Historic Grain Sorghum Production, Value, Yield Gap, and Weather Relation Trends
<p>Average grain sorghum total, irrigated, non-irrigated area planted and harvested from (<b>a</b>) 1929 to 2022, (<b>b</b>) 1929 to 2000, and (<b>c</b>) 2000 to 2022 in Kansas.</p> "> Figure 2
<p>Grain sorghum economic value from (<b>a</b>) 1949 to 2022, (<b>b</b>) 1949 to 1990, and (<b>c</b>) 1991 to 2022 in Kansas.</p> "> Figure 3
<p>Grain sorghum total production from (<b>a</b>) 1929 to 2022, (<b>b</b>) 1929 to 1979, and (<b>c</b>) 1980 to 2022 in Kansas.</p> "> Figure 4
<p>Grain sorghum average, irrigated, and non-irrigated yield ha<sup>−1</sup> from (<b>a</b>) 1929 to 2022, (<b>b</b>) 1929 to 1979, and (<b>c</b>) 1980 to 2022 in Kansas. Throughout this paper, trend line equations with NS are not significant, with * being significant at <span class="html-italic">p</span> < 0.05, ** significant at <span class="html-italic">p</span> < 0.01, and *** significant at <span class="html-italic">p</span>< 0.001 probability level.</p> "> Figure 5
<p>Grain sorghum yield trend (top panel (<b>a</b>–<b>c</b>)) and yield distribution (lower panel (<b>d</b>–<b>f</b>)) for average (left panel (<b>a</b>,<b>d</b>)), irrigated (central panel (<b>b</b>,<b>e</b>)), and non-irrigated (right panel (<b>c</b>,<b>f</b>)) yield ha<sup>−1</sup> from 1929 to 2022 at nine agricultural districts of Kansas.</p> "> Figure 6
<p>Average grain sorghum yield trend for non-irrigated (left panel (<b>a</b>,<b>c</b>)) and irrigated (right panel (<b>b</b>,<b>d</b>)) yield ha<sup>−1</sup> from 1955 to 2022 (top panel (<b>a</b>,<b>b</b>)) and 2000 to 2022 (lower panel (<b>c</b>,<b>d</b>)) at Colby, Garden City, Hays, and Tribune Kansas Hybrid Sorghum Trials data. Trend line equations with NS are not significant, with * being significant at <span class="html-italic">p</span> < 0.05, ** significant at <span class="html-italic">p</span> < 0.01, and *** significant at <span class="html-italic">p</span> < 0.001 probability level.</p> "> Figure 7
<p>Annual yield variability and trend in (<b>a</b>) USDA state average, (<b>b</b>) KGSHT non-irrigated, and (<b>c</b>) irrigated grain sorghum detrended yield using differencing data from USDA and trials at Colby, Garden City, Hays and Tribune, KS. Blue cone-shaped lines indicate how lower and upper margins of yield difference change over time despite an overall trendless variation. Throughout this paper, trend line equations with NS are not significant, with * being significant at <span class="html-italic">p</span> < 0.05, ** significant at <span class="html-italic">p</span> < 0.01, and *** significant at <span class="html-italic">p</span> < 0.001 probability level.</p> "> Figure 8
<p>Yield gap analysis through relationship between actual (<b>a</b>) non-irrigated and (<b>b</b>) irrigated yield from Thomas, Finney, Ellis, and Greeley County USDA data and potential yield from variety trials at Colby, Garden City, Hays, and Tribune cities. Throughout this paper, trend line equations with NS are not significant, with * being significant at <span class="html-italic">p</span> < 0.05, ** significant at <span class="html-italic">p</span> < 0.01, and *** significant at <span class="html-italic">p</span> < 0.001 probability level.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Area of Study
2.2. Statistical Analysis
3. Results
3.1. Planted and Harvested Areas
3.2. Economic Value
3.3. Total Production and Productivity
3.4. Yield Trend from Hybrid Trial and Yield Variation
3.5. Yield Gap
3.6. Yield–Weather Relations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- George, T.T.; Obilana, A.O.; Oyenihi, A.B.; Obilana, A.B.; Akamo, D.O.; Awika, J.M. Trends and progress in sorghum research over two decades, and implications to global food security. S. Afr. J. Bot. 2022, 151, 960–969. [Google Scholar] [CrossRef]
- FAO. Agricultural Production Statistics. 2023. Available online: https://openknowledge.fao.org (accessed on 10 January 2024).
