Advances in Sorghum Improvement for Climate Resilience in the Global Arid and Semi-Arid Tropics: A Review
Abstract
:1. Introduction
2. Global Production of Sorghum
3. Potentials of Sorghum as a Staple Food Crop
4. Perception of Farmers on Sorghum Production Under the Current Climate Change
5. Sorghum as a Climate-Resilient Crop
6. Challenges of Sorghum Breeding
7. Recent Advancements in Technologies to Surpass Challenges in Sorghum Breeding
8. Rapid Generation Advancement and Recycling of Elite Sorghum Materials
8.1. Genomic Selection
8.2. High-Throughput Phenotyping Tools for Sorghum Improvement
8.3. Gene Editing
9. Genetic Diversity of Sorghum
Use of Genebanks to Support Sorghum Breeding
10. Increasing Farmer Production Through Sorghum Hybrid Seed Production
11. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tripathi, A.D.; Mishra, R.; Maurya, K.K.; Singh, R.B.; Wilson, D.W. Estimates for world population and global food availability for global health. In The Role of Functional Food Security in Global Health; Academic Press: Cambridge, MA, USA, 2019; pp. 3–24. [Google Scholar]
- World Health Organization. The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; Volume 2020. [Google Scholar]
- Hao, H.; Li, Z.; Leng, C.; Lu, C.; Luo, H.; Liu, Y.; Jing, H.C. Sorghum breeding in the genomic era: Opportunities and challenges. Theor. Appl. Genet. 2021, 134, 1899–1924. [Google Scholar] [CrossRef] [PubMed]
- Pixley, K.V.; Cairns, J.E.; Lopez-Ridaura, S.; Ojiewo, C.O.; Dawud, M.A.; Drabo, I.; Mindaye, T.; Nebie, B.; Asea, G.; Das, B.; et al. Redesigning crop varieties to win the race between climate change and food security. Mol. Plant 2023, 16, 1590–1611. [Google Scholar] [CrossRef] [PubMed]
- Tack, J.; Lingenfelser, J.; Jagadish, S.K. Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proc. Natl. Acad. Sci. USA 2017, 114, 9296–9301. [Google Scholar] [CrossRef] [PubMed]
- FAO Statistical Databases. Food and Agriculture Organization of the United Nations Database of Agricultural Production. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 3 November 2017).
- Bean, S.R.; Impa, S.M.; Perumal, R.; Sunoj, V.J.; Jagadish, S.K. Water deficit and heat stress induced alterations in grain physico-chemical characteristics and micronutrient composition in field grown grain sorghum. J. Cereal Sci. 2019, 86, 124–131. [Google Scholar]
- Audilakshmi, S.; Swarnalatha, M. Sorghum for starch and grain ethanol. In Breeding Sorghum for Diverse End Uses; Woodhead Publishing: Sawston, UK, 2019; pp. 239–254. [Google Scholar]
- Visarada, K.B.R.S.; Aruna, C. Sorghum: A bundle of opportunities in the 21st century. In Breeding Sorghum for Diverse End Uses; Woodhead Publishing: Sawston, UK, 2019; pp. 1–14. [Google Scholar]
- Kang, X.; Gao, W.; Cheng, Y.; Yu, B.; Cui, B.; Abd El-Aty, A.M. Investigating structural and property modifications in starch from waxy, stick, and H37 sorghum varieties: Advancing starch structure understanding and applications. Ind. Crops Prod. 2023, 203, 117239. [Google Scholar] [CrossRef]
- Wang, Y.H.; Upadhyaya, H.D.; Dweikat, I. Sorghum. In Genetic and Genomic Resources for Grain Cereals Improvement; Academic Press: Cambridge, MA, USA, 2016; pp. 227–251. [Google Scholar]
- Khoddami, A.; Messina, V.; Vadabalija Venkata, K.; Farahnaky, A.; Blanchard, C.L.; Roberts, T.H. Sorghum in foods: Functionality and potential in innovative products. Crit. Rev. Food Sci. Nutr. 2023, 63, 1170–1186. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Yones, H.A.; Karim, N.; Taha, E.M.; Chen, W. Potential processing technologies for developing sorghum-based food products: An update and comprehensive review. Trends Food Sci. Technol. 2021, 110, 168–182. [Google Scholar] [CrossRef]
- Deb, U.K.; Bantilan, M.C.S.; Roy, A.D.; Rao, P.P. Global sorghum production scenario. In Sorghum Genetic Enhancement: Research Process, Dissemination and Impacts; International Crops Research Institute for the Semi-Arid Tropics (ICRISAT): Patancheru, India, 2004; pp. 21–38. ISBN 92-9066-470-3. [Google Scholar]
