Alcoholic Fermentation Activators: Bee Pollen Extracts as a New Alternative
<p>Development of viable <span class="html-italic">Saccharomyces cerevisiae</span> during the process of alcoholic fermentation of the Palomino Fino grape must using bee pollen extracts, bee pollen, or a control.</p> "> Figure 2
<p>Relative density evolution during alcoholic fermentation of Palomino Fino grape must using doses of bee pollen and extracts.</p> "> Figure 3
<p>Evolution of YAN in Palomino Fino grape must using doses of bee pollen extracts, bee pollen, and control during alcoholic fermentation.</p> "> Figure 4
<p>Olfactory and taste evaluation of Palomino Fino wines made with bee pollen or bee pollen extracts and control. Stars (*) indicate significant differences between trials for the respective attributes (ANOVA, <span class="html-italic">p</span> < 0.05), as determined by a two-way ANOVA and applying a Bonferroni multiple range (BSD) test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Winemaking Conditions
2.2. Bee Pollen Extracts
2.3. Experimental Layout
2.4. Analytical Measurements
2.5. Sensory Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Influence of Bee Pollen Extract Addition on Grape Must Composition
3.2. Bee Pollen Extract Influence on Yeast Growth Kinetics of Alcoholic Fermentation
3.3. Bee Pollen Extract Influence on Fermentation Progress
3.4. Bee Pollen Extract Influence on YAN Evolution During Alcoholic Fermentation
3.5. Final Wine Physicochemical and Colour Characterisation
3.6. Descriptive Sensory Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Organic Compound | Hexane Extract | Acetone Extract | Ethanol Extract | Water Extract |
---|---|---|---|---|
Fatty Acids | ||||
Capric acid (C10) | 0.08 ± 0.01 | - | - | - |
Lauric acid (C12) | 0.30 ± 0.11 | 0.14 ± 0.06 | - | - |
Myristic acid (C14) | 0.17 ± 0.02 | 0.34 ± 0.02 | - | - |
Palmitoleic acid (C16:1) | 1.01 ± 0.18 | 0.53 ± 0.12 | ||
Palmitic acid (C16:0) | 3.06 ± 0.28 | 1.43 ± 0.07 | - | - |
alpha-Linolenic acid (C18:3) | 6.61 ± 1.75 | 3.97 ± 0.40 | - | - |
Linoleic acid (C18:2) | 7.80 ± 1.36 | 1.81 ± 0.39 | - | - |
Oleic acid (C18:1) | 1.31 ± 0.19 | 4.31 ± 0.20 | - | - |
Stearic acid (C18) | 1.09 ± 0.16 | 1.38 ± 0.19 | - | - |
Arachidic acid (C20) | 0.80 ± 0.02 | 1.25 ± 0.17 | - | - |
Erucic acid (C22:1) | 0.88 ± 0.19 | 0.91 ± 0.15 | ||
Behenic acid (C22) | 0.69 ± 0.02 | 1.13 ± 0.29 | - | - |
Lignoceric acid (C24) | 0.47 ± 0.07 | 0.72 ± 0.21 | - | - |
Total fatty acids | 24.27 ± 4.36 | 17.92 ± 2.27 | - | - |
