Biomethane Production from Untreated and Treated Brewery’s Spent Grain: Feasibility of Anaerobic Digestion After Pretreatments According to Biogas Yield and Energy Efficiency
<p>(<b>A</b>) Batch bioreactor used in this study for biogas production. The biogas generated in the first bottle flows into a second vessel, the “gasometer”, which contains water. The quantity of water flowed in the last vessel allowed us to measure the amount of biogas produced (volumetric method). (<b>B</b>) Inclusion of an alkaline trap, composed of 5 M NaOH and thymolphthalein as a pH indicator, to assess biomethane production. The CO₂ in the biogas was separated according to the reaction outlined in the scheme.</p> "> Figure 2
<p>Daily biogas production for the different biomasses tested.</p> "> Figure 3
<p>(<b>a</b>) Total biogas yield for unit of VS for all biomasses. (<b>b</b>) Average daily biogas yield for the different samples (total Nm<sup>3</sup>·gVS<sup>−1</sup>/days of production).</p> "> Figure 4
<p>Comparison between the quantity of biogas produced and the related amount of biomethane contained in it.</p> "> Figure 5
<p>Cumulative energy produced (empty dots) and energy spent (filled dots) for the various samples.</p> "> Figure 6
<p>Efficiency measured for the optimal production period (until reaching the maximum difference between energy produced and energy spent).</p> "> Figure 7
<p>Energy produced (in blue) and energy spent (in red) during the optimal production period and energy produced before the energy spent equaled the energy produced (green).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Procedures, and Analyses
Humidity Content and Volatile Solid Determination
2.2. Production of BSG Pulp
2.3. Extraction of Protein Hydrolysates from BSG
2.4. Anaerobic Bioreactors
- -
- Control—inoculum only;
- -
- Treatment 1 (BSG): 1.8 g dw (dry weight) of inoculum (¾) and 0.6 g dw of BSG (¼);
- -
- Treatment 2 (BSGph): 1.8 g dw of inoculum (¾) and 0.6 g dw of BSG-PH (¼);
- -
- Treatment 3 (BSGp): 1.8 g dw of inoculum (¾) and 0.6 g dw of BSGPulp (¼);
- -
- Treatment 4 (OMWW + BSG): 1.8 g dw of inoculum (¾), and the ¼ was composed of 0.3 g (dw) of BSG + 0.3 g (dw) of OMWW;
- -
- Treatment 5 (OP + BSG): 1.8 g dw of inoculum (¾), and the ¼ was composed of 0.3 g (dw) of BSG + 0.3 g (dw) of OP.
2.5. Statistical Analysis
3. Results and Discussion
3.1. Biogas Production
3.2. Energy Evaluations
4. Conclusions
- (1)
- BSGp proved to be the most efficient biorefinery residue, with a value of (Ep-Es)max of 5.36 kJ. BSG also demonstrated efficiency, showing the highest (Ep-Es)max among the samples, even if to keep this by-product efficient from the energetic point of view, it is not convenient to produce all the potential energy.
- (2)
- In contrast, BSGph yielded the lowest (Ep-Es)max, with the lowest efficiency value of 0.36. This assessment is valuable for refining the process, as it helps identify weak points in the biorefinery system and provides opportunities for optimization.