- Wu, G.; Bennett, S.J.; Bornman, J.F.; Clarke, M.W.; Fang, Z.; Johnson, S.K. Phenolic profile and content of sorghum grains under different irrigation managements. Food Res. Int. 2017, 97, 347–355. [Google Scholar] [CrossRef]
- Motsi, H.; Molapo, M.; Phiri, E.E. A review on sweet sorghum adaptive capacity on improving food security and poverty alleviation in sub-Saharan Africa. South Afr. J. Bot. 2022, 150, 323–329. [Google Scholar] [CrossRef]
- Teferra, T.F.; Awika, J.M. Sorghum as a healthy global food security crop: Opportunities and challenges. Cereal Foods World 2019, 64, 1–8. [Google Scholar]
- Sirany, T.; Tadele, E.; Aregahegn, H.; Wale, D. Economic Potentials and Use Dynamics of Sorghum Food System in Ethiopia: Its Implications to Resolve Food Deficit. Adv. Agric. 2022, 4580643. [Google Scholar] [CrossRef]
- de Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Semere, T.; Tsehaye, Y.; Tareke, L.; Westengen, O.T.; Fjellheim, S. Nutritional and Antinutritional Potentials of Sorghum: A Comparative Study among Different Sorghum Landraces of Tigray, Northern Ethiopia. Agriculture 2023, 13, 1753. [Google Scholar] [CrossRef]
- Taylor, J.R. Sorghum, and millets: Taxonomy, history, distribution, and production. In Sorghum and Millets; AACC International Press: St Paul, MN, USA, 2019; pp. 1–21. [Google Scholar]
- Ostmeyer, T.J.; Bahuguna, R.N.; Kirkham, M.B.; Bean, S.; Jagadish, S.V. Enhancing sorghum yield through efficient use of nitrogen–challenges and opportunities. Front. Plant Sci. 2022, 13, 845443. [Google Scholar] [CrossRef] [PubMed]
- Makanda, I.; Derera, J.; Tongoona, P.; Sibiya, J. Development of sorghum for bio-energy: A view from the stakeholders and priorities for breeding dual purpose varieties. Afr. J. Agric. Res. 2011, 6, 4477–4486. [Google Scholar]
- Mengistu, G.; Shimelis, H.; Laing, M.; Lule, D. Assessment of farmers’ perceptions of production constraints, and their trait preferences of sorghum in western Ethiopia: Implications for anthracnose resistance breeding. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 241–249. [Google Scholar] [CrossRef]
- Ahmad Yahaya, M.; Shimelis, H.; Nebie, B.; Ojiewo, C.O.; Danso-Abbeam, G. Sorghum production in Nigeria: Opportunities, constraints, and recommendations. Acta Agric. Scand. Sect. B Soil Plant Sci. 2022, 72, 660–672. [Google Scholar] [CrossRef]
- Nyabako, T.; Mvumi, B.M.; Stathers, T.; Machekano, H. Smallholder grain postharvest management in a variable climate: Practices and perceptions of smallholder farmers and their service-providers in semi-arid areas. Environ. Dev. Sustain. 2021, 23, 9196–9222. [Google Scholar] [CrossRef]
- Wanga, M.A.; Shimelis, H.; Mengistu, G. Sorghum production in northern namibia: Farmers’ perceived constraints and trait preferences. Sustainability 2022, 14, 10266. [Google Scholar] [CrossRef]
- Bjornlund, V.; Bjornlund, H.; Van Rooyen, A.F. Why agricultural production in sub-Saharan Africa remains low compared to the rest of the world—A historical perspective. Int. J. Water Resour. Dev. 2020, 36 (Suppl. S1), S20–S53. [Google Scholar] [CrossRef]
- Khalifa, M.; Eltahir, E.A. Assessment of global sorghum production, tolerance, and climate risk. Front. Sustain. Food Syst. 2023, 7, 1184373. [Google Scholar] [CrossRef]
- Yusuph, A.S.; Nzunda, E.F.; Mourice, S.K.; Dalgaard, T. Usage of Agroecological Climate-Smart Agriculture Practices among Sorghum and Maize Smallholder Farmers in Semi-Arid Areas in Tanzania. East Afr. J. Agric. Biotechnol. 2023, 6, 378–405. [Google Scholar] [CrossRef]
- Mwadalu, R.; Mwangi, M. The potential role of sorghum in enhancing food security in semi-arid eastern Kenya: A review. J. Appl. Biosci. 2013, 71, 5786–5799. [Google Scholar] [CrossRef]
- Mukarumbwa, P.; Mushunje, A. Potential of sorghum and finger millet to enhance household food security in Zimbabwe’s semi-arid regions: A review. In Proceedings of the 2010 AAAE Third Conference/AEASA 48th Conference, Cape Town, South Africa, 19–23 September 2010. [Google Scholar]
- Orr, A.; Mwema, C.; Mulinge, W. The value chain for sorghum beer in Kenya. CRISAT, Nairobi, KARI, Nairobi, Kenya. 2013, I. Series Paper, 16.