% fatty acids | 9.71% | 7.17% | 0.00% | 0.00% |
Protein Amino Acids | ||||
Alanine | - | - | 0.87 ± 0.11 | 3.02 ± 0.18 |
Glycine | - | - | - | 3.09 ± 0.39 |
Valine | - | 0.39 ± 0.02 | - | 1.35 ± 0.22 |
Leucine | 0.11 ± 0.01 | 0.08 ± 0.02 | - | 2.73 ± 0.28 |
Isoleucine | 0.06 ± 0.01 | 0.24 ± 0.03 | 1.78 ± 0.62 | 9.24 ± 1.91 |
Proline | 0.48 ± 0.19 | - | 0.05 ± 0.00 | 1.83 ± 0.28 |
Methionine | - | 0.37 ± 0.14 | - | 5.03 ± 0.38 |
Serine | - | - | - | 0.89 ± 0.29 |
Threonine | - | - | - | 0.50 ± 0.04 |
Phenylalanine | - | - | - | 1.18 ± 0.11 |
Aspartic acid | - | - | - | 2.28 ± 0.57 |
Glutamic acid | - | - | - | 0.16 ± 0.03 |
Total amino acids | 0.65 ± 0.21 | 1.08 ± 0.21 | 2.70 ± 0.73 | 31.30 ± 4.68 |
% amino acids | 0.26% | 0.43% | 1.08% | 12.52% |
Free Amino Acids | ||||
Alanine | - | 0.02 ± 0.00 | 0.11 ± 0.03 | 0.03 ± 0.00 |
Glycine | - | 0.03 ± 0.01 | 0.01 ± 0.00 | - |
Valine | - | 0.05 ± 0.02 | 0.09 ± 0.00 | - |
Leucine | 0.11 ± 0.01 | 0.03 ± 0.01 | 0.07 ± 0.01 | 0.02 ± 0.00 |
Isoleucine | - | 0.04 ± 0.01 | 0.13 ± 0.02 | - |
Proline | 0.06 ± 0.00 | 0.04 ± 0.00 | 0.21 ± 0.01 | 0.02 ± 0.00 |
Methionine | - | 0.08 ± 0.01 | 0.05 ± 0.00 | 0.41 ± 0.09 |
Serine | - | 0.12 ± 0.02 | 0.14 ± 0.03 | - |
Threonine | - | - | 0.05 ± 0.01 | - |
Phenylalanine | - | - | 0.16 ± 0.02 | 0.03 ± 0.00 |
Aspartic acid | - | - | 0.03 ± 0.00 | 0.05 ± 0.01 |
Glutamic acid | - | 0.11 ± 0.04 | 0.02 ± 0.00 | - |
Lysine | - | - | 0.17 ± 0.05 | - |
Histidine | - | - | 0.21 ± 0.04 | - |
Tyrosine | - | - | - | - |
Total amino acids | 0.17 ± 0.01 | 0.52 ± 0.12 | 1.45 ± 0.22 | 0.56 ± 0.10 |
% amino acids | 0.01% | 0.21% | 0.58% | 0.22% |
Carbohydrates | ||||
Rhamnose | - | 0.04 ± 0.00 | 0.17 ± 0.03 | 0.09 ± 0.00 |
Fucose | - | 0.01 ± 0.00 | - | 0.09 ± 0.01 |
Arabinose | - | 0.02 ± 0.00 | 0.05 ± 0.01 | 1.34 ± 0.29 |
Xylose | - | 0.01 ± 0.00 | 0.03 ± 0.00 | 0.21 ± 0.03 |
Mannose | - | 0.06 ± 0.01 | 0.24 ± 0.03 | 0.82 ± 0.07 |
Glucose | 0.03 ± 0.00 | 0.85 ± 0.16 | 7.40 ± 0.83 | 11.04 ± 1.93 |
Galactose | 0.17 ± 0.01 | 0.02 ± 0.00 | 0.07 ± 0.02 | 0.63 ± 0.12 |
Total carbohydrates | 0.20 ± 0.01 | 1.01 ± 0.17 | 7.95 ± 0.92 | 14.23 ± 2.45 |
% carbohydrate | 0.01% | 0.40% | 3.18% | 5.69% |
Total polyphenols (mg/L) * | 0.00 ± 0.0 | 27.00 ± 0.0 | 19.50 ± 1.0 | 1.00 ± 0.0 |
References
- OIV. Office International de la Vigne, & du Vins. Código Internacional de Prácticas Enológicas. 2016. 25. Available online: https://www.oiv.int/public/medias/4902/code-2016-es.pdf (accessed on 30 June 2024).