- (3)
- The co-digested samples, OPp + BSG and OMWW + BSG, did not perform better than BSGp and BSG. In fact, the co-digestion of BSG with OMWW yielded the worst results in terms of energy production during the optimal period identified in the analysis.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalil, M.; Berawi, M.A.; Heryanto, R.; Rizalie, A. Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renew. Sustain. Energy Rev. 2019, 105, 323–331. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Rossi, F. Re-definition of the region suitable for CO2/CH4 replacement into hydrates as a function of the thermodynamic difference between CO2 hydrate formation and dissociation. Process Saf. Environ. Prot. 2023, 169, 132–141. [Google Scholar] [CrossRef]
- Atelge, M.R.; Krisa, D.; Kumar, G. Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste Biomass Valor 2020, 11, 1019–1040. [Google Scholar] [CrossRef]
- Kasinath, A.; Fudala-Ksiazek, S.; Szopinska, M.; Bylinski, H.; Artichowicz, W. Remiszewska-Skwarek, A.; Luczkiewicz, A. Biomass in biogas production: Pretreatment and codigestion. Renew. Sustain. Energy Rev. 2021, 150, 111509. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas production and applications in the sustainable energy transition. J. Energy 2022, 1, 8750221. [Google Scholar] [CrossRef]
- Adekunle, K.F.; Okolie, J.A. A review of biochemical process of anaerobic digestion. Adv. Biosci. Biotechnol. 2015, 6, 205–212. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A technological overview of biogas production from biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Rafiee, A.; Khalilpour, K.R.; Prest, J.; Skryabin, I. Biogas as an energy vector. Biomass Bioenergy 2021, 144, 105935. [Google Scholar] [CrossRef]
- Deng, S.; Liu, L.; Li, X.Y.; Xue, W.; Liang, J.; Yu, Z.; Lin, L. Rapid granulation of aerobic sludge for treatment of brewery wastewater: Aeration strategy and nitrogen removal mechanism. J. Environ. Chem. Eng. 2024, 115108. [Google Scholar] [CrossRef]
- González-García, S.; Morales, P.C.; Gullón, B. Estimating the environmental impacts of a brewery waste–based biorefinery: Bio-ethanol and xylooligosaccharides joint production case study. Ind. Crops Prod. 2018, 123, 331–340. [Google Scholar] [CrossRef]
- Lisci, S.; Tronci, S.; Grosso, M.; Karring, H.; Hajrizaj, R.; Errico, M. Brewer’s spent grain: Its value as renewable biomass and its possible applications. Chem. Eng. Trans. 2022, 92, 259–264. [Google Scholar]
- Ikram, S.; Huang, L.; Zhang, H.; Wang, J.; Yin, M. Composition and nutrient value proposition of brewers spent grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Brewer’s spent grains: Possibilities of valorization, a review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Lao, E.J.; Dimoso, N.; Raymond, J.; Mbega, E.R. The prebiotic potential of brewers’ spent grain on livestock’s health: A review. Trop. Anim. Health Prod. 2020, 52, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Naibaho, J.; Korzeniowska, M. Brewers’ spent grain in food systems: Processing and final products quality as a function of fiber modification treatment. J. Food Sci. 2021, 86, 1532–1551. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Carlini, M.; Monarca, D.; Castellucci, S.; Mennuni, A.; Casini, L.; Selli, S. Beer spent grains biomass for biogas production: Characterization and anaerobic digestion-oriented pre-treatments. Energy Rep. 2021, 7, 921–929. [Google Scholar] [CrossRef]
- Colussi, I.; Cortesi, A.; Gallo, V.; Vitanza, R. Biomethanization of Brewer’s spent grain evaluated by application of the Anaerobic Digestion Model No. 1. Environ. Prog. Sustain. Energy 2016, 35, 1055–1060. [Google Scholar] [CrossRef]
- Pereira Lins, L.; Gotardo Martinez, D.; Furtado, A.C.; Janine Carvalho Padilha, J. Biomethane generation and CO2 recovery through biogas production using brewers’ spent Grains. Biocatal. Agric. Biotechnol. 2023, 48, 102597. [Google Scholar]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of Lignocellulosic Biomass: A Review on Recent Advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Bochmann, G.; Drosg, B.; Fuchsa, W. Anaerobic Digestion of Thermal Pretreated Brewers’ Spent Grains. Environ. Prog. Sustain. Energy 2015, 34, 1092–1096. [Google Scholar] [CrossRef]
