Identification and Functional Characterization of Alfalfa (Medicago sativa L.) Expansins in Regulating Arabidopsis Shoot and Root Development
<p>Phylogenetic relationships of expansin proteins. The expansin proteins from alfalfa, <span class="html-italic">M. trunctula</span> and Arabidopsis were used to construct an unrooted phylogenetic tree by MEGA 7.0 software. Clades in orange, red, blue and green branches indicate EXPA, EXPB, EXLA and EXLB subfamilies, respectively. The red squares, blue stars and green dots represent expansins from alfalfa, <span class="html-italic">M. truncatula</span> and Arabidopsis, respectively.</p> "> Figure 2
<p>Distribution and collinearity analysis of <span class="html-italic">MsEXPs</span>. Synteny between the two genomes is represented by red lines.</p> "> Figure 3
<p>Phylogenetic relationships, gene structure and motif composition of <span class="html-italic">MsEXP</span> genes. (<b>A</b>) Phylogenetic relationships of 30 MsEXP proteins. MEGA 7.0 software was employed to construct the phylogenetic tree by the Neighbor Joining (NJ) method with 1000 bootstrap replicates. (<b>B</b>) Exon–intron structures of <span class="html-italic">MsEXPs</span>. The CDSs, introns and UTRs are marked with yellow boxes, black lines and green boxes, respectively. The scale bar is shown at the bottom. (<b>C</b>) The conserved motif analysis of MsEXP proteins. Different conserved motifs are represented by different colored boxes.</p> "> Figure 4
<p>Analysis of the <span class="html-italic">cis</span>-acting elements in promoters of <span class="html-italic">MsEXP</span> genes. LRE: light responsive element; ABRE: abscisic acid responsiveness; ARE: regulatory essential for the anaerobic induction; MeJA: MeJA responsiveness; AURE: auxin-responsive element; GRE: gibberellin-responsive element; MBS: MYB binding site involved in drought inducibility; SA: salicylic acid responsiveness; TC rich: defense and stress responsiveness; LTR: low-temperature responsiveness.</p> "> Figure 5
<p>The expression profiles of <span class="html-italic">expansins</span> genes in different tissues of alfalfa plants. The expression values of <span class="html-italic">MsEXP</span> genes in six tissues (flowers, nodules, leaves, roots, post elongating stems and elongating stems) were used to generate the heatmap with the TBtools software.</p> "> Figure 6
<p>Subcellular localization analysis of MsEXPA3 and MsEXPA4 proteins. (<b>A</b>,<b>B</b>) Epidermal cells of 35s::GFP transiently expressed tobacco before (<b>A</b>) and after (<b>B</b>) treatment with 25 mM sucrose for plasmolysis. (<b>C</b>,<b>D</b>) Epidermal cells of 35s::MsEXPA3-GFP transiently expressed tobacco before (<b>C</b>) and after (<b>D</b>) treatment of 25 mM sucrose for plasmolysis. (<b>E</b>,<b>F</b>) Epidermal cells of 35s::MsEXPA4-GFP transiently expressed tobacco before (<b>E</b>) and after (<b>F</b>) treatment of 25 mM sucrose for plasmolysis. Bars = 20 µm.</p> "> Figure 7
<p>Morphological phenotypic analysis of <span class="html-italic">MsEXPA3</span> and <span class="html-italic">MsEXPA4</span> transgenic Arabidopsis plants. (<b>A</b>) The aboveground parts of Arabidopsis plants 28 DAG (days after germination). (<b>B</b>) Measurement and statistical analysis of leaf areas of Arabidopsis plants 28 DAG. The first four rosette leaves in (<b>A</b>) were measured. (<b>C</b>,<b>D</b>) Measurement and statistical analysis of fresh weight (<b>C</b>) and dry weight (<b>D</b>) of Arabidopsis plants 28 DAG. (<b>E</b>) Measurement and statistical analysis of height of Arabidopsis plants 42 DAG. (<b>F</b>) The aboveground parts of Arabidopsis plants 42 DAG. WT, wild type; MsEXPA3L1 and MsEXPA3L10, MsEXPA3 overexpression transgenic lines; MsEXPA4L3 and MsEXPA4L7, MsEXPA4 overexpression transgenic lines. One or two asterisks represent significant (* <span class="html-italic">p</span> < 0.05) or very significant (** <span class="html-italic">p</span> < 0.01) differences between wild-type and transgenic lines.</p> "> Figure 8
