Effects of Different Microplastics on Methane Production and Microbial Community Structure in Anaerobic Digestion of Cattle Manure
"> Figure 1
<p>Cumulative methane production from cattle manure at different MPs.</p> "> Figure 2
<p>Effects of different MP exposures on the degradation of organic compounds (<b>a</b>) SCOD, (<b>b</b>) TOC, and (<b>c</b>) ammonia nitrogen.</p> "> Figure 3
<p>Effects of different MP exposures on total VFAs (including acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric acid, and valeric acid).</p> "> Figure 4
<p>Effects of different MPs exposures on (<b>a</b>) ACK activity and (<b>b</b>) LDH release. Note: ACK, acetate kinase; LDH, lactate dehydrogenase.</p> "> Figure 5
<p>SEM images of MPs before and after AD.</p> "> Figure 6
<p>Relative abundances of (<b>a</b>) bacteria and (<b>b</b>) archaeal at phylum level; (<b>c</b>) Abundance of archaea at the Unweighted UniFrac metrics NMDS analysis; (<b>d</b>) archaeal community analysis genus level.</p> "> Figure 7
<p>(<b>a</b>) Spearman’s correlation between microorganisms and environmental factors. * 0.01 < <span class="html-italic">p</span> ≤ 0.05, ** 0.001 < <span class="html-italic">p</span> ≤ 0.01; (<b>b</b>) Heat map of relative abundance of acidification pathway and functional enzyme genes. (Relative abundance in ‰ (parts per thousand)).</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Materials
2.2. Biochemical Methane Potential Tests
2.3. Determination of Biogas Production
2.4. Kinetic Model Analysis
2.5. Analytical Methods
2.6. Microbial Community Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effects of MPs on Methane Production
3.2. Effect of MPs on the Performance of Anaerobic Fermentation System
3.2.1. Effects of MPs on Organic Metabolism
3.2.2. System Stability Under MPs Exposure
3.3. Properties of MPs Before and After AD
3.4. Effects of Different MPs on the Microbial Community of AD System
3.4.1. Responses of Bacterial and Archaeal Phylum Changes to MPs
3.4.2. Function of Archaea Genus During AD
3.4.3. Correlation Analysis of Environmental Factors with Microbia
3.5. Shifts in Microbial Enzyme Function
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dokl, M.; Copot, A.; Krajnc, D.; Fan, Y.V.; Vujanović, A.; Aviso, K.B.; Tan, R.R.; Kravanja, Z.; Čuček, L. Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustain. Prod. Consum. 2024, 51, 498–518. [Google Scholar] [CrossRef]
- Osman, A.I.; Hosny, M.; Eltaweil, A.S.; Omar, S.; Elgarahy, A.M.; Farghali, M.; Yap, P.S.; Wu, Y.S.; Nagandran, S.; Batumalaie, K.J.E.C.L. Microplastic sources, formation, toxicity and remediation: A review. Environ. Chem. Lett. 2023, 21, 2129–2169. [Google Scholar] [CrossRef]
- Purayil, N.C.; Thomas, B.; Tom, R.T. Microplastics—A major contaminant in marine macro algal population: Review. Mar. Environ. Res. 2024, 193, 106281. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, I.; Yusoff, M.S.; Manan, T.S.B.A.; Koroma, M. Microplastics in manure: Sources, analytical methods, toxicodynamic, and toxicokinetic endpoints in livestock and poultry. Environ. Adv. 2023, 12, 100372. [Google Scholar] [CrossRef]
- Beriot, N.; Peek, J.; Zornoza, R.; Geissen, V.; Huerta Lwanga, E. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci. Total Environ. 2021, 755, 142653. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Shao, T.; Wang, R.; Dong, Z.; Xing, B. Antibiotics and microplastics in manure and surrounding soil of farms in the Loess Plateau: Occurrence and correlation. J. Hazard. Mater. 2024, 465, 133434. [Google Scholar] [CrossRef]
- Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef]
- Pérez-Flores, J.; Borges-Ramírez, M.M.; Vargas-Contreras, J.A.; Osten, J.R.-v. Inter-annual variation in the microplastics abundance in feces of the Baird’s tapir (Tapirus bairdii) from the Selva Maya, México. Sci. Total Environ. 2024, 941, 173659. [Google Scholar] [CrossRef]
- Wei, Z.; Zhuang, M.; Hellegers, P.; Cui, Z.; Hoffland, E. Towards circular nitrogen use in the agri-food system at village and county level in China. Agric. Sys. 2023, 209, 103683. [Google Scholar] [CrossRef]
- Wang, L. Harmless treatment and resource utilization of livestock and poultry manure. Chin. J. Anim. Husb. Vet. Med. 2017, 5, 43. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Z.; Ganeshan, P.; Sar, T.; Xu, S.; Rajendran, K.; Sindhu, R.; Binod, P.; Pandey, A.; Zhang, Z.; et al. Anaerobic digestion in global bio-energy production for sustainable bioeconomy: Potential and research challenges. Renew. Sustain. Energy Rev. 2025, 208, 114985. [Google Scholar] [CrossRef]
- Chen, H.; Tang, M.; Yang, X.; Tsang, Y.F.; Wu, Y.; Wang, D.; Zhou, Y. Polyamide 6 microplastics facilitate methane production during anaerobic digestion of waste activated sludge. Chem. Eng. J. 2021, 408, 127251. [Google Scholar] [CrossRef]
- Qiao, X.; Kong, X.; Che, Q.; Zhou, H.; Yuan, J.; Zhang, Y. Response of methanogenic metabolism to polystyrene microplastics at varying concentrations: The trade-off between inhibitory and protective effects in anaerobic digestion. J. Clean. Prod. 2024, 467, 142942. [Google Scholar] [CrossRef]
- Rozman, U.; Turk, T.; Skalar, T.; Zupančič, M.; Čelan Korošin, N.; Marinšek, M.; Olivero-Verbel, J.; Kalčíková, G. An extensive characterization of various environmentally relevant microplastics—Material properties, leaching and ecotoxicity testing. Sci. Total Environ. 2021, 773, 145576. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Su, W.; Hongyan, C.; Shuangdui, Y.; Yushan, B.; Zongyun, C.; Jiajia, L. Effects of MC1 pretreatment on hydrolysis characteristics and methane productionefficiency of soybean straw. J. Agro-Environ. Sci. 2020, 39, 2074–2080. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Wang, P.; Su, Y.; Xie, B. Size-dependent effects of polystyrene microplastics on anaerobic digestion performance of food waste: Focusing on oxidative stress, microbial community, key metabolic functions. J. Hazard. Mater. 2022, 438, 129493. [Google Scholar] [CrossRef]
- Wang, C.; Wei, W.; Zhang, Y.-T.; Dai, X.; Ni, B.-J. Different sizes of polystyrene microplastics induced distinct microbial responses of anaerobic granular sludge. Water Res. 2022, 220, 118607. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.M.M.; Hai, F.I.; Lu, W.; Al-Mamun, A.; Dhar, B.R. A review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion. Bioresour. Technol. 2021, 329, 124894. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, X.; Dong, W.; Li, Z.; Gao, J.; Zhou, G.; Teng, X.; Cao, K.; Zheng, Z. Unraveling the effects and mechanisms of microplastics on anaerobic fermentation: Exploring microbial communities and metabolic pathways. Sci. Total Environ. 2024, 939, 173518. [Google Scholar] [CrossRef]
- He, Z.-W.; Yang, W.-J.; Ren, Y.-X.; Jin, H.-Y.; Tang, C.-C.; Liu, W.-Z.; Yang, C.-X.; Zhou, A.-J.; Wang, A.-J. Occurrence, effect, and fate of residual microplastics in anaerobic digestion of waste activated sludge: A state-of-the-art review. Bioresour. Technol. 2021, 331, 125035. [Google Scholar] [CrossRef] [PubMed]