- Maisonnave, P.; Sanchez, I.; Moine, V.; Dequin, S.; Galeote, V. Stuck fermentation: Development of a synthetic stuck wine and study of a restart procedure. Int. J. Food Microbiol. 2013, 163, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Rollero, S.; Bloem, A.; Camarasa, C.; Sanchez, I.; Ortiz-Julien, A.; Sablayrolles, J.M.; Dequin, S.; Mouret, J.R. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation. Microbiol. Biotechnol. 2015, 99, 2291–2304. [Google Scholar] [CrossRef] [PubMed]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Sousa, M.J.; Agasse, A.; Delrot, S.; Gerós, H. Biochemical changes throughout grape berry development and fruit and wine quality. Food 2007, 1, 1–22. [Google Scholar]
- Tesnière, C. Importance and role of lipids in wine yeast fermentation. Appl. Microbiol. Biotechnol. 2019, 103, 8293–8300. [Google Scholar] [CrossRef]
- Walker, G.M.; Walker, R.S.K. Enhancing Yeast Alcoholic Fermentations. Adv. Appl. Microbiol. 2018, 105, 87–129. [Google Scholar] [CrossRef]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Hernández-Orte, P.; Ibarz, M.J.; Cacho, J.; Ferreira, V. Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine. Food Chem. 2005, 89, 163–174. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation. LWT—Food Sci. Technol. 2008, 41, 501–510. [Google Scholar] [CrossRef]
- Amores-Arrocha, A.; Roldán, A.; Jiménez-Cantizano, A.; Caro, I.; Palacios, V. Evaluation of the use of multiflora bee pollen on the volatile compounds and sensorial profile of Palomino fino and Riesling white young wines. Food Res. Int. 2018, 105, 197–209. [Google Scholar] [CrossRef]
- Sancho-Galán, P.; Amores-Arrocha, A.; Palacios, V.; Jiménez-Cantizano, A. Volatile composition and sensory characterisation of dry white wines Made with overripe grapes by means of two different techniques. Foods 2022, 11, 509. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Mozell, M.R.; Thachn, L. The impact of climate change on the global wine industry: Challenges & solutions. Wine Econ. Policy 2014, 3, 81–89. [Google Scholar] [CrossRef]
- Hellín, P.D.; Úbeda, J.; Briones, A. Improving alcoholic fermentation by activation of Saccharomyces species during the rehydration stage. LWT—Food Sci. Technol. 2013, 50, 126–131. [Google Scholar] [CrossRef]
- Amores-Arrocha, A.; Sancho-Galán, P.; Jiménez-Cantizano, A.; Palacios, V. Bee pollen as oenological tool to carry out red winemaking in warm climate conditions. Agronomy 2020, 10, 634. [Google Scholar] [CrossRef]
- Campos, M.G.R.; Bogdanov, S.; de Almeida-Muradian, L.B.; Szczesna, T.; Mancebo, Y.; Frigerio, C.; Ferreira, F. Pollen composition and standardisation of analytical methods. J. Apic. Res. 2008, 47, 154–161. [Google Scholar] [CrossRef]
- Human, H.; Nicolson, S.W. Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry 2006, 67, 1486–1492. [Google Scholar] [CrossRef]
- Mayda, N.; Özkök, A.; Ecem Bayram, N.; Gerçek, Y.C.; Sorkun, K. Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 2020, 14, 1795–1809. [Google Scholar] [CrossRef]
- Sancho-Galán, P.; Amores-Arrocha, A.; Jiménez-Cantizano, A.; Palacios, V. Use of multiflora bee pollen as a flor velum yeast growth activator in biological aging wines. Molecules 2019, 24, 1763. [Google Scholar] [CrossRef]
- Sancho-Galán, P.; Amores-Arrocha, A.; Palacios, V.; Jiménez-Cantizano, A. Preliminary Study of Somatic Variants of Palomino Fino (Vitis vinifera L.) Grown in a Warm Climate Region (Andalusia, Spain). Agronomy 2020, 10, 654. [Google Scholar] [CrossRef]
- Real Decreto 1101/2011. Lista Positiva de los Disolventes de Extracción que se Pueden Utilizar en la Fabricación de Productos Alimenticios y de sus Ingredientes. Boletín Oficial del Estado. 2011. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2011-14223 (accessed on 30 June 2024).
- Gómez, M.E.; Igartuburu, J.M.; Pando, E.; Rodríguez Luis, F.; Mourente, G. Lipid composition of lees from Sherry wine. J. Agric. Food Chem. 2004, 52, 4791–4794. [Google Scholar] [CrossRef]
- Paquot, C.; Haufenne, A. Standard Methods for the Analysis of Oils, Fats and Derivatives; Elsevier: Amsterdam, The Netherlands, 1979. [Google Scholar] [CrossRef]
- Pinto, M.C.X.; de Paiva, M.J.N.; Oliveira-Lima, O.C.; Menezes, H.C.; Cardeal, Z.d.L.; Gomez, M.V.; Resende, R.R.; Gomez, R.S. Neurochemical study of amino acids in rodent brain structures using an improved gas chromatography-mass spectrometry method. J. Chem. Neuroanat. 2014, 55, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S.; Martin, P.; Luellmann, C. Harmonised methods of the European Honey Commission. Apidologie 1997, 1–36. [Google Scholar]
- OIV. Office International de la Vigne, & du Vins. Recueil des Méthodes Internationales D’analyse des Vins et des Moûts: Édition Officielle. 2021. Available online: https://www.oiv.int/public/medias/7807/oiv-recueil-vol1-fr-2021.pdf (accessed on 30 June 2024).