<p>The phenotypes of the underground part of <span class="html-italic">MsEXPA3</span> and <span class="html-italic">MsEXPA4</span> transgenic Arabidopsis plants. (<b>A</b>) Images of roots 28 DAG from WT line, <span class="html-italic">MsEXPA3</span> overexpression lines and <span class="html-italic">MsEXPA4</span> overexpression lines. Bars = 25 mm. (<b>B</b>) Measurement and statistical analysis of indicators of root development. WT, wild type; MsEXPA3L1 and MsEXPA3L10, <span class="html-italic">MsEXPA3</span> overexpression transgenic lines; MsEXPA4L3 and MsEXPA4L7, <span class="html-italic">MsEXPA4</span> overexpression transgenic lines; Two asterisks represent very significant (** <span class="html-italic">p</span> < 0.01) differences between wild-type and transgenic lines.</p> "> Figure 9
<p>MsEXPA3 and MsEXPA4 affect cell expansion. (<b>A</b>–<b>E</b>) Images of epidermal cells in leaves of WT lines (<b>A</b>), <span class="html-italic">MsEXPA3</span> overexpression lines (<b>B</b>,<b>C</b>) and <span class="html-italic">MsEXPA4</span> overexpression lines (<b>D</b>,<b>E</b>). Bars = 150 µm. (<b>F</b>) Measurement and statistical analysis of cell areas of leaves in <span class="html-italic">MsEXPA3</span> overexpression plants, <span class="html-italic">MsEXPA4</span> overexpression plants and wild-type lines (<span class="html-italic">n</span> ≥ 30). (<b>G</b>–<b>K</b>) Longitudinal sections stained with toluidine blue o of stems in WT lines (<b>G</b>), <span class="html-italic">MsEXPA3</span> overexpression lines (<b>H</b>,<b>I</b>) and <span class="html-italic">MsEXPA4</span> overexpression lines (<b>J</b>,<b>K</b>). Bar = 200 µm. (<b>L</b>) Measurement and statistical analysis of cell areas of stems in <span class="html-italic">MsEXPA3</span> overexpression plants, <span class="html-italic">MsEXPA4</span> overexpression plants and wild type (<span class="html-italic">n</span> ≥ 30). WT, wild type; MsEXPA3L1 and MsEXPA3L10, <span class="html-italic">MsEXPA3</span> overexpression transgenic lines; MsEXPA4L3 and MsEXPA4L7, <span class="html-italic">MsEXPA4</span> overexpression transgenic lines. One or two asterisks represent significant (* <span class="html-italic">p</span> < 0.05) or very significant (** <span class="html-italic">p</span> < 0.01) differences between wild-type and transgenic lines.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Characterization of MsEXP Genes in Alfalfa
2.2. Analysis of Chromosomal Distribution and Duplication of MsEXP Genes
2.3. Analysis of Phylogenetic Relationship of MsEXP Proteins
2.4. Gene Structure and Cis-Acting Elements Analysis of MsEXP Genes
2.5. The Conserved Motifs of MsEXP Proteins
2.6. The Organizational Expression Pattern Analysis of MsEXP Genes
2.7. Plant Materials
2.8. RNA Extraction and RT-qPCR Analysis
2.9. Subcelluar Localization Assay
2.10. Scanning Electron Microscopy (SEM) Assay
2.11. Paraffin Section Assay
2.12. Data Processing Method
3. Results