- Njagi, T.; Onyango, K.; Kirimi, L. Sorghum Production in Kenya: Farm-Level Characteristics, Constraints, and Opportunities; Tegemeo Institute: Nairobi, Kenya, 2019. [Google Scholar]
- Chadalavada, K.; Kumari, B.R.; Kumar, T.S. Sorghum mitigates climate variability and change on crop yield and quality. Planta 2021, 253, 113. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Hammer, G.L.; Chenu, K.; Zheng, B.; McLean, G.; Chapman, S.C. The shifting influence of drought and heat stress for crops in northeast Australia. Glob. Chang. Biol. 2015, 21, 4115–4127. [Google Scholar] [CrossRef]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.T.; Mafongoya, P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 12, 5685–5711. [Google Scholar] [CrossRef]
- Liaqat, W.; Altaf, M.T.; Barutçular, C.; Zayed, E.M.; Hussain, T. Drought, and sorghum: A bibliometric analysis using VOS viewer. J. Biomol. Struct. Dyn. 2023, 14, 1–13. [Google Scholar] [CrossRef]
- Mwamahonje, A.; Eleblu, J.S.Y.; Ofori, K.; Deshpande, S.; Feyissa, T.; Bakuza, W.E. Sorghum production constraints, trait preferences, and strategies to combat drought in Tanzania. Sustainability 2021, 13, 12942. [Google Scholar] [CrossRef]
- Hadebe, S.T.; Modi, A.T.; Mabhaudhi, T. Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in sub-Saharan Africa. J. Agron. Crop Sci. 2017, 203, 177–191. [Google Scholar] [CrossRef]
- Getachew, F.; Bayabil, H.K.; Hoogenboom, G.; Kiker, G.A.; Yu, Z.; Li, Y. Development of climate-smart sorghum ideotype for climate resilience in Ethiopia. Field Crops Res. 2023, 303, 109135. [Google Scholar] [CrossRef]
- Arodi, N. Genetic Improvement for Grain Yield Under Drought Stress, Composition, and Gene Action on Elite Sorghum Genotypes of Kenya. Doctoral Dissertation, University of Nairobi, Nairobi, Kenya, 2020. [Google Scholar]
- Friday, N.M.; Kubiku, F.N.M.; Mandumbu, R.; Nyamangara, J.; Nyamadzawo, G. Sorghum (Sorghum bicolor L.) yield response to rainwater harvesting practices in the semi-arid farming environments of Zimbabwe: A meta-analysis. Heliyon 2022, 8, e09164. [Google Scholar]
- Nagesh Kumar, M.V.; Ramya, V.; Maheshwaramma, S.; Ganapathy, K.N.; Govindaraj, M.; Kavitha, K.; Vanisree, K. Exploiting Indian landraces to develop biofortified grain sorghum with high protein and minerals. Front. Nutr. 2023, 10, 1228422. [Google Scholar] [CrossRef] [PubMed]
- Juliana, P.; Montesinos-López, O.A.; Crossa, J.; Mondal, S.; González Pérez, L.; Poland, J.; Singh, R.P. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. Theor. Appl. Genet. 2019, 132, 177–194. [Google Scholar] [CrossRef] [PubMed]
- Badigannavar, A.; Teme, N.; de Oliveira, A.C.; Li, G.; Vaksmann, M.; Viana, V.E.; Sarsu, F. Physiological, genetic, and molecular basis of drought resilience in sorghum [Sorghum bicolor (L.) Moench]. Indian J. Plant Physiol. 2018, 23, 670–688. [Google Scholar] [CrossRef]
- Mengistu, G.; Shimelis, H.; Laing, M.; Lule, D. Breeding for anthracnose (‘Colletotrichum sublineolum’ Henn.) resistance in sorghum: Challenges and opportunities. Aust. J. Crop Sci. 2018, 12, 1911–1920. [Google Scholar] [CrossRef]
- Bejiga, T.; Teressa, T.; Nadew, D. Molecular Breeding Approaches for Drought and Drought Related Traits in Sorghum: A Review Article. Int. J. Res. 2021, 7, 23–34. [Google Scholar]
- Prabhakar; Madhusudhana, R.; Aruna, C. Sorghum Breeding. In Fundamentals of Field Crop Breeding; Springer: Singapore, 2022; pp. 367–447. [Google Scholar]