- Buller, L.S.; Sganzerla, W.G.; Lima, M.N.; Muenchow, K.E.; Timko, M.T.; Carneiro, T.F. Ultrasonic pretreatment of brewers’ spent grains for anaerobic digestion: Biogas production for a sustainable industrial development. J. Clean. Prod. 2022, 355, 131802. [Google Scholar] [CrossRef]
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liu, T.; Duan, Y.; et al. Resource Recovery and Circular Economy from Organic Solid Waste Using Aerobic and Anaerobic Digestion Technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Beltrán, J.U.; Hernández-De Lira, I.O.; Cruz-Santos, M.M.; Saucedo-Luevanos, A.; Hernández-Terán, F.; Balagurusamy, N. Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: Current state, challenges, and opportunities. Appl. Sci. 2019, 9, 3721. [Google Scholar] [CrossRef]
- Fan, Y.V.; Kleměs, J.J.; Perry, S.; Lee, C.T. Anaerobic digestion of lignocellulosic waste: Environmental impact and economic assessment. J. Environ. Manag. 2019, 231, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.H.; Engelhard, M.; Zhang, X. An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour. Technol. 2013, 132, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.M.; Poulsen, T.G.; Sheng, K. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy 2016, 180, 661–671. [Google Scholar] [CrossRef]
- Yu, O.; Kim, K.H. Lignin to materials: A focused review on recent novel lignin applications. Appl. Sci. 2020, 10, 4626. [Google Scholar] [CrossRef]
- Del Buono, D.; Luzi, F.; Puglia, D. Lignin Nanoparticles: A Promising Tool to Improve Maize Physiological, Biochemical, and Chemical Traits. Nanomaterials 2021, 11, 846. [Google Scholar] [CrossRef]
- Zeko-Pivač, A.; Tišma, M.; Žnidaršič-Plazl, P.; Kulisic, B.; Sakellaris, G.; Hao, J.; Planinić, M. The potential of brewer’s spent grain in the circular bioeconomy: State of the art and future perspectives. Front. Bioeng. Biotechnol. 2022, 10, 870744. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Kong, Y.; Du, B.; Wang, X.; Zhou, J. Exploration of mechanisms of lignin extraction by different methods. Environ. Prog. Sustain. Energy 2022, 41, e13785. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Duan, Y.; Zhang, H.; Ma, H. A mini-review on Brewer’s spent grain protein: Isolation, physicochemical properties, application of protein, and functional properties of hydrolysates. J. Food Sci. 2019, 84, 3330–3340. [Google Scholar] [CrossRef] [PubMed]
- Celus, I.; Brijs, K.; Delcour, J.A. The effects of malting and mashing on barley protein extractability. J. Cereal Sci. 2006, 44, 203–211. [Google Scholar] [CrossRef]
- Connolly, A.; Cermeño, M.; Crowley, D.; O’Callaghan, Y.; O’Brien, N.M.; Fitz Gerald, R.J. Characterization of the in vitro bioactive properties of alkaline and enzyme extracted brewers’ spent grain protein hydrolysates. Food Res. Int. 2019, 121, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Bhatia, L.; Bachheti, R.K.; Garlapati, V.K.; Chandel, A.K. Third-generation biorefineries: A sustainable platform for food, clean energy, and nutraceuticals production. Biomass Conv. Bioref. 2022, 12, 4215–4230. [Google Scholar] [CrossRef]
- Wang, W.; Lee, D.J. Valorization of anaerobic digestion digestate: A prospect review. Bioresour. Technol. 2021, 323, 124626. [Google Scholar] [CrossRef]
- Koszel, M.; Lorencowicz, E. Agricultural use of biogas digestate as a replacement fertilizer. Agric. Agric. Sci. Procedia 2015, 7, 119–124. [Google Scholar] [CrossRef]
- Karimi, M.; Shirzad, M. Sustainable industrial process design for derived CO2 adsorbent from municipal solid wastes: Scale-up, techno-economic and parametric assessment. Sust. Mat. Technol. 2024, 41, e01091. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis of AOAC International. Helrich, K. (Ed.) Association of Official Analytical Chemists: Rockville, MD, USA, 1997; Volume 80, Available online: https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf (accessed on 5 November 2024).
