Shah, S.M.W.; Sharif, M.I.; Marinello, F. Comparing Inception V3, VGG 16, VGG 19, CNN, and ResNet 50: A Case Study on Early Detection of a Rice Disease. Agronomy 2023, 13, 1633. [Google Scholar] [CrossRef]
- Kini, A.S.; Prema, K.V.; Pai, S.N. Early Stage Black Pepper Leaf Disease Prediction Based on Transfer Learning Using ConvNets. Sci. Rep. 2024, 14, 1404. [Google Scholar]
- Chen, S.; Zhang, K.; Zhao, Y.; Sun, Y.; Ban, W.; Chen, Y.; Zhuang, H.; Zhang, X.; Liu, J.; Yang, T. An Approach for Rice Bacterial Leaf Streak Disease Segmentation and Disease Severity Estimation. Agriculture 2021, 11, 420. [Google Scholar] [CrossRef]
- Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Ayari, M.A.; Khan, A.U.; Khan, M.S.; Al-Emadi, N.; Reaz, M.B.I.; Islam, M.T.; Ali, S.H.M. Automatic and Reliable Leaf Disease Detection Using Deep Learning Techniques. AgriEngineering 2021, 3, 294–312. [Google Scholar] [CrossRef]
- Bansal, P.; Kumar, R.; Kumar, S. Disease Detection in Apple Leaves Using Deep Convolutional Neural Network. Agriculture 2021, 11, 617. [Google Scholar] [CrossRef]
- Tan, L.; Lu, J.; Jiang, H. Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods. AgriEngineering 2021, 3, 542–558. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, Y.; Liu, J.; Wu, S. Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention Module. Agriculture 2021, 11, 651. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, S.; Liu, J. Fused-Deep-Features Based Grape Leaf Disease Diagnosis. Agronomy 2021, 11, 2234. [Google Scholar] [CrossRef]
- Li, J.; Wu, J.; Lin, J.; Li, C.; Lu, H.; Lin, C. Nondestructive Identification of Litchi Downy Blight at Different Stages Based on Spectroscopy Analysis. Agriculture 2022, 12, 402. [Google Scholar] [CrossRef]
- Wan, L.; Li, H.; Li, C.; Wang, A.; Yang, Y.; Wang, P. Hyperspectral Sensing of Plant Diseases: Principle and Methods. Agronomy 2022, 12, 1451. [Google Scholar] [CrossRef]
- Lin, J.; Chen, X.; Pan, R.; Cao, T.; Cai, J.; Chen, Y.; Peng, X.; Cernava, T.; Zhang, X. GrapeNet: A Lightweight Convolutional Neural Network Model for Identification of Grape Leaf Diseases. Agriculture 2022, 12, 887. [Google Scholar] [CrossRef]
- Wang, H.; Shang, S.; Wang, D.; He, X.; Feng, K.; Zhu, H. Plant Disease Detection and Classification Method Based on the Optimized Lightweight YOLOv5 Model. Agriculture 2022, 12, 931. [Google Scholar] [CrossRef]
- Shafik, W.; Tufail, A.; De Silva Liyanage, C.; Apong, R.A.A.H.M. Using Transfer Learning-Based Plant Disease Classification and Detection for Sustainable Agriculture. BMC Plant Biol. 2024, 24, 136. [Google Scholar] [CrossRef]
- Wu, J.; Wen, C.; Chen, H.; Ma, Z.; Zhang, T.; Su, H.; Yang, C. DS-DETR: A Model for Tomato Leaf Disease Segmentation and Damage Evaluation. Agronomy 2022, 12, 2023. [Google Scholar] [CrossRef]
- Yin, C.; Zeng, T.; Zhang, H.; Fu, W.; Wang, L.; Yao, S. Maize Small Leaf Spot Classification Based on Improved Deep Convolutional Neural Networks with a Multi-Scale Attention Mechanism. Agronomy 2022, 12, 906. [Google Scholar] [CrossRef]
- Zendler, D.; Malagol, N.; Schwandner, A.; Töpfer, R.; Hausmann, L.; Zyprian, E. High-Throughput Phenotyping of Leaf Discs Infected with Grapevine Downy Mildew Using Shallow Convolutional Neural Networks. Agronomy 2021, 11, 1768. [Google Scholar] [CrossRef]
- Zahan, N.; Zahid Hasan, M.; Sharif Uddin, M.; Hussain, S.; Fahmida Islam, S. A Deep Learning-Based Approach for Mushroom Diseases Classification. In Application of Machine Learning in Agriculture; Academic Press: Cambridge, MA, USA, 2022; pp. 191–212. [Google Scholar]
- Gu, Y.H.; Yin, H.; Jin, D.; Zheng, R.; Yoo, S.J. Improved Multi-Plant Disease Recognition Method Using Deep Convolutional Neural Networks in Six Diseases of Apples and Pears. Agriculture 2023, 13, 300. [Google Scholar] [CrossRef]
- Orchi, H.; Sadik, M.; Khaldoun, M.; Sabir, E. Automation of Crop Disease Detection through Conventional Machine Learning and Deep Transfer Learning Approaches. Agriculture 2023, 13, 352. [Google Scholar] [CrossRef]
- Mehmood, A.; Ahmad, M.; Ilyas, Q.M. On Precision Agriculture: Enhanced Automated Fruit Disease Identification and Classification Using a New Ensemble Classification Method. Agriculture 2023, 13, 500. [Google Scholar] [CrossRef]