- Heredia, F.J.; Troncoso, A.M.; Guzmin-Chozas, M. Multivariate characterization of aging status red wines based on chromatic parameters. Food Chem. 1997, 60, 103–108. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; José, M.L.G.-S. Polyphenols and colour variability of red wines made from grapes harvested at different ripeness grade. Food Chem. 2006, 96, 197–208. [Google Scholar] [CrossRef]
- Martínez, J.A.; Melgosa, M.; Pérez, M.M.; Hita, E.; Negueruela, A.I. Visual and instrumental color evaluation in red wines. Food Sci. Technol. Int. 2001, 7, 439–444. [Google Scholar] [CrossRef]
- ISO 3591:1977; Sensory Analysis—Apparatus—Wines-Tasting Glass. International Organization for Standardization: Genève, Switzerland, 1997.
- Jackson, R.S. Wine Tasting: A Professional Handbook; Academic Press: London, UK, 2009. [Google Scholar]
- Amores-Arrocha, A.; Roldán, A.; Jiménez-Cantizano, A.; Caro, I.; Palacios, V. Effect on white grape-must of multiflora bee pollen addition during the alcoholic fermentation process. Molecules 2018, 23, 1321. [Google Scholar] [CrossRef]
- Hernández-Orte, P.; Ibarz, M.J.; Cacho, J.; Ferreira, V. Addition of amino acids to grape juice of the Merlot variety: Effect on amino acid uptake and aroma generation during alcoholic fermentation. Food Chem. 2006, 98, 300–310. [Google Scholar] [CrossRef]
- Pinu, F.R.; Villas-Boas, S.G.; Martin, D. Pre-fermentative supplementation of fatty acids alters the metabolic activity of wine yeasts. Food Res. Int. 2019, 121, 835–844. [Google Scholar] [CrossRef]
- Duan, L.L.; Shi, Y.; Jiang, R.; Yang, Q.; Wang, Y.Q.; Liu, P.T.; Duan, C.Q.; Yan, G.L. Effects of adding unsaturated fatty acids on fatty acid composition of Saccharomyces cerevisiae and major volatile compounds in wine. S. Afr. J. Enol. Vitic. 2015, 36, 285–295. [Google Scholar] [CrossRef]
- Guilloux-Benatier, M.; Le Fur, Y.; Feuillat, M. Influence of fatty acids on the growth of wine microorganisms Saccharomyces cerevisiae and Oenococcus oeni. J. Ind. Microbiol. Biotechnol. 1998, 20, 144–149. [Google Scholar] [CrossRef]
- Neff, J.L.; Simpson, B.B. Vogel’s great legacy: The oil flower and oil-collecting bee syndrome. Flora 2017, 232, 104–116. [Google Scholar] [CrossRef]
- Furse, S.; Koch, H.; Wright, G.A.; Stevenson, P.C. Sterol and lipid metabolism in bees. Metabolomics 2023, 19, 78. [Google Scholar] [CrossRef] [PubMed]
- Girardi Piva, G.; Casalta, E.; Legras, J.L.; Tesnière, C.; Sablayrolles, J.M.; Ferreira, D.; Ortiz-Julien, A.; Galeote, V.; Mouret, J.R. Characterization and role of sterols in Saccharomyces cerevisiae during white wine alcoholic fermentation. Fermentation 2022, 8, 90. [Google Scholar] [CrossRef]
- Habryka, C.; Socha, R.; Juszczak, L. Effect of bee pollen addition on the polyphenol content, antioxidant activity, and quality parameters of honey. Antioxidants 2021, 10, 810. [Google Scholar] [CrossRef] [PubMed]
- Rzepecka-Stojko, A.; Stojko, J.; Kurek-Górecka, A.; Górecki, M.; Kabała-Dzik, A.; Kubina, R.; Moździerz, A.; Buszman, E.; Iriti, M. Polyphenols from bee pollen: Structure, absorption, metabolism and biological activity. Molecules 2015, 20, 21732–21749. [Google Scholar] [CrossRef]