- Montegiove, N.; Gambelli, A.M.; Calzoni, E.; Bertoldi, A.; Puglia, D.; Zadra, C.; Emiliani, C.; Gigliotti, G. Biogas production with residual deriving from olive mill wastewater and olive pomace wastes: Quantification of produced energy, spent energy, and process efficiency. Agronomy 2024, 14, 531. [Google Scholar] [CrossRef]
- Cequier, E.; Aguilera, J.; Balcells, M.; Canela-Garayoa, R. Extraction and characterization of lignon from olive pomace: A comparison study among ionic liquid, sulfuric acid, and alkaline treatments. Biomass Convers. Biorefinery 2019, 9, 241–252. [Google Scholar] [CrossRef]
- Misi, S.N.; Forster, C.F. Batch co-digestion of multi-component agro-wastes. Bioresour. Technol. 2001, 80, 19–28. [Google Scholar] [CrossRef]
- Li, P.; Liu, D.; Pei, Z.; Zhao, L.; Shi, F.; Yao, Z.; Li, W.; Sun, Y.; Wang, S.; Yu, Q.; et al. Evaluation of lignin inhibition in anaerobic digestion from the perspective of reducing the hydrolysis rate of holocellulose. Bioresour. Technol. 2021, 333, 125204. [Google Scholar] [CrossRef] [PubMed]
- Fricke, K.; Santen, H.; Wallmann, R.; Hüttner, A.; Dichtl, N. Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Manag. 2007, 27, 30–43. [Google Scholar] [CrossRef]
- Borja, R.; Alba, J.; Banks, C.J. Impact of the main phenolic compounds of olive mill wastewater (OMW) on the kinetics of acetoclastic methanogenesis. Process Biochem. 1997, 32, 121–133. [Google Scholar] [CrossRef]
- Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- Berglund, M.; Börjesson, P. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 2006, 30, 254–266. [Google Scholar] [CrossRef]
- Montegiove, N.; Gambelli, A.M.; Calzoni, E.; Bertoldi, A.; Emiliani, C.; Gigliotti, G. Olive pomace protein hydrolysate waste valorization through biogas production: Evaluation of energy produced and process efficiency. Chem. Eng. Trans. 2024, 109, 319–324. [Google Scholar]
- Di Mario, J.; Montegiove, N.; Gambelli, A.M.; Brienza, M.; Zadra, C.; Gigliotti, G. Waste biomass pretreatments for biogas yield optimization and for the extraction of valuable high-added-value products: Possible combinations of the two processes towards a biorefinery purpose. Biomass 2024, 4, 865–885. [Google Scholar] [CrossRef]
Parameter | Digestate |
---|---|
Moisture (%) | 88.08 |
Total Volatile Solids (%) | 73.34 |
pH | 8.08 |
TOC (% of DM) | 53.05 |
TKN (% of DM) | 5.47 |
Total P (g kg−1 DM) | 3.11 |
Total K (g kg−1 DM) | 75.62 |
WEOC (g kg−1 DM) | 110.51 |
WEN (g kg−1 DM) | 67.86 |
Parameter | BSG |
---|---|
Moisture (%) | 78.30 |
Total Volatile Solids (%) | 97.50 |
pH | 5.06 |
Protein (% of DM) | 24.30 |
TOC (% of DM) | 26.66 |
TKN (% of DM) | 3.90 |
Total P (g kg−1 DM) | 1.02 |
Lipid (% of DM) | 4.27 |
Cellulose (% of DM) | 10.48 |
Hemicellulose (% of DM) | 33.24 |
Lignin (% of DM) | 3.99 |
Day of Production | BSG | BSGp | BSGph | BSG + OMWW | OP + BSG | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | Mean | Dev. | Mean | Dev. | Mean | Dev. | Mean | Dev. | Mean | Dev. |
2 | 60.3 | ±60.3 | 83.1 | ±4.0 | 41.9 | 41.9 | 213.9 | 7.0 | 22.0 | 22.0 |
3 | 119.2 | ±65.4 | 91.0 | ±4.0 | 52.4 | 52.4 | 253.4 | 1.8 | 44.0 | 44.0 |
4 | 152.6 | ±70.5 | 134.5 | ±0 | 104.7 | 83.8 | 270.9 | 1.8 | 57.1 | 48.3 |