- USDA-FAS. Sorghum 2023 World Production. 2023. Available online: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0459200 (accessed on 5 February 2024).
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar]
- Khalifa, M.; Eltahir, E.A. Assessment of global sorghum production, tolerance, and climate risk. Front. Sustain. Food Syst. 2023, 7, 1184373. [Google Scholar] [CrossRef]
- Mundia, C.W.; Secchi, S.; Akamani, K.; Wang, G. A regional comparison of factors affecting global sorghum production: The case of North America, Asia and Africa’s Sahel. Sustainability 2019, 11, 2135. [Google Scholar] [CrossRef]
- Dalton, T.J.; Hodjo, M. Trends in global production, consumption, and utilization of Sorghum. In Sorghum in the 21st Century: Food–Fodder–Feed–Fuel for a Rapidly Changing World; Springer: Singapore, 2020; pp. 3–15. [Google Scholar] [CrossRef]
- Mayor, L.; Demarco, P.; Lira, S.; Fang, Y.; Abadie, T.; Gambin, B.L.; Hammer, G.; Ciampitti, I.; Cooper, M.; Messina, C. Retrospective study in US commercial sorghum breeding: I. Genetic gain in relation to relative maturity. Crop Sci. 2023, 63, 501–510. [Google Scholar] [CrossRef]
- USDA-NASS. Crop Production 2022 Summary. 2022. Available online: https://www.nass.usda.gov/Quick_Stats/index.php (accessed on 15 January 2024).
- Eghball, B.; Power, J.F. Fractal description of temporal yield variability of 10 crops in the United States. Agron. J. 1995, 87, 152–156. [Google Scholar] [CrossRef]
- Unger, P.W.; Baumhardt, R.L. Factors related to dryland grain sorghum yield increases, 1939 through 1997. Agron. J. 1999, 91, 870–875. [Google Scholar] [CrossRef]
- Demarco, P.A.; Mayor, L.; Rotundo, J.L.; Prasad, P.V.V.; Morris, G.P.; Fernandez, J.A.; Tamagno, S.; Hammer, G.; Messina, C.D.; Ciampitti, I.A. Retrospective study in US commercial sorghum breeding: II. Physiological changes associated to yield gain. Crop Sci. 2023, 63, 867–878. [Google Scholar] [CrossRef]
- Assefa, Y.; Staggenborg, S.A. Grain sorghum yield with hybrid advancement and changes in agronomic practices from 1957 through 2008. Agron. J. 2010, 102, 703–706. [Google Scholar] [CrossRef]
- Rakshit, S.; Hariprasanna, K.; Gomashe, S.; Ganapathy, K.N.; Das, I.K.; Ramana, O.V.; Dhandapani, A.; Patil, J.V. Changes in area, yield gains, and yield stability of sorghum in major sorghum-producing countries, 1970 to 2009. Crop Sci. 2014, 54, 1571–1584. [Google Scholar] [CrossRef]
- Laingen, C. A spatiotemporal analysis of sorghum in the United States. Pap. Appl. Geogr. 2015, 1, 307–311. [Google Scholar] [CrossRef]
- Chadalavada, K.; Kumari, B.R.; Kumar, T.S. Sorghum mitigates climate variability and change on crop yield and quality. Planta 2021, 253, 113. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Islam, M.N.; Rahman, M.M.; Mostofa, M.G.; Khan, M.A.R. Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. J. Agric. Food Res. 2022, 8, 100300. [Google Scholar] [CrossRef]
- Habyarimana, E.; Gorthy, S.; Baloch, F.S.; Ercisli, S.; Chung, G. Whole-genome resequencing of Sorghum bicolor and S. bicolor× S. halepense lines provides new insights for improving plant agroecological characteristics. Sci. Rep. 2022, 12, 5556. [Google Scholar] [CrossRef]
- Economic Research. Table 1.1.4. Price Indexes for Gross Domestic Product. 2023. Available online: https://fred.stlouisfed.org/release/tables?eid=12970&rid=53Initiative (accessed on 4 February 2024).