- Wagaw, K. Review on mechanisms of drought tolerance in sorghum (Sorghum bicolor (L.) Moench) basis and breeding methods. Acad. Res. J. Agric. Sci. Res. 2019, 7, 87–99. [Google Scholar]
- Yang, L.; Zhou, Q.; Sheng, X.; Chen, X.; Hua, Y.; Lin, S.; Tu, M. Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications. Int. J. Mol. Sci. 2023, 24, 14549. [Google Scholar] [CrossRef]
- Rakshit, S.; Bellundagi, A. Conventional breeding techniques in sorghum. In Breeding Sorghum for Diverse End Uses; Woodhead Publishing: Sawston, UK, 2019; pp. 77–91. [Google Scholar]
- Mofokeng, A.M.; Shimelis, H.; Laing, M. Breeding strategies to improve sorghum quality. Aust. J. Crop Sci. 2017, 11, 142–148. [Google Scholar] [CrossRef]
- Yahaya, M.A.; Shimelis, H. Drought stress in sorghum: Mitigation strategies, breeding methods and technologies—A review. J. Agron. Crop Sci. 2022, 208, 127–142. [Google Scholar] [CrossRef]
- Reddy, B.V.S.; Ramesh, S.; Reddy, P.S. Sorghum breeding research at ICRISAT-goals, strategies, methods, and accomplishments. Int. Sorghum Millets Newsl. 2004, 45, 5–12. [Google Scholar]
- Burow, G.; Chopra, R.; Hughes, H.; Xin, Z.; Burke, J. Marker assisted selection in sorghum using KASP assay for the detection of single nucleotide polymorphism/insertion deletion. Sorghum Methods Protoc. 2019, 1931, 75–84. [Google Scholar]
- Mehtre, S.P. Genetic diversity analysis, QTL mapping and marker-assisted selection for shoot fly resistance in sorghum [Sorghum bicolor (L,) Moench]. Ph.D. Dissertation, Marathwada Agricultural University, Parbhani, India, 2006. [Google Scholar]
- Guo, T.T.; Yu, X.Q.; Li, X.R.; Zhang, H.Z.; Zhu, C.S.; Flint-Garcia, S.; McMullen, M.D.; Holland, J.B.; Szalma, S.J.; Wisser, R.J.; et al. Optimal designs for genomic selection in hybrid crops. Mol. Plant 2019, 12, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Habier, D.; Fernando, R.L.; Dekkers, J.C. Genomic selection using low-density marker panels. Genetics 2009, 182, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, A.J. Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: A simulation experiment. G3 Genes Genomes Genet. 2013, 3, 481–491. [Google Scholar] [CrossRef]
- Barton, N.H.; Etheridge, A.M.; Véber, A. The infinitesimal model: Definition, derivation, and implications. Theor. Popul. Biol. 2017, 118, 50–73. [Google Scholar] [CrossRef]
- Collard, B.C.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 557–572. [Google Scholar] [CrossRef]
- Sinha, D.; Maurya, A.K.; Abdi, G.; Majeed, M.; Agarwal, R.; Mukherjee, R.; Ganguly, S.; Aziz, R.; Bhatia, M.; Majgaonkar, A.; et al. Integrated genomic selection for accelerating breeding programs of climate-smart cereals. Genes 2023, 14, 1484. [Google Scholar] [CrossRef]
- Dos Santos, J.P.R.; Fernandes, S.B.; McCoy, S.; Lozano, R.; Brown, P.J.; Leakey, A.D.B.; Buckler, E.S.; Garcia, A.A.F.; Gore, M.A. Novel bayesian networks for genomic prediction of developmental traits in biomass sorghum. G3 2020, 10, 769–781. [Google Scholar] [CrossRef]
- Habyarimana, E.; Lopez-Cruz, M.; Baloch, F.S. Genomic selection for optimum index with dry biomass yield, dry mass fraction of fresh material, and plant height in biomass sorghum. Genes 2020, 11, 61. [Google Scholar] [CrossRef]
- Muleta, K.T.; Pressoir, G.; Morris, G.P. Optimizing genomic selection for a sorghum breeding program in Haiti: A simulation study. G3 Genes Genomes Genet. 2019, 9, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.; Subramani, M.; Lofton, L.W.; Penney, M.; Todd, A.; Ozbay, G. Tools, and Techniques to Accelerate Crop Breeding. Plants 2024, 13, 1520. [Google Scholar] [CrossRef] [PubMed]