5 | 215.4 | ±66.7 | 170.1 | ±4.0 | 115.2 | 94.3 | 288.4 | 1.8 | 61.5 | 52.7 |
6 | 235.9 | ±64.1 | 209.7 | ±11.9 | 125.7 | 104.7 | 310.4 | 10.5 | 74.7 | 65.9 |
7 | 270.5 | ±65.4 | 245.3 | ±7.9 | 151.9 | 110.0 | 349.8 | 1.8 | 101.1 | 57.1 |
8 | 317.9 | ±66.7 | 280.9 | ±4.0 | 157.1 | 115.2 | 363.0 | 7.0 | 123.1 | 44.0 |
9 | 344.9 | ±65.4 | 328.3 | ±4.0 | 204.3 | 120.5 | 393.7 | 15.8 | 136.3 | 39.6 |
10 | 396.2 | ±67.9 | 363.9 | ±7.9 | 235.7 | 130.9 | 428.7 | 15.8 | 153.8 | 39.6 |
11 | 444.9 | ±70.5 | 411.4 | ±7.9 | 256.6 | 130.9 | 459.4 | 24.5 | 175.8 | 44.0 |
12 | 500.0 | ±69.2 | 454.9 | ±11.9 | 277.6 | 130.9 | 494.5 | 42.1 | 197.8 | 48.3 |
13 | 543.6 | ±71.8 | 502.4 | ±11.9 | 298.5 | 130.9 | 529.5 | 42.1 | 215.4 | 48.3 |
14 | 583.3 | ±73.1 | 545.9 | ±7.9 | 324.7 | 146.6 | 569.0 | 50.9 | 228.6 | 44.0 |
15 | 621.8 | ±75.6 | 589.4 | ±11.9 | 340.4 | 151.9 | 608.5 | 59.6 | 241.7 | 39.6 |
16 | 665.4 | ±78.2 | 652.7 | ±27.7 | 340.4 | 151.9 | 700.5 | 68.4 | 259.3 | 39.6 |
17 | 689.7 | ±79.5 | 696.2 | ±23.7 | 356.1 | 167.6 | 726.8 | 85.9 | 272.5 | 44.0 |
18 | 707.7 | ±82.1 | 735.8 | ±23.7 | 366.6 | 167.6 | 744.3 | 103.5 | 294.5 | 22.0 |
19 | 724.4 | ±83.3 | 775.3 | ±15.8 | 377.1 | 167.6 | 788.2 | 68.4 | 294.5 | 22.0 |
20 | 743.6 | ±82.1 | 810.9 | ±11.9 | 382.3 | 172.8 | 840.8 | 15.8 | 298.9 | 17.6 |
21 | 760.3 | ±83.3 | 814.9 | ±7.9 | 382.3 | 172.8 | 902.2 | 36.8 | 316.5 | 8.8 |
22 | 776.9 | ±84.6 | 814.9 | ±7.9 | 382.3 | 172.8 | 919.7 | 1.8 | 334.0 | 0.0 |
23 | 798.7 | ±83.3 | 814.9 | ±7.9 | 382.3 | 172.8 | 924.1 | 10.5 | 342.8 | 8.8 |
24 | 812.8 | ±84.6 | 814.9 | ±7.9 | 382.3 | 172.8 | 967.9 | 7.0 | 347.2 | 4.4 |
25 | 830.8 | ±82.1 | 814.9 | ±7.9 | 382.3 | 172.8 | 976.7 | 10.5 | 356.0 | 4.4 |
26 | 850.0 | ±83.3 | 814.9 | ±7.9 | 382.3 | 172.8 | 989.8 | 1.8 | 364.8 | 4.4 |
27 | 860.3 | ±88.5 | 814.9 | ±7.9 | 382.3 | 172.8 | 1003.0 | 7.0 | 373.6 | 4.4 |
28 | 873.1 | ±93.6 | 814.9 | ±7.9 | 382.3 | 172.8 | 1016.1 | 1.8 | 373.6 | 4.4 |
29 | 884.6 | ±97.4 | 814.9 | ±7.9 | 382.3 | 172.8 | 1046.8 | 10.5 | 373.6 | 4.4 |
30 | 889.7 | ±94.9 | 814.9 | ±7.9 | 382.3 | 172.8 | 1060.0 | 15.8 | 382.4 | 4.4 |
31 | 894.9 | ±97.4 | 814.9 | ±7.9 | 382.3 | 172.8 | 1064.4 | 7.0 | 391.2 | 4.4 |
32 | 902.6 | ±100.0 | 814.9 | ±7.9 | 382.3 | 172.8 | 1073.1 | 7.0 | 404.4 | 8.8 |
33 | 910.3 | ±102.6 | 814.9 | ±7.9 | 382.3 | 172.8 | 1108.2 | 7.0 | 417.5 | 4.4 |
34 | 916.7 | ±103.8 | 814.9 | ±7.9 | 382.3 | 172.8 | 1108.2 | 7.0 | 417.5 | 4.4 |
35 | 925.6 | ±110.3 | 814.9 | ±7.9 | 382.3 | 172.8 | 1108.2 | 7.0 | 417.5 | 4.4 |
36 | 935.9 | ±107.7 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 417.5 | 4.4 |
37 | 939.7 | ±109.0 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 421.9 | 0 |
38 | 947.4 | ±111.5 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 421.9 | 0 |
39 | 955.1 | ±111.5 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 421.9 | 0 |
40 | 955.1 | ±111.5 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 421.9 | 0 |
41 | 961.5 | ±110.3 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 421.9 | 0 |
42 | 967.9 | ±109.0 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 421.9 | 0 |
43 | 974.4 | ±107.7 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 421.9 | 0 |
44 | 978.2 | ±103.8 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 421.9 | 0 |