- Mekoue Nguela, J.; Vernhet, A.; Julien-Ortiz, A.; Sieczkowski, N.; Mouret, J.R. Effect of grape must polyphenols on yeast metabolism during alcoholic fermentation. Food Res. Int. 2019, 121, 161–175. [Google Scholar] [CrossRef]
- Restrepo, S.; Espinoza, L.; Ceballos, A.; Urtubia, A. Production of fatty acids during alcoholic wine fermentation under selected temperature and aeration conditions. Am. J. Enol. Vitic. 2019, 70, 169–176. [Google Scholar] [CrossRef]
- Abernathy, D.G.; Spedding, G.; Starcher, B. Analysis of protein and total usable nitrogen in beer and wine using a microwell ninhydrin assay. J. Inst. Brew. 2009, 115, 122–127. [Google Scholar] [CrossRef]
- Alexandre, H.; Guilloux-Benatier, M. Yeast autolysis in sparkling wine—A review. Aust. J. Grape Wine Res. 2006, 12, 119–127. [Google Scholar] [CrossRef]
- Cai-Lin, K.; Na, M.; Jiam, Y.; Hong-Yu, Z.; Yong-Sheng, T. Fine tuning of medium chain fatty acids levels increases fruity ester production during alcoholic fermentation. Food Chem. 2021, 346, 128897. [Google Scholar] [CrossRef]
- Pei-Tong, L.; Bo-Quin, Z.; Chang-Qing, D.; Guo-Liang, Y. Pre-fermentative supplementation of unsaturated fatty acids alters the effect of overexpressing ATF1 and EEB1 on esters biosynthesis in red wine. LWT—Food Sci. Technol. 2020, 120, 108925. [Google Scholar] [CrossRef]
- Viegas, C.A.; Rosa, M.F.; Sa-Correia, I.; Novais, J.M. Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. Appl. Environ. Microbiol. 1989, 55, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Saerens, S.M.G.; Verstrepen, K.J.; Van Laere, S.D.M.; Voet, A.R.D.; Van Dijck, P.; Delvaux, F.R.; Thevelein, J.M. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J. Biol. Chem. 2006, 281, 4446–4456. [Google Scholar] [CrossRef] [PubMed]
Parameters | Palomino Fino Grape Must with Bee Pollen Extracts | |||||
---|---|---|---|---|---|---|
Hexane Extract 0.25 g/L | Acetone Extract 0.25 g/L | Ethanol Extract 0.25 g/L | Water Extract 0.25 g/L | Bee Pollen 0.25 g/L | Control | |
°Be | 10.28 ± 0 a | 10.25 ± 0.01 a | 10.24 ± 0.01 a | 10.23 ± 0.02 a | 10.25 ± 0.05 a | 10.24 ± 0.01 a |
Total acidity (g/L TH2) | 5.64 ± 0.07 a | 5.63 ± 0.04 a | 5.69 ± 0.04 a | 5.69 ± 0.07 a | 5.68 ± 0.00 a | 5.67 ± 0.00 a |
pH | 3.32 ± 0.00 a | 3.36 ± 0.01 a | 3.34 ± 0.00 a | 3.34 ± 0.03 a | 3.33 ± 0.03 a | 3.30 ± 0.03 a |
Density (g/cm3) | 1.067 ± 0.005 a | 1.066 ± 0.003 a | 1.063 ± 0.001 a | 1.065 ± 0.004 a | 1.073 ± 0.002 a | 1.066 ± 0.000 a |
Amine nitrogen (α-NH2) (mg/L) | 188 ± 2 a,b | 190 ± 1 a | 187 ± 1 b | 194 ± 2 c | 198 ± 1 d | 187 ± 1 b |
Ammonia nitrogen (NH4) (mg/L) | 44 ± 1 a | 45 ± 3 a,b,c | 47 ± 1 b,c,d | 48 ± 1 d | 49 ± 1 d | 47 ± 1 c,d |
YAN (mg/L) | 232 ± 3 a | 235 ± 3 a | 234 ± 2 a | 241 ± 3 b | 247 ± 2 c | 233 ± 1 a |
Parameters | Palomino Fino Final Wines with Bee Pollen Extracts | |||||
---|---|---|---|---|---|---|