- Cazaudehore, G.; Guyoneaud, R.; Lallement, A.; Gassie, C.; Monlau, F. Biochemical methane potential and active microbial communities during anaerobic digestion of biodegradable plastics at different inoculum-substrate ratios. J. Environ. Manag. 2022, 324, 116369. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Takeuchi, H.; Hasegawa, T.; Kumar, R. Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 2012, 43, 273–282. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; Yang, S. Comparison of decomposition characteristics of MC1 on alkali-treated and untreated millet straws. Nat. Sci. Ed. 2018, 9, 66–70. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, D.; Pang, X.; Zhu, W.; Zhao, J.; Xu, J. Effects of polyethylene microplastics on the fate of antibiotic resistance genes and microbial communities in anaerobic digestion of dairy wastes. J. Clean. Prod. 2021, 292, 125909. [Google Scholar] [CrossRef]
- Wei, W.; Wang, C.; Shi, X.; Zhang, Y.-T.; Chen, Z.; Wu, L.; Ni, B.-J. Multiple microplastics induced stress on anaerobic granular sludge and an effectively overcoming strategy using hydrochar. Water Res. 2022, 222, 118895. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Xiao, K.; Zhu, Y.; Ou, B.; Yu, W.; Liang, S.; Hou, H.; Yuan, S.; Gan, F.; Mi, R.; et al. Deciphering the role of microplastic size on anaerobic sludge digestion: Changes of dissolved organic matter, leaching compounds and microbial community. Environ. Res. 2022, 214, 114032. [Google Scholar] [CrossRef]
- Kafle, G.K.; Chen, L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Wu, J. Enhancement of methane production in anaerobic digestion process: A review. Appl. Energy 2019, 240, 120–137. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progr. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Pan, W.; Xiaolu, D.; Xiteng, C.; Shuting, S.; Xiaofei, L.; Lianhai, R.; Zheng, L. Effects of Fe0 on biogas production and the fate of antibiotic resistance genes in anaerobic digestion of food waste inoculated with sludge. Environ. Eng. Sci. 2019, 37, 178–182. [Google Scholar] [CrossRef]
- Capson-Tojo, G.; Moscoviz, R.; Astals, S.; Robles, Á.; Steyer, J.P. Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion. Renew. Sustain. Energy Rev. 2020, 117, 109487. [Google Scholar] [CrossRef]
- Pham, T.P.T.; Kaushik, R.; Parshetti, G.K.; Mahmood, R.; Balasubramanian, R. Food waste-to-energy conversion technologies: Current status and future directions. Waste Manag. 2015, 38, 399–408. [Google Scholar] [CrossRef]
- Dilara Hatinoglu, M.; Dilek Sanin, F. Fate and effects of polyethylene terephthalate (PET) microplastics during anaerobic digestion of alkaline-thermal pretreated sludge. Waste Manag. 2022, 153, 376–385. [Google Scholar] [CrossRef]
- Zakaria, B.S.; Azizi, S.M.M.; Pramanik, B.K.; Hai, F.I.; Elbeshbishy, E.; Dhar, B.R. Responses of syntrophic microbial communities and their interactions with polystyrene nanoplastics in a microbial electrolysis cell. Sci. Total Environ. 2023, 903, 166082. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, L.; Xu, Z.; Yang, M.; Shao, X.; Yang, S.; Zhang, H.; Wu, F.; Han, Z. Effect of polystyrene microplastics on the volatile fatty acids production from waste activated sludge fermentation. Sci. Total Environ. 2021, 799, 149394. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Zhu, X.; Zheng, X.; Feng, L. Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environ. Sci. Technol. 2012, 46, 12452–12458. [Google Scholar] [CrossRef]