45 | 984.6 | ±105.1 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 443.9 | 13.2 |
46 | 992.3 | ±107.7 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
47 | 998.7 | ±109.0 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
48 | 1003.8 | ±111.5 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
49 | 1009.0 | ±114.1 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
50 | 1012.8 | ±110.3 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
51 | 1020.5 | ±115.4 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
52 | 1030.8 | ±117.9 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
53 | 1032.1 | ±116.7 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
54 | 1034.6 | ±116.7 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
55 | 1038.5 | ±117.9 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
56 | 1042.3 | ±119.2 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
57 | 1052.6 | ±124.4 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
58 | 1064.1 | ±130.8 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
59 | 1064.1 | ±130.8 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
60 | 1064.1 | ±130.8 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
61 | 1071.8 | ±133.3 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
62 | 1075.6 | ±132.1 | 814.9 | ±7.9 | 382.3 | 172.8 | 1130.1 | 1.8 | 452.7 | 13.2 |
Tested Biomass | % CH4 in Biogas | CH4 tot [mL] |
---|---|---|
BSG | 76.59 | 823.8 |
BSGp | 60 | 488.9 |
BSGph | 71.69 | 274.1 |
OMWW + BSG | 54.5 | 615.9 |
OPp + BSG | 66.05 | 299 |
BSG | BSGp | BSGph | OMWW + BSG | Opp + BSG | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Day | CH4 [kg] | Ep [kJ] | CH4 [kg] | Ep [kJ] | CH4 [kg] | Ep [kJ] | CH4 [kg] | Ep [kJ] | CH4 [kg] | Ep [kJ] |
1 | 2.22 × 10−5 | 1.16 | 2.40 × 10−5 | 1.25 | 1.45 × 10−5 | 0.75 | 5.62 × 10−5 | 2.92 | 6.99 × 10−6 | 0.36 |
2 | 4.39 × 10−5 | 2.28 | 2.63 × 10−5 | 1.37 | 1.81 × 10−5 | 0.94 | 6.65 × 10−5 | 3.46 | 1.40 × 10−5 | 0.73 |
3 | 5.62 × 10−5 | 2.92 | 3.88 × 10−5 | 2.02 | 3.61 × 10−5 | 1.88 | 7.11 × 10−5 | 3.70 | 1.82 × 10−5 | 0.94 |
4 | 7.94 × 10−5 | 4.13 | 4.91 × 10−5 | 2.55 | 3.97 × 10−5 | 2.07 | 7.57 × 10−5 | 3.94 | 1.95 × 10−5 | 1.02 |
5 | 8.70 × 10−5 | 4.52 | 6.06 × 10−5 | 3.15 | 4.34 × 10−5 | 2.26 | 8.15 × 10−5 | 4.24 | 2.37 × 10−5 | 1.23 |
6 | 9.97 × 10−5 | 5.18 | 7.08 × 10−5 | 3.68 | 5.24 × 10−5 | 2.73 | 9.18 × 10−5 | 4.78 | 3.21 × 10−5 | 1.67 |
7 | 1.17 × 10−4 | 6.09 | 8.11 × 10−5 | 4.22 | 5.42 × 10−5 | 2.82 | 9.53 × 10−5 | 4.96 | 3.91 × 10−5 | 2.03 |
8 | 1.27 × 10−4 | 6.61 | 9.48 × 10−5 | 4.93 | 7.05 × 10−5 | 3.67 | 1.03 × 10−4 | 5.37 | 4.33 × 10−5 | 2.25 |
9 | 1.46 × 10−4 | 7.59 | 1.05 × 10−4 | 5.46 | 8.13 × 10−5 | 4.23 | 1.13 × 10−4 | 5.85 | 4.89 × 10−5 | 2.54 |
10 | 1.64 × 10−4 | 8.53 | 1.19 × 10−4 | 6.18 | 8.85 × 10−5 | 4.60 | 1.21 × 10−4 | 6.27 | 5.59 × 10−5 | 2.91 |
11 | 1.84 × 10−4 | 9.58 | 1.31 × 10−4 | 6.83 | 9.58 × 10−5 | 4.98 | 1.30 × 10−4 | 6.75 | 6.29 × 10−5 | 3.27 |
12 | 2.00 × 10−4 | 10.42 | 1.45 × 10−4 | 7.54 | 1.03 × 10−4 | 5.36 | 1.39 × 10−4 | 7.23 | 6.85 × 10−5 | 3.56 |
13 | 2.15 × 10−4 | 11.18 | 1.58 × 10−4 | 8.20 | 1.12 × 10−4 | 5.83 | 1.49 × 10−4 | 7.77 | 7.27 × 10−5 | 3.78 |