- Haussmann, B.; Hess, D.; Seetharama, N.; Welz, H.; Geiger, H. Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP, and RAPD markers, and comparison with other sorghum maps. Theor. Appl. Genet. 2002, 105, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Sabadin, P.K.; Malosetti, M.; Boer, M.P.; Tardin, F.D.; Santos, F.G.; Guimaraes, C.T.; Gomide, R.L.; Andrade, C.L.T.; Albuquerque, P.E.P.; Caniato, F.F.; et al. Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor. Appl. Genet. 2012, 124, 1389–1402. [Google Scholar] [CrossRef] [PubMed]
- Kebede, H.; Subudhi, P.K.; Rosenow, D.T.; Nguyen, H.T. Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor. Appl. Genet. 2001, 103, 266–276. [Google Scholar] [CrossRef]
- Subudhi, P.K.; Rosenow, D.T.; Nguyen, H.T. Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): Consistency across genetic backgrounds and environments. Theor. Appl. Genet. 2000, 101, 733–741. [Google Scholar] [CrossRef]
- Nagaraja Reddy, R.; Madhusudhana, R.; Mohan, S.M.; Chakravarthi, D.V.N.; Mehtre, S.P.; Seetharama, N.; Patil, J.V. Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 2013, 126, 1921–1939. [Google Scholar] [CrossRef]
- Satish, K.; Srinivas, G.; Madhusudhana, R.; Padmaja, P.G.; Reddy, R.N.; Mohan, S.M.; Seetharama, N. Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 2009, 119, 1425–1439. [Google Scholar] [CrossRef]
- Tao, Y.Z.; Henzell, R.G.; Jordan, D.R.; Butler, D.G.; Kelly, A.M.; McIntyre, C.L. Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor. Appl. Genet. 2000, 100, 1225–1232. [Google Scholar] [CrossRef]
- Crasta, O.R.; Xu, W.W.; Rosenow, D.; Mullet, J.; Nguyen, H.T. Mapping of post-flowering drought resistance traits in grain sorghum: Association between QTLs influencing premature senescence and maturity. Mol. Gen. Genet. MGG 1999, 262, 579–588. [Google Scholar] [CrossRef]
- Guo, W.; Carroll, M.E.; Singh, A.; Swetnam, T.L.; Merchant, N.; Sarkar, S.; Ganapathysubramanian, B. UAS-based plant phenotyping for research and breeding applications. Plant Phenom. 2021, 2021, 9840192. [Google Scholar] [CrossRef] [PubMed]
- Galli, G.; Horne, D.W.; Collins, S.D.; Jung, J.; Chang, A.; Fritsche-Neto, R.; Rooney, W.L. Optimization of UAS-based high-throughput phenotyping to estimate plant health and grain yield in sorghum. Plant Phenom. J. 2020, 3, e20010. [Google Scholar] [CrossRef]
- Menamo, T.; Borrell, A.K.; Mace, E.; Jordan, D.R.; Tao, Y.; Hunt, C.; Kassahun, B. Genetic dissection of root architecture in Ethiopian sorghum landraces. Theor. Appl. Genet. 2023, 136, 209. [Google Scholar] [CrossRef] [PubMed]
- Batz, J.; Méndez-Dorado, M.A.; Thomasson, J.A. Imaging for high-throughput phenotyping in energy sorghum. J. Imaging 2016, 2, 4. [Google Scholar] [CrossRef]
- Joshi, D.C.; Singh, V.; Hunt, C.; Mace, E.; van Oosterom, E.; Sulman, R.; Hammer, G. Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum. Plant Methods 2017, 13, 1–12. [Google Scholar] [CrossRef]
- Watanabe, K.; Guo, W.; Arai, K.; Takanashi, H.; Kajiya-Kanegae, H.; Kobayashi, M.; Iwata, H. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Front. Plant Sci. 2017, 8, 421. [Google Scholar] [CrossRef]
- Hu, P.; Chapman, S.C.; Wang, X.; Potgieter, A.; Duan, T.; Jordan, D.; Zheng, B. Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. Eur. J. Agron. 2018, 95, 24–32. [Google Scholar] [CrossRef]