- Kansas State University. Grain Sorghum Crop Performance Test; Agricultural Experiment Station and Cooperative Extension Service. Report of Progress. Kansas State University: Manhattan, KS, USA, 2022. Available online: https://www.agronomy.k-state.edu/outreach-and-services/crop-performance-tests/grain-sorghum/ (accessed on 3 February 2024).
- Kansas State University. Weather Data Library. K-State Research and Extension. 2023. Available online: https://www.ksre.k-state.edu/wdl/ (accessed on 20 February 2024).
- SAS Institute. SAS/STAT User’s Guide, (Version 9.4); SAS Institute: Cary, NC, USA, 2012. [Google Scholar]
- Brauer, D.; Baumhardt, R.L. Future Prospects for Sorghum as a Water-Saving Crop. Sorghum State Art Future Perspetives 2019, 58, 375–397. [Google Scholar]
- USDA-RAM. Double Cropping Initiative. 2023. Available online: https://www.rma.usda.gov/en/Topics/Double-Cropping-Initiative (accessed on 26 January 2024).
- Getachew, G.; Putnam, D.H.; De Ben, C.M.; De Peters, E.J. Potential of sorghum as an alternative to corn forage. Am. J. Plant Sci. 2016, 7, 1106–1121. [Google Scholar] [CrossRef]
- O’Brien, D. Domestic and international sorghum marketing. Sorghum State Art Future Perspetives 2019, 58, 477–502. [Google Scholar]
- Macke, Y. Foreign Demand Fuels U.S. Corn and Sorghum Exports. USDA, International Agricultural Trade Report. 2021. Available online: https://fas.usda.gov/data/foreign-demand-fuels-us-corn-and-sorghum-exports (accessed on 29 January 2024).
- National Sorghum Producers. Sorghum 101. 2024. Available online: http://sorghumgrowers.com/sorghum-101/ (accessed on 29 January 2024).
- Hariprasanna, K.; Rakshit, S. Economic importance of sorghum. In The Sorghum Genome; Springer: Singapore, 2016; pp. 1–25. [Google Scholar]
- Frankowski, J.; Przybylska-Balcerek, A.; Stuper-Szablewska, K. Concentration of Pro-Health Compound of Sorghum Grain-Based Foods. Foods 2022, 11, 216. [Google Scholar] [CrossRef]
- Holman, J.D.; Obour, A.K.; O’Brien, D.; Assefa, Y. Historic Winter Wheat Yield, Production, and Economic Value Trends in Kansas, the “Wheat State”. Crop Sci. 2024, 64, 925–941. [Google Scholar] [CrossRef]
- Holman, J.D.; Obour, A.K.; O’Brien, D.; Assefa, Y. Historic Corn Yield, Production, and Economic Value Trends in Kansas. Agron. J. 2024, 116, 1428–1439. [Google Scholar] [CrossRef]
- Staggenborg, S.A.; Dhuyvetter, K.C.; Gordon, W.B. Grain sorghum and corn comparisons: Yield, economic, and environmental responses. Agron. J. 2008, 100, 1600–1604. [Google Scholar] [CrossRef]