- Sood, S.; Singh, H. A Comparative Study of Grape Crop Disease Classification Using Various Transfer Learning Techniques. Multimed. Tools Appl. 2024, 83, 4359–4382. [Google Scholar] [CrossRef]
- Ngugi, L.C.; Abdelwahab, M.; Abo-Zahhad, M. Tomato Leaf Segmentation Algorithms for Mobile Phone Applications Using Deep Learning. Comput. Electron. Agric. 2020, 178, 105788. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, W.; Cheng, T.; Lei, Y.; Qiao, H.; Guo, W.; Yang, X.; Gu, C. Segmentation of Wheat Scab Fungus Spores Based on CRF_ResUNet++. Comput. Electron. Agric. 2024, 216, 108547. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Hu, Z.; Bai, Y.; Shen, C.; Shi, X. Separate Degree Based Otsu and Signed Similarity Driven Level Set for Segmenting and Counting Anthrax Spores. Comput. Electron. Agric. 2020, 169, 105230. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN Feature Based Graph Convolutional Network for Weed and Crop Recognition in Smart Farming. Comput. Electron. Agric. 2020, 174, 105450. [Google Scholar] [CrossRef]
- Hornberg, A. Handbook of Machine and Computer Vision: The Guide for Developers and Users; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Cubero, S.; Aleixos, N.; Moltó, E.; Gómez-Sanchis, J.; Blasco, J. Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food Bioprocess Technol. 2011, 4, 487–504. [Google Scholar] [CrossRef]
- Gómez-Sanchis, J.; Moltó, E.; Camps-Valls, G.; Gómez-Chova, L.; Aleixos, N.; Blasco, J. Automatic Correction of the Effects of the Light Source on Spherical Objects. An Application to the Analysis of Hyperspectral Images of Citrus Fruits. J. Food Eng. 2008, 85, 191–200. [Google Scholar] [CrossRef]
- Carrasco, J.; Navarro, M.J.; Gea, F.J. Cobweb, a Serious Pathology in Mushroom Crops: A Review. Span. J. Agric. Res. 2017, 15, e10R01. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014, 14, 20078. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision, WACV 2017, Santa Rosa, CA, USA, 27–29 March 2017; pp. 464–472. [Google Scholar]
- Sokolova, M.; Lapalme, G. A Systematic Analysis of Performance Measures for Classification Tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Davis, J.; Goadrich, M. The Relationship between Precision-Recall and ROC Curves. ACM Int. Conf. Proc. Ser. 2006, 148, 233–240. [Google Scholar]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. Lect. Notes Comput. Sci. 2005, 3408, 345–359. [Google Scholar]
- De Diego, I.M.; Redondo, A.R.; Fernández, R.R.; Navarro, J.; Moguerza, J.M. General Performance Score for Classification Problems. Appl. Intell. 2022, 52, 12049–12063. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2009, 88, 303–338. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, C.; Wu, H.; Han, X.; Li, S. ADDLight: An Energy-Saving Adder Neural Network for Cucumber Disease Classification. Agriculture 2022, 12, 452. [Google Scholar] [CrossRef]
- Simumba, N.; Okami, S.; Kodaka, A.; Kohtake, N. Alternative Scoring Factors Using Non-Financial Data for Credit Decisions in Agricultural Microfinance. In Proceedings of the 2018 IEEE International Systems Engineering Symposium (ISSE), Rome, Italy, 1–3 October 2018; pp. 1–8. [Google Scholar]
- Mohanty, S.P.; Hughes, D.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [PubMed]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the ICLR 2021—9th International Conference on Learning Representations, Vienna, Austria, 3–7 May 2021. [Google Scholar]
- Huang, M.; Xu, G.; Li, J.; Huang, J. A Method for Segmenting Disease Lesions of Maize Leaves in Real Time Using Attention YOLACT++. Agriculture 2021, 11, 1216. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep Learning in Agriculture: A Survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Dubovan, J.; Litvik, J.; Benedikovic, D.; Mullerova, J.; Glesk, I.; Veselovsky, A.; Dado, M. Impact of Wind Gust on High-Speed Characteristics of Polarization Mode Dispersion in Optical Power Ground Wire Cables. Sensors 2020, 20, 7110. [Google Scholar] [CrossRef]
Model | Pre-Trained Source | Key Hyperparameters | Total Trainable Parameters |
---|---|---|---|
ResNet-50 | ImageNet (TorchVision) | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~24 M |
DenseNet-201 | ImageNet (TorchVision) | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~20 M |