Hexane Extract 0.25 g/L | Acetone Extract 0.25 g/L | Ethanol Extract 0.25 g/L | Water Extract 0.25 g/L | Bee Pollen 0.25 g/L | Control | |
% Alc. | 10.01 ± 0.00 a | 10.10 ± 0.12 a | 10.14 ± 0.18 a | 10.14 ± 0.18 a | 10.05 ± 0.06 a | 10.14 ± 0.17 a |
Total Acidity (g/L TH2) | 6.34 ± 0.05 a | 6.11 ± 0.05 a | 6.15 ± 0.32 a | 6.19 ± 0.05 a | 6.64 ± 0.16 a | 6.53 ± 0.21 a |
Volatile Acidity (g/L) | 0.248 ± 0.080 a | 0.250 ± 0.090 a | 0.218 ± 0.020 a | 0.181 ± 0.000 a | 0.202 ± 0.010 a | 0.199 ± 0.000 a |
pH | 3.18 ± 0.16 a | 3.19 ± 0.02 a | 3.14 ± 0.11 a | 3.24 ± 0.02 a | 3.20 ± 0.02 a | 3.20 ± 0.02 a |
YAN (mg/L) | 27 ± 1 a | 26 ± 2 a,c | 23 ± 1 b,d | 21 ± 0 b | 26 ± 4 a,c | 24 ± 1 c,d |
Residual Sugars (g/L) | 0.53 ± 0.24 a | 0.73 ± 0.01 a | 0.84 ± 0.02 a | 0.96 ± 0.00 a | 0.86 ± 0.08 a | 0.82 ± 0.02 a |
Total Polyphenols (mg/L) | 201.50 ± 3.54 a | 218.50 ± 2.12 b | 213.00 ± 2.83 c | 204.50 ± 3.54 a | 208.00 ± 0.00 d | 209.00 ± 1.41 d |
TPI | 14.72 ± 0.01 a | 14.27 ± 0.02 a | 11.76 ± 0.01 b | 12.11 ± 1.74 b | 13.93 ± 0.02 a | 13.34 ± 0.01 a |
L* | 98.06 ± 0.69 a | 97.52 ± 0.08 a | 97.39 ± 0.01 a | 97.42 ± 0.26 a | 97.24 ± 0.11 a | 97.65 ± 0.41 a |
a* | −1.04 ± 0.01 a | −1.10 ± 0.05 a | −1.06 ± 0.04 a | −1.19 ± 0.04 a | −2.47 ± 0.03 a | −2.05 ± 0.00 a |
b* | 8.44 ± 2.04 a | 9.89 ± 0.14 a,b | 10.19 ± 0.08 b | 10.34 ± 0.32 b | 10.81 ± 0.05 b | 10.31 ± 054 b |
H* | 98.67 ± 3.54 a | 96.34 ± 0.14 a,b | 95.97 ± 0.27 b | 96.56 ± 0.44 a,b | 101.36 ± 0.19 c | 101.27 ± 0.60 c |
C* | 7.52 ± 3.00 a | 9.95 ± 0.19 a,b | 10.24 ± 0.07 b | 10.41 ± 0.31 b | 11.02 ± 0.04 b | 10.51 ± 0.52 b |
Colorant Intensity (CI) | 0.15 ± 0.06 a | 0.19 ± 0.02 a | 0.20 ± 0.00 a | 0.20 ± 0.01 a | 0.23 ± 0.00 a | 0.21 ± 0.02 a |
Abs 420 nm | 0.11 ± 0.05 a | 0.15 ± 0.01 a | 0.15 ± 0.00 a | 0.15 ± 0.01 a | 0.18 ± 0.00 a | 0.16 ± 0.01 a |
Tone (N) | 3.87 ± 0.19 a | 4.03 ± 0.08 a | 3.98 ± 0.02 a | 4.12 ± 0.21 a | 4.78 ± 0.12 a | 5.10 ± 0.44 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-González, J.M.; Igartuburu, J.M.; Palacios, V.; Sancho-Galán, P.; Jiménez-Cantizano, A.; Amores-Arrocha, A. Alcoholic Fermentation Activators: Bee Pollen Extracts as a New Alternative. Agronomy 2024, 14, 2802. https://doi.org/10.3390/agronomy14122802
Pérez-González JM, Igartuburu JM, Palacios V, Sancho-Galán P, Jiménez-Cantizano A, Amores-Arrocha A. Alcoholic Fermentation Activators: Bee Pollen Extracts as a New Alternative. Agronomy. 2024; 14(12):2802. https://doi.org/10.3390/agronomy14122802
Chicago/Turabian StylePérez-González, Juan Manuel, José Manuel Igartuburu, Víctor Palacios, Pau Sancho-Galán, Ana Jiménez-Cantizano, and Antonio Amores-Arrocha. 2024. "Alcoholic Fermentation Activators: Bee Pollen Extracts as a New Alternative" Agronomy 14, no. 12: 2802. https://doi.org/10.3390/agronomy14122802
APA StylePérez-González, J. M., Igartuburu, J. M., Palacios, V., Sancho-Galán, P., Jiménez-Cantizano, A., & Amores-Arrocha, A. (2024). Alcoholic Fermentation Activators: Bee Pollen Extracts as a New Alternative. Agronomy, 14(12), 2802. https://doi.org/10.3390/agronomy14122802