- Xiaoying, J.; Yongxi, L.; Yan, Q.; Pin, G. Effect of polypropylene microplastics on the performance of sludge anaerobic digestion. China Environ. Sci. 2021, 41, 2252–2257. [Google Scholar] [CrossRef]
- Chen, H.; Zou, Z.; Tang, M.; Yang, X.; Tsang, Y.F. Polycarbonate microplastics induce oxidative stress in anaerobic digestion of waste activated sludge by leaching bisphenol A. J. Hazard. Mater. 2023, 443, 130158. [Google Scholar] [CrossRef]
- Yitao, P.; Ruyue, Y.; Yirong, X.; Shuizhou, K.; Xiaodong, W.; Jingsi, G.; Kang, X. Research progress on effects of microplastics on excess sludge and their degradation pathways. Environ. Eng. Sci. 2024, 42, 48–56. [Google Scholar] [CrossRef]
- Ma, J.; Gong, Z.; Wang, Z.; Liu, H.; Chen, G.; Guo, G. Elucidating degradation properties, microbial community, and mechanism of microplastics in sewage sludge under different terminal electron acceptors conditions. Bioresour. Technol. 2022, 346, 126624. [Google Scholar] [CrossRef] [PubMed]
- Pinnell, L.J.; Turner, J.W. Shotgun Metagenomics Reveals the Benthic Microbial Community Response to Plastic and Bioplastic in a Coastal Marine Environment. Front. Microbiol. 2019, 10, 1252. [Google Scholar] [CrossRef]
- Dykstra, C.M.; Pavlostathis, S.G. Methanogenic Biocathode Microbial Community Development and the Role of Bacteria. Environ. Sci. Technol. 2017, 51, 5306–5316. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Mao, F.; Zhang, J.; He, Y.; Tong, Y.W.; Peng, Y. Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: Cell viability and methanogenic pathways. Chemosphere 2021, 272, 129863. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; El-Mashad, H.M.; Chen, C.; Liu, G.; Zhang, R. Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production. Sci. Total Environ. 2021, 763, 143007. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Qiu, Y.; Ren, L.; Jiang, B. Microbial characteristics in anaerobic digestion process of food waste for methane production–A review. Bioresour. Technol. 2018, 248, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Zamanzadeh, M.; Hagen, L.H.; Svensson, K.; Linjordet, R.; Horn, S.J. Anaerobic digestion of food waste—Effect of recirculation and temperature on performance and microbiology. Water Res. 2016, 96, 246–254. [Google Scholar] [CrossRef]
- Rivière, D.; Desvignes, V.; Pelletier, E.; Chaussonnerie, S.; Guermazi, S.; Weissenbach, J.; Li, T.; Camacho, P.; Sghir, A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 2009, 3, 700–714. [Google Scholar] [CrossRef]
- Si, B.; Liu, Z.; Zhang, Y.; Li, J.; Shen, R.; Zhu, Z.; Xing, X. Towards biohythane production from biomass: Influence of operational stage on anaerobic fermentation and microbial community. Int. J. Hydrogen Energy 2016, 41, 4429–4438. [Google Scholar] [CrossRef]
- Lee, J.; Hong, J.; Jeong, S.; Chandran, K.; Park, K.Y. Interactions between substrate characteristics and microbial communities on biogas production yield and rate. Bioresour. Technol. 2020, 303, 122934. [Google Scholar] [CrossRef]
- Gulhane, M.; Pandit, P.; Khardenavis, A.; Singh, D.; Purohit, H. Study of microbial community plasticity for anaerobic digestion of vegetable waste in Anaerobic Baffled Reactor. Renew. Energy 2017, 101, 59–66. [Google Scholar] [CrossRef]
- Nobu, M.K.; Narihiro, T.; Kuroda, K.; Mei, R.; Liu, W.T. Chasing the elusive Euryarchaeota class WSA2: Genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 2016, 10, 2478–2487. [Google Scholar] [CrossRef] [PubMed]