DarkNet-53 | ImageNet (Darknet Repo) | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~42 M |
Inception-v3 | ImageNet (TorchVision) | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~22 M |
VGG-16 | ImageNet (TorchVision) | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~138 M |
VGG-19 | ImageNet (TorchVision) | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~144 M |
MobileNet-v2 | ImageNet (TorchVision) | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~3.5 M |
EfficientNet-b0 | ImageNet (TorchVision) | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~5.3 M |
NasNet-Large | ImageNet | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~88 M |
NasNet-Mobile | ImageNet | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~5.3 M |
ShuffleNet | ImageNet | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~2.3 M |
SqueezeNet | ImageNet | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~1.2 M |
Xception | ImageNet | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~22.9 M |
GoogleNet | ImageNet | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~6.8 M |
AlexNet | ImageNet | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~61 M |
ResNet-18 | ImageNet | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~11.7 M |
ResNet-101 | ImageNet | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~44.5 M |
Inception-ResNet-v2 | ImageNet | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~55.9 M |
DarkNet-19 | ImageNet (Darknet Repo) | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~20 M |
Places365-GoogLeNet | Places365 | LR = 0.001, Momentum = 0.9, Batch = 11, Epochs = 8 | ~6.8 M |
# | Model | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | AUC (%) | AP (%) | Overall Score (%) |
---|---|---|---|---|---|---|---|---|
1 | ResNet-50 | 99.66 | 99.67 | 99.64 | 99.65 | 99.99 | 99.79 | 99.70 |
2 | DarkNet-53 | 99.47 | 99.44 | 99.45 | 99.44 | 99.99 | 99.55 | 99.51 |
3 | DenseNet-201 | 99.44 | 99.43 | 99.41 | 99.42 | 99.97 | 99.72 | 99.50 |
4 | VGG-16 | 99.41 | 99.36 | 99.40 | 99.38 | 99.98 | 99.72 | 99.47 |
5 | Inception-v3 | 99.19 | 99.15 | 99.18 | 99.16 | 99.97 | 99.74 | 99.30 |
6 | ResNet-18 | 99.06 | 99.03 | 99.02 | 99.03 | 99.98 | 99.76 | 99.20 |
7 | ResNet-101 | 98.78 | 98.75 | 98.75 | 98.75 | 99.97 | 99.71 | 98.97 |
8 | NasNet-Large | 98.78 | 98.74 | 98.76 | 98.75 | 99.96 | 99.69 | 98.96 |
9 | DarkNet-19 | 99.22 | 99.16 | 99.23 | 99.19 | 99.98 | 95.95 | 98.95 |
10 | VGG-19 | 98.59 | 98.52 | 98.71 | 98.59 | 99.96 | 99.45 | 98.84 |
11 | GoogLeNet | 98.25 | 98.17 | 98.19 | 98.18 | 99.93 | 99.55 | 98.49 |
12 | MobileNet-v2 | 98.22 | 98.19 | 98.14 | 98.16 | 99.92 | 99.56 | 98.47 |
13 | ShuffleNet | 98.12 | 98.02 | 98.10 | 98.05 | 99.92 | 99.54 | 98.40 |
14 | NasNet-Mobile | 97.84 | 97.82 | 97.73 | 97.77 | 99.92 | 99.52 | 98.16 |
15 | Inception-ResNet-v2 | 97.78 | 97.74 | 97.70 | 97.71 | 99.90 | 99.44 | 98.10 |
16 | SqueezeNet | 96.46 | 96.39 | 96.32 | 96.31 | 99.80 | 98.93 | 96.94 |
17 | Xception | 96.28 | 96.17 | 96.16 | 96.16 | 99.73 | 98.79 | 96.78 |
18 | AlexNet | 95.68 | 96.03 | 95.38 | 95.58 | 99.84 | 99.25 | 96.40 |
19 | Places365-GoogLeNet | 94.93 | 94.98 | 94.86 | 94.79 | 99.68 | 98.63 | 95.72 |
20 | EfficientNet-b0 | 94.52 | 94.30 | 94.33 | 94.30 | 99.50 | 97.96 | 95.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albayrak, U.; Golcuk, A.; Aktas, S.; Coruh, U.; Tasdemir, S.; Baykan, O.K. Classification and Analysis of Agaricus bisporus Diseases with Pre-Trained Deep Learning Models. Agronomy 2025, 15, 226. https://doi.org/10.3390/agronomy15010226
Albayrak U, Golcuk A, Aktas S, Coruh U, Tasdemir S, Baykan OK. Classification and Analysis of Agaricus bisporus Diseases with Pre-Trained Deep Learning Models. Agronomy. 2025; 15(1):226. https://doi.org/10.3390/agronomy15010226
Chicago/Turabian StyleAlbayrak, Umit, Adem Golcuk, Sinan Aktas, Ugur Coruh, Sakir Tasdemir, and Omer Kaan Baykan. 2025. "Classification and Analysis of Agaricus bisporus Diseases with Pre-Trained Deep Learning Models" Agronomy 15, no. 1: 226. https://doi.org/10.3390/agronomy15010226
APA StyleAlbayrak, U., Golcuk, A., Aktas, S., Coruh, U., Tasdemir, S., & Baykan, O. K. (2025). Classification and Analysis of Agaricus bisporus Diseases with Pre-Trained Deep Learning Models. Agronomy, 15(1), 226. https://doi.org/10.3390/agronomy15010226