14 | 2.29 × 10−4 | 11.92 | 1.70 × 10−4 | 8.85 | 1.17 × 10−4 | 6.11 | 1.60 × 10−4 | 8.31 | 7.68 × 10−5 | 4.00 |
15 | 2.45 × 10−4 | 12.75 | 1.88 × 10−4 | 9.80 | 1.17 × 10−4 | 6.11 | 1.84 × 10−4 | 9.56 | 8.24 × 10−5 | 4.29 |
16 | 2.54 × 10−4 | 13.22 | 2.01 × 10−4 | 10.45 | 1.23 × 10−4 | 6.39 | 1.91 × 10−4 | 9.92 | 8.66 × 10−5 | 4.50 |
17 | 2.61 × 10−4 | 13.56 | 2.12 × 10−4 | 11.05 | 1.26 × 10−4 | 6.58 | 1.95 × 10−4 | 10.16 | 9.36 × 10−5 | 4.87 |
18 | 2.67 × 10−4 | 13.88 | 2.24 × 10−4 | 11.64 | 1.30 × 10−4 | 6.77 | 2.07 × 10−4 | 10.76 | 9.36 × 10−5 | 4.87 |
19 | 2.74 × 10−4 | 14.25 | 2.34 × 10−4 | 12.18 | 1.32 × 10−4 | 6.86 | 2.21 × 10−4 | 11.48 | 9.50 × 10−5 | 4.94 |
20 | 2.80 × 10−4 | 14.57 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.37 × 10−4 | 12.32 | 1.01 × 10−4 | 5.23 |
21 | 2.86 × 10−4 | 14.89 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.41 × 10−4 | 12.56 | 1.06 × 10−4 | 5.52 |
22 | 2.94 × 10−4 | 15.31 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.43 × 10−4 | 12.62 | 1.09 × 10−4 | 5.67 |
23 | 3.00 × 10−4 | 15.58 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.54 × 10−4 | 13.21 | 1.10 × 10−4 | 5.74 |
24 | 3.06 × 10−4 | 15.92 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.56 × 10−4 | 13.33 | 1.13 × 10−4 | 5.88 |
25 | 3.13 × 10−4 | 16.29 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.60 × 10−4 | 13.51 | 1.16 × 10−4 | 6.03 |
26 | 3.17 × 10−4 | 16.49 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.63 × 10−4 | 13.69 | 1.19 × 10−4 | 6.18 |
27 | 3.22 × 10−4 | 16.73 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.67 × 10−4 | 13.87 | 1.19 × 10−4 | 6.18 |
28 | 3.26 × 10−4 | 16.96 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.75 × 10−4 | 14.29 | 1.19 × 10−4 | 6.18 |
29 | 3.28 × 10−4 | 17.05 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.78 × 10−4 | 14.47 | 1.22 × 10−4 | 6.32 |
30 | 3.30 × 10−4 | 17.15 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.79 × 10−4 | 14.53 | 1.24 × 10−4 | 6.47 |
31 | 3.33 × 10−4 | 17.30 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.82 × 10−4 | 14.65 | 1.29 × 10−4 | 6.68 |
32 | 3.36 × 10−4 | 17.45 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.91 × 10−4 | 15.13 | 1.33 × 10−4 | 6.90 |
33 | 3.38 × 10−4 | 17.57 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.91 × 10−4 | 15.13 | 1.33 × 10−4 | 6.90 |
34 | 3.41 × 10−4 | 17.74 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.91 × 10−4 | 15.13 | 1.33 × 10−4 | 6.90 |
35 | 3.45 × 10−4 | 17.94 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.33 × 10−4 | 6.90 |
36 | 3.46 × 10−4 | 18.01 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.34 × 10−4 | 6.97 |
37 | 3.49 × 10−4 | 18.16 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.34 × 10−4 | 6.97 |
38 | 3.52 × 10−4 | 18.31 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.34 × 10−4 | 6.97 |
39 | 3.52 × 10−4 | 18.31 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.34 × 10−4 | 6.97 |
40 | 3.54 × 10−4 | 18.43 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.34 × 10−4 | 6.97 |
41 | 3.57 × 10−4 | 18.55 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.34 × 10−4 | 6.97 |
42 | 3.59 × 10−4 | 18.68 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.34 × 10−4 | 6.97 |