- Dhugga, K.S. Gene editing to accelerate crop breeding. Front. Plant Sci. 2022, 13, 889995. [Google Scholar] [CrossRef]
- Sander, J.D. Gene editing in sorghum through agrobacterium. Sorghum Methods Protoc. 2019, 1931, 155–168. [Google Scholar]
- Parikh, A.; Brant, E.J.; Baloglu, M.C.; Altpeter, F. CRISPR/Cas-mediated genome editing in sorghum—Recent progress, challenges, and prospects. Vitr. Cell. Dev. Biol. Plant 2021, 57, 720–730. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Godwin, I.D. Genome editing by CRISPR/Cas9 in sorghum through biolistic bombardment. Sorghum Methods Protoc. 2019, 1931, 169–183. [Google Scholar]
- Bhat, J.A.; Deshmukh, R.; Zhao, T.; Patil, G.; Deokar, A.; Shinde, S.; Chaudhary, J. Harnessing high-throughput phenotyping and genotyping for enhanced drought tolerance in crop plants. J. Biotechnol. 2020, 324, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Kaur, P.; Akhter, N.; Wani, S.H.; Saleem, F. Next-generation breeding strategies for climate-ready crops. Front. Plant Sci. 2021, 12, 620420. [Google Scholar] [CrossRef] [PubMed]
- Ndudzo, A.; Makuvise, A.S.; Moyo, S.; Bobo, E.D. CRISPR-Cas9 genome editing in crop breeding for climate change resilience: Implications for smallholder farmers in Africa. J. Agric. Food Res. 2024, 16, 101132. [Google Scholar] [CrossRef]
- Weldemichael, M.Y.; Gebremedhn, H.M.; Teklu, T.H. Advances in genome editing and future prospects for Sorghum improvement: A review. Plant Gene 2024, 39, 100464. [Google Scholar] [CrossRef]
- Yau, Y.Y.; Easterling, M.; Kumar, A. Advances in delivery of CRISPR–Cas reagents for precise genome editing in plants. In Gene Editing in Plants: CRISPR-Cas and Its Applications; Springer: Singapore, 2024; pp. 543–569. [Google Scholar]
- Gobena, D.; Shimels, M.; Rich, P.J.; Ruyter-Spira, C.; Bouwmeester, H.; Kanuganti, S. Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc. Natl. Acad. Sci. USA 2017, 114, 4471–4476. [Google Scholar] [CrossRef]
- Nemera, B.; Kebede, M.; Enyew, M.; Feyissa, T. Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] in Ethiopia as revealed by microsatellite markers. Acta Agric. Scand. Sect. B Soil Plant Sci. 2022, 72, 873–884. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, P.D. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013, 41, e188. [Google Scholar] [CrossRef]
- Che, P.; Anand, A.; Wu, E.; Sander, J.D.; Simon, M.K.; Zhu, W.; Sigmund, A.L.; Zastrow-Hayes, G.; Miller, M.; Liu, D.; et al. Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol. J. 2018, 16, 1388–1395. [Google Scholar] [CrossRef]
- Li, A.; Jia, S.; Yobi, A.; Ge, Z.; Sato, S.J.; Zhang, C.; Angelovici, R.; Clemente, T.E.; Holding, D.R. Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiol. 2018, 177, 1425–1438. [Google Scholar] [CrossRef]
- Char, S.N.; Wei, J.; Mu, Q.; Li, X.; Zhang, Z.J.; Yu, J.; Yang, B. An Agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnol. J. 2020, 18, 319. [Google Scholar] [CrossRef] [PubMed]
- Brant, E.J.; Baloglu, M.C.; Parikh, A.; Altpeter, F. CRISPR/Cas9 mediated targeted mutagenesis of LIGULELESS-1 in sorghum provides a rapidly scorable phenotype by altering leaf inclination angle. Biotechnol. J. 2021, 16, 2100237. [Google Scholar] [CrossRef] [PubMed]
- Ananda, G.K.; Myrans, H.; Norton, S.L.; Gleadow, R.; Furtado, A.; Henry, R.J. Wild sorghum as a promising resource for crop improvement. Front. Plant Sci. 2020, 11, 1108. [Google Scholar] [CrossRef] [PubMed]