- Ottoni, J.R.; Bernal, S.P.F.; Marteres, T.J.; Luiz, F.N.; Dos Santos, V.P.; Mari, Â.G.; Somer, J.G.; de Oliveira, V.M.; Passarini, M.R.Z. Cultured and uncultured microbial community associated with biogas production in anaerobic digestion processes. Arch. Microbiol. 2022, 204, 340. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, J.; Tang, Y.; Zhang, X.; Shi, X.; Wang, X.; Li, Y. Enhancement of Fermentation Performance in the Anaerobic Co-Digestion of Chicken Manure and Corn Straw under Biogas Slurry Reflux via Air Stripping of the Digestate. Agronomy 2024, 14, 1794. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Yao, L.; Fu, L.; Liu, Z. The Biogas Production Potential and Community Structure Characteristics of the Co-Digestion of Dairy Manure and Tomato Residues. Agronomy 2024, 14, 881. [Google Scholar] [CrossRef]
- Jing, Y.; Wan, J.; Angelidaki, I.; Zhang, S.; Luo, G. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite. Water Res. 2017, 108, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Noori, M.T.; Vu, M.T.; Ali, R.B.; Min, B. Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion. Chem. Eng. J. 2020, 392, 123689. [Google Scholar] [CrossRef]
- Luo, L.; Xu, S.; Liang, J.; Zhao, J.; Wong, J.W.C. Mechanistic study of the effect of leachate recirculation ratios on the carboxylic acid productions during a two-phase food waste anaerobic digestion. Chem. Eng. J. 2023, 453, 139800. [Google Scholar] [CrossRef]
- Singh-Wissmann, K.; Miles, R.D.; Ingram-Smith, C.; Ferry, J.G. Identification of essential arginines in the acetate kinase from Methanosarcina thermophila. Biochemistry 2000, 39, 3671–3677. [Google Scholar] [CrossRef]
Samples | pH |
EC (mS/cm) |
TS (%) |
VS (%) |
Organic Carbon (g/Kg) |
---|---|---|---|---|---|
Cattle manure | 7.68 ± 0.02 | 3.11 ± 0.01 | 16.69 ± 0.33 | 78 ± 0.23 | 382.39 ± 20 |
Inoculum | - | - | 12.18 ± 0.30 | 29.45 ± 0.20 | - |
Different Treatments |
Pmax (mL) |
Rmax (mL/d) |
λ (d) |
R2 (%) |
---|---|---|---|---|
CK | 9510 ± 62 | 585 ± 12 | −0.87 ± 0.17 | 99.71 |
PP | 9278 ± 59 | 572 ± 12 | −0.87 ± 0.18 | 99.72 |
PVC | 9063 ± 59 | 565 ± 12 | −0.9 ± 0.17 | 99.70 |
PHA | 8793 ± 60 | 544 ± 12 | −0.92 ± 0.18 | 99.68 |
PE | 10,118 ± 71 | 633 ± 14 | −0.55 ± 0.18 | 99.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhao, C.; Yuan, T.; Wang, Q.; Zhang, Q.; Yan, S.; Guo, X.; Cao, Y.; Cheng, H. Effects of Different Microplastics on Methane Production and Microbial Community Structure in Anaerobic Digestion of Cattle Manure. Agronomy 2025, 15, 107. https://doi.org/10.3390/agronomy15010107
Zhang M, Zhao C, Yuan T, Wang Q, Zhang Q, Yan S, Guo X, Cao Y, Cheng H. Effects of Different Microplastics on Methane Production and Microbial Community Structure in Anaerobic Digestion of Cattle Manure. Agronomy. 2025; 15(1):107. https://doi.org/10.3390/agronomy15010107
Chicago/Turabian StyleZhang, Mengjiao, Congxu Zhao, Tian Yuan, Qing Wang, Qiuxian Zhang, Shuangdui Yan, Xiaohong Guo, Yanzhuan Cao, and Hongyan Cheng. 2025. "Effects of Different Microplastics on Methane Production and Microbial Community Structure in Anaerobic Digestion of Cattle Manure" Agronomy 15, no. 1: 107. https://doi.org/10.3390/agronomy15010107
APA StyleZhang, M., Zhao, C., Yuan, T., Wang, Q., Zhang, Q., Yan, S., Guo, X., Cao, Y., & Cheng, H. (2025). Effects of Different Microplastics on Methane Production and Microbial Community Structure in Anaerobic Digestion of Cattle Manure. Agronomy, 15(1), 107. https://doi.org/10.3390/agronomy15010107