- Craufurd, P.Q.; Peacock, J.M. Effect of Heat and Drought Stress on Sorghum (Sorghum bicolor). II. Grain Yield. Exp. Agric. 1993, 29, 77–86. [Google Scholar]
- Djanaguiraman, M.; Perumal, R.; Jagadish, S.V.K.; Ciampitti, I.A.; Welti, R.; Prasad, P.V.V. Sensitivity of sorghum pollen and pistil to high-temperature stress. Plant Cell Environ. 2018, 41, 1065–1082. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.; Serafin, L.; de Voil, P.; Mumford, M.; Zhao, D.; Aisthorpe, D.; Auer, J.; Broad, I.; Eyre, J.; Hellyer, M. Agronomic adaptations to heat stress: Sowing summer crops earlier. Field Crops Res. 2024, 318, 109592. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S. Climate-driven crop yield and yield variability and climate change impacts on the US Great Plains agricultural production. Sci. Rep. 2018, 8, 3450. [Google Scholar] [CrossRef]
Location | April | May | Jun | Jul | Aug | Sep | Oct | |
---|---|---|---|---|---|---|---|---|
Growing season precipitation | ||||||||
Colby | r | 0.13 | 0.23 | −0.21 | 0.37 | 0.04 | −0.07 | 0.04 |
p | 0.327 | 0.0812 | 0.1043 | 0.0036 | 0.7902 | 0.6003 | 0.7813 | |
Garden City | r | 0.09 | 0.19 | 0.00 | 0.33 | 0.39 | 0.03 | 0.08 |
p | 0.5038 | 0.1478 | 0.9728 | 0.01 | 0.002 | 0.8495 | 0.526 | |
Hays | r | 0.05 | 0.14 | −0.02 | 0.40 | 0.28 | −0.23 | −0.06 |
p | 0.7122 | 0.3121 | 0.9079 | 0.0017 | 0.0357 | 0.0791 | 0.6684 | |
Tribune | r | 0.08 | 0.04 | −0.14 | 0.15 | 0.16 | −0.02 | 0.27 |
p | 0.5917 | 0.7861 | 0.3407 | 0.2936 | 0.266 | 0.8892 | 0.0597 | |
Growing season temperature | ||||||||
Colby | r | −0.07 | 0.00 | 0.17 | −0.18 | −0.15 | 0.08 | −0.02 |
p | 0.5983 | 0.9704 | 0.1934 | 0.1623 | 0.2582 | 0.5392 | 0.8802 | |
Garden City | r | 0.00 | −0.09 | 0.07 | −0.13 | −0.14 | 0.12 | 0.06 |
p | 0.9787 | 0.4966 | 0.57 | 0.3406 | 0.2706 | 0.3486 | 0.6262 | |
Hays | r | −0.22 | 0.00 | −0.06 | −0.31 | −0.32 | 0.18 | −0.05 |
p | 0.093 | 0.9994 | 0.6539 | 0.0171 | 0.0131 | 0.187 | 0.6928 | |
Tribune | r | −0.05 | −0.23 | 0.26 | 0.27 | 0.05 | 0.34 | −0.10 |
p | 0.7249 | 0.1031 | 0.0689 | 0.0598 | 0.7369 | 0.0172 | 0.49 |
Location | April | May | Jun | Jul | Aug | Sep | Oct | |
---|---|---|---|---|---|---|---|---|
Growing season precipitation | ||||||||
Colby | r | 0.23 | 0.02 | −0.28 | −0.22 | −0.28 | 0.04 | −0.13 |
p | 0.1085 | 0.8945 | 0.0499 | 0.123 | 0.0512 | 0.7898 | 0.3637 | |
Garden City | r | 0.02 | −0.19 | −0.06 | 0.16 | 0.12 | 0.12 | 0.16 |
p | 0.8639 | 0.1541 | 0.6293 | 0.2179 | 0.371 | 0.3596 | 0.2276 | |
Tribune | r | 0.14 | −0.11 | −0.16 | 0.12 | −0.07 | 0.03 | 0.06 |
p | 0.3006 | 0.4076 | 0.2449 | 0.3663 | 0.6213 | 0.809 | 0.6762 | |
Growing season temperature | ||||||||