- Dahlberg, J.; Harrison, M.; Upadhyaya, H.D.; Elangovan, M.; Pandey, S.; Talwar, H.S. Global Status of Sorghum Genetic Resources Conservation. In Sorghum in the 21st Century: Food–Fodder–Feed–Fuel for a Rapidly Changing World; Springer: Singapore, 2020; pp. 43–64. [Google Scholar]
- Upadhyaya, H.D.; Dwivedi, S.L.; Wang, Y.H.; Vetriventhan, M. Sorghum genetic resources. Sorghum A State Art Future Perspetives 2019, 58, 47–72. [Google Scholar]
- Stoilova, T.; van Zonneveld, M.; Roothaert, R.; Schreinemachers, P. Connecting genebanks to farmers in East Africa through the distribution of vegetable seed kits. Plant Genet. Resour. Charact. Util. 2019, 17, 306–309. [Google Scholar] [CrossRef]
- Welch, E.; Bagley, M.A.; Kuiken, T.; Louafi, S. Potential implications of new synthetic biology and genomic research trajectories on the International Treaty for Plant Genetic Resources for Food and Agriculture. Emory Leg. Stud. Res. Pap. 2017. [Google Scholar] [CrossRef]
- Aubry, S. The future of digital sequence information for plant genetic resources for food and agriculture. Front. Plant Sci. 2019, 10, 1046. [Google Scholar] [CrossRef]
- Mekonnen, D.K.; Spielman, D.J. Changing patterns in genebank acquisitions of crop genetic materials: An analysis of global policy drivers and potential consequences. Food Policy 2021, 105, 102161. [Google Scholar] [CrossRef]
- Mola, T. Ethiopian Sorghum [Sorghum bicolor (L.)] landraces: Sources of biotic and abiotic stress resistance. Int. J. Recent Res. Interdiscip. Sci. 2021, 8, 1–13. [Google Scholar]
- Anami, S.E.; Zhang, L.M.; Xia, Y.; Zhang, Y.M.; Liu, Z.Q.; Jing, H.C. Sweet sorghum ideotypes: Genetic improvement of stress tolerance. Food Energy Secur. 2015, 4, 3–24. [Google Scholar] [CrossRef]
- Deshpande, S.; Rakshit, S.; Manasa, K.G.; Pandey, S.; Gupta, R. Genomic approaches for abiotic stress tolerance in Sorghum. Sorghum Genome 2016, 9, 169–187. [Google Scholar]
- Baloch, F.S.; Altaf, M.T.; Liaqat, W.; Bedir, M.; Nadeem, M.A.; Cömertpay, G.; Sun, H.J. Recent advancements in the breeding of sorghum crop: Current status and future strategies for marker-assisted breeding. Front. Genet. 2023, 14, 1150616. [Google Scholar] [CrossRef] [PubMed]
- Belay, F. Breeding Sorghum for Striga Resistance: A Review. J. Nat. Sci. Res. 2018, 8, 1–8. [Google Scholar]
- Rao, S.P.; Rao, S.S.; Seetharama, N.; Umakath, A.V.; Reddy, P.S.; Reddy, B.V.S.; Gowda, C.L.L. Sweet Sorghum for Biofuel and Strategies for Its Improvement; International Crops Research Institute for the Semi-Arid Tropics: Telangana, India, 2009. [Google Scholar]
- Ochieng, J.; Rubyogo, J.C.; Birachi, E.; Kessy, R.; Masimane, J.; Mbugua, M.; Odhiambo, W.; Mutua, M.; Kitoto, V.; Steinke, J.; et al. Accelerated Variety Turnover for Open-Pollinated Crops in Tanzania—Phase 1 Key Findings; International Center for Tropical Agriculture: Arusha, Tanzania, 2023; 8p. [Google Scholar]
- Mulima, E.P. Genetic Diversity of Sorghum (Sorghum bicolor L. Moench) Germplasm and Hybrid Potential Under Contrasting Environments in Mozambique. Ph.D. Dissertation, University of KwaZulu-Natal, Durban, South Africa, 2017. [Google Scholar]
- Von Pinho, R.G.; Silv, E.V.V.; de Oliveira, T.L.; Vander Filipe, D.S.; de Menezes, C.B. Breeding sorghum for grain, forage, and bioenergy in Brazil. Rev. Bras. Milho Sorgo 2022, 21, e1275. [Google Scholar] [CrossRef]