43 | 3.61 × 10−4 | 18.75 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.34 × 10−4 | 6.97 |
44 | 3.63 × 10−4 | 18.87 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.41 × 10−4 | 7.34 |
45 | 3.66 × 10−4 | 19.02 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
46 | 3.68 × 10−4 | 19.14 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
47 | 3.70 × 10−4 | 19.24 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
48 | 3.72 × 10−4 | 19.34 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
49 | 3.73 × 10−4 | 19.41 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
50 | 3.76 × 10−4 | 19.56 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
51 | 3.80 × 10−4 | 19.76 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
52 | 3.80 × 10−4 | 19.78 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
53 | 3.81 × 10−4 | 19.83 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
54 | 3.83 × 10−4 | 19.90 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
55 | 3.84 × 10−4 | 19.98 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
56 | 3.88 × 10−4 | 20.18 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
57 | 3.92 × 10−4 | 20.40 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
58 | 3.92 × 10−4 | 20.40 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
59 | 3.92 × 10−4 | 20.40 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
60 | 3.95 × 10−4 | 20.54 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
61 | 3.96 × 10−4 | 20.62 | 2.35 × 10−4 | 12.24 | 1.32 × 10−4 | 6.86 | 2.97 × 10−4 | 15.43 | 1.44 × 10−4 | 7.48 |
Sample | Prod. Days | Ep TOT [kJ] | Es/day [kJ] |
---|---|---|---|
BSG | 63 | 20.62 | 0.38 |
BSGp | 22 | 12.24 | 0.41 |
BSGph | 21 | 6.86 | 0.25 |
OMWW + BSG | 37 | 15.43 | 0.96 |
OP + BSG | 47 | 7.48 | 0.12 |
Sample | (Ep − Es)max [kJ] | Days (Ep − Es)max [kJ] | Days (Ep ≈ Es) |
---|---|---|---|
BSG | 7.08 | 17 | 52 |
BSGp | 5.36 | 19 | 30 |
BSGph | 2.2 | 18 | 28 |
OMWW + BSG | 1.96 | 1 | 4 |
OPp + BSG | 5.22 | 32 | 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Mario, J.; Gambelli, A.M.; Gigliotti, G. Biomethane Production from Untreated and Treated Brewery’s Spent Grain: Feasibility of Anaerobic Digestion After Pretreatments According to Biogas Yield and Energy Efficiency. Agronomy 2024, 14, 2980. https://doi.org/10.3390/agronomy14122980
Di Mario J, Gambelli AM, Gigliotti G. Biomethane Production from Untreated and Treated Brewery’s Spent Grain: Feasibility of Anaerobic Digestion After Pretreatments According to Biogas Yield and Energy Efficiency. Agronomy. 2024; 14(12):2980. https://doi.org/10.3390/agronomy14122980
Chicago/Turabian StyleDi Mario, Jessica, Alberto Maria Gambelli, and Giovanni Gigliotti. 2024. "Biomethane Production from Untreated and Treated Brewery’s Spent Grain: Feasibility of Anaerobic Digestion After Pretreatments According to Biogas Yield and Energy Efficiency" Agronomy 14, no. 12: 2980. https://doi.org/10.3390/agronomy14122980
APA StyleDi Mario, J., Gambelli, A. M., & Gigliotti, G. (2024). Biomethane Production from Untreated and Treated Brewery’s Spent Grain: Feasibility of Anaerobic Digestion After Pretreatments According to Biogas Yield and Energy Efficiency. Agronomy, 14(12), 2980. https://doi.org/10.3390/agronomy14122980