Colby | r | 0.06 | 0.10 | 0.36 | −0.05 | 0.19 | 0.28 | 0.11 |
p | 0.6956 | 0.4812 | 0.0111 | 0.7386 | 0.1862 | 0.0485 | 0.4355 | |
Garden City | r | 0.19 | 0.11 | 0.20 | −0.04 | −0.19 | −0.09 | −0.14 |
p | 0.159 | 0.419 | 0.1208 | 0.7416 | 0.1533 | 0.4889 | 0.2761 | |
Tribune | r | −0.18 | −0.28 | −0.29 | −0.09 | 0.33 | 0.42 | 0.25 |
p | 0.1733 | 0.0351 | 0.0296 | 0.5145 | 0.0134 | 0.001 | 0.0653 |
Location | April | May | Jun | Jul | Aug | Sep | Oct | |
---|---|---|---|---|---|---|---|---|
Growing season precipitation | ||||||||
Colby | r | 0.19 | 0.08 | −0.29 | −0.01 | 0.16 | −0.14 | 0.11 |
p | 0.1162 | 0.5395 | 0.0173 | 0.9161 | 0.1846 | 0.244 | 0.3658 | |
Garden City | r | 0.11 | −0.13 | −0.08 | 0.00 | 0.06 | 0.00 | 0.08 |
p | 0.3613 | 0.3034 | 0.5042 | 0.9882 | 0.6058 | 0.975 | 0.5145 | |
Hays | r | 0.09 | 0.12 | −0.24 | −0.01 | 0.21 | −0.20 | 0.09 |
p | 0.4928 | 0.324 | 0.0541 | 0.9207 | 0.0816 | 0.1012 | 0.4867 | |
Tribune | r | 0.15 | −0.02 | −0.03 | 0.12 | 0.15 | −0.11 | 0.27 |
p | 0.2362 | 0.8742 | 0.8013 | 0.3377 | 0.2287 | 0.3817 | 0.0296 | |
Growing season temperature | ||||||||
Colby | r | 0.05 | −0.02 | 0.32 | 0.07 | −0.06 | 0.29 | −0.14 |
p | 0.6907 | 0.902 | 0.0077 | 0.57 | 0.6231 | 0.0178 | 0.268 | |
Garden City | r | −0.29 | −0.32 | −0.18 | −0.23 | 0.03 | 0.41 | 0.30 |
p | 0.0164 | 0.0073 | 0.1562 | 0.0629 | 0.7965 | 0.0006 | 0.0136 | |
Hays | r | 0.05 | 0.00 | 0.34 | 0.15 | −0.02 | 0.33 | −0.13 |
p | 0.6714 | 0.9942 | 0.0056 | 0.2405 | 0.8776 | 0.0062 | 0.2987 | |
Tribune | r | −0.12 | −0.19 | 0.17 | 0.01 | −0.10 | 0.20 | −0.28 |
p | 0.3315 | 0.1165 | 0.1648 | 0.9647 | 0.4313 | 0.1111 | 0.0214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assefa, Y.; Holman, J.D.; Obour, A.K.; O’Brien, D.; Prasad, P.V.V. Historic Grain Sorghum Production, Value, Yield Gap, and Weather Relation Trends. Agronomy 2024, 14, 2582. https://doi.org/10.3390/agronomy14112582
Assefa Y, Holman JD, Obour AK, O’Brien D, Prasad PVV. Historic Grain Sorghum Production, Value, Yield Gap, and Weather Relation Trends. Agronomy. 2024; 14(11):2582. https://doi.org/10.3390/agronomy14112582
Chicago/Turabian StyleAssefa, Yared, Johnathan D. Holman, Augustine K. Obour, Daniel O’Brien, and P. V. V. Prasad. 2024. "Historic Grain Sorghum Production, Value, Yield Gap, and Weather Relation Trends" Agronomy 14, no. 11: 2582. https://doi.org/10.3390/agronomy14112582
APA StyleAssefa, Y., Holman, J. D., Obour, A. K., O’Brien, D., & Prasad, P. V. V. (2024). Historic Grain Sorghum Production, Value, Yield Gap, and Weather Relation Trends. Agronomy, 14(11), 2582. https://doi.org/10.3390/agronomy14112582