- Crozier, D.; Hoffman JR, L.; Klein, P.E.; Klein, R.R.; RooneY, W.L. Predicting heterosis in grain sorghum hybrids using sequence-based genetic similarity estimates. J. Crop Improv. 2020, 34, 600–617. [Google Scholar] [CrossRef]
- Gomes, L.R.D.R.; Menezes, C.B.D.; Simon, G.A.; Silva, A.G.D.; Braz, A.J.B.P. Combining ability of grain sorghum inbred lines grown during off-season. Rev. Caatinga 2020, 33, 888–897. [Google Scholar] [CrossRef]
- Reddy, B.V.; Sharma, H.C.; Thakur, R.P.; Ramesh, S.; Rattunde, F.; Mgonja, M. Sorghum hybrid parents research at ICRISAT-strategies, status, and impacts. J. SAT Agric. Res. 2006, 2, 1–24. [Google Scholar]
- Miriti, P.; Regassa, M.D.; Ojiewo, C.O.; Melesse, M.B. Farmers’ preferences and willingness to pay for traits of sorghum varieties: Informing product development and breeding programs in Tanzania. J. Crop Improv. 2023, 37, 253–272. [Google Scholar] [CrossRef]
S/N | Parent Population | Line Type | Population Size | Number of QTLs Identified | Reference |
---|---|---|---|---|---|
1 | E36-1*N13 | RILs | 226 | 21 | [67] |
2 | SC283*BR007 | RILs | 100 | 4 | [68] |
3 | E36-1*IS9830 | RILs | 226 | 19 | [67] |
4 | TX7000*SC56 | RILs | 125 | 14 | [69] |
5 | TX7000*B35 | RILs | 98 | 4 | [70] |
6 | B35*M35-1 | RILs | 245 | 43 | [71] |
7 | IS18551*296B | RILs | 168 | 9 | [72] |
8 | QL39/QL41 | RILs | 152 | 5 | [73] |
9 | TX430*B35 | RILs | 96 | 7 | [74] |
Promoter sgRNA/Cas | No of gRNA | Delivery Method | Target Gene | SM | Edit Efficiency (%) | Phenotype | Reference |
---|---|---|---|---|---|---|---|
OsU6/OsAct1 | 1 | Agrobacterium | MDsRED2 | nptII | NR | DsRED 2 expression | [93] |
ZmU6/ZmUbi1 | 1 | Agrobacterium | Sb-CENH3 | nptII | 37–40 | NR. Biallelic frameshift mutations potentially lethal | [94] |
TaU3/ZmUbi | 1 | Agrobacterium | K1C gene family | nptII | 92.4 | Partial opacity in T1 seeds, reduced α-kafirin, improved grain protein digestibility and lysine content | [95] |
OsU6/ZmUbi1 | 2 | Agrobacterium | SbFTSbGA2ox5 | bar | 33.3, 83.3 | Delayed flowering, No phenotype, Biallelic mutations potentially lethal | [96] |
OsU6/CaMv35S | 2 | Agrobacterium | SbLG1 | nptII | 33.3 | Altered leaf inclination angle, ligule, and auricle size. Distinct phenotypes for WT, Mono allelic and biallelic mutations | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwamahonje, A.; Mdindikasi, Z.; Mchau, D.; Mwenda, E.; Sanga, D.; Garcia-Oliveira, A.L.; Ojiewo, C.O. Advances in Sorghum Improvement for Climate Resilience in the Global Arid and Semi-Arid Tropics: A Review. Agronomy 2024, 14, 3025. https://doi.org/10.3390/agronomy14123025
Mwamahonje A, Mdindikasi Z, Mchau D, Mwenda E, Sanga D, Garcia-Oliveira AL, Ojiewo CO. Advances in Sorghum Improvement for Climate Resilience in the Global Arid and Semi-Arid Tropics: A Review. Agronomy. 2024; 14(12):3025. https://doi.org/10.3390/agronomy14123025
Chicago/Turabian StyleMwamahonje, Andekelile, Zamu Mdindikasi, Devotha Mchau, Emmanuel Mwenda, Daines Sanga, Ana Luísa Garcia-Oliveira, and Chris O. Ojiewo. 2024. "Advances in Sorghum Improvement for Climate Resilience in the Global Arid and Semi-Arid Tropics: A Review" Agronomy 14, no. 12: 3025. https://doi.org/10.3390/agronomy14123025
APA StyleMwamahonje, A., Mdindikasi, Z., Mchau, D., Mwenda, E., Sanga, D., Garcia-Oliveira, A. L., & Ojiewo, C. O. (2024). Advances in Sorghum Improvement for Climate Resilience in the Global Arid and Semi-Arid Tropics: A Review. Agronomy, 14(12), 3025. https://doi.org/10.3390/agronomy14123025