3.1. Characterization, Phylogenetic Analysis and Distribution of Alfalfa Expansins
3.2. Structures and Protein Conserved Motifs of MsEXP Genes
3.3. Cis-Acting Element Analysis of MsEXP Promoters
3.4. The MsEXP Genes Are Differentially Expressed During the Growth and Development of Alfalfa
3.5. MsEXP Proteins Localized in the Cell Wall Implying Their Role in Lossening the Cell Wall
3.6. Overexpression of MsEXPA3 and MsEXPA4 in Arabidopsis Increased the Biomass of Plants by Affecting the Development of Leaf and Stem
3.7. Overexpression of MsEXPA3 and MsEXPA4 in Arabidopsis Also Affects Root Development
3.8. Cell Expansion Was Promoted in MsEXPA3 and MsEXPA4 Overexpression Transgenic Arabidopsis Plants
4. Discussion
4.1. Expansin’s Function in Developmental Progress of Plant Tissues/Organs
4.2. MsEXPA3 and MsEXPA4 May Regulate Organ Size by Increasing Cell Wall Extensibility
4.3. MsEXPA3 and MsEXPA4 Increase Plants’ Biomass by Increasing Cell Size
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gou, J.; Debnath, S.; Sun, L.; Flanagan, A.; Tang, Y.; Jiang, Q.; Wen, J.; Wang, Z.Y. From model to crop: Functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnol. J. 2018, 16, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Gruber, M.Y.; Amyot, L.; Hannoufa, A. SPL13 regulates shoot branching and flowering time in Medicago sativa. Plant Mol. Biol. 2018, 96, 119–133. [Google Scholar] [CrossRef]
- Ma, L.; Liu, X.; Liu, W.; Wen, H.; Zhang, Y.; Pang, Y.; Wang, X. Characterization of Squamosa-Promoter Binding Protein-Box family genes reveals the critical role of MsSPL20 in alfalfa flowering time regulation. Front. Plant Sci. 2022, 12, 775690. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Y.; Wen, H.; Liu, W.; Zhou, Y.; Wang, X. Silencing of MsD14 resulted in enhanced forage biomass through increasing shoot branching in alfalfa (Medicago sativa L.). Plants 2022, 11, 939. [Google Scholar] [CrossRef]
- Aung, B.; Gruber, M.Y.; Amyot, L.; Omari, K.; Bertrand, A.; Hannoufa, A. MicroRNA156 as a promising tool for alfalfa improvement. Plant Biotechnol. J. 2015, 13, 779–790. [Google Scholar] [CrossRef] [PubMed]
- McQueen-Mason, S.; Durachko, D.M.; Cosgrove, D.J. Two endogenous proteins that induce cell wall extension in plants. Plant Cell 1992, 4, 1425–1433. [Google Scholar] [PubMed]
- Sampedro, J.; Cosgrove, D.J. The expansin superfamily. Genome Biol. 2005, 6, 242. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Loosening of plant cell walls by expansins. Nature 2000, 407, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Kende, H.; Bradford, K.; Brummell, D.; Cho, H.T.; Cosgrove, D.; Fleming, A.; Gehring, C.; Lee, Y.; McQueen-Mason, S.; Rose, J.; et al. Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol. Biol. 2004, 55, 311–314. [Google Scholar] [CrossRef]
- Cosgrove, D.J.; Bedinger, P.; Durachko, D.M. Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci. USA 1997, 94, 6559–6564. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, D.; Kende, H. Expansins: Ever-expanding numbers and functions. Curr. Opin. Plant Biol. 2001, 4, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Hemalatha, N.; Rajesh, M.K.; Narayanan, N.K. Genome-wide analysis and identification of genes related to expansin gene family in indica rice. Int. J. Bioinform Res. Appl. 2011, 7, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Liu, Y.; Deng, X.; Liu, D.; Liu, Y.; Hu, Y.; Yan, Y. Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genom. 2019, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, L.A.; Mota, A.P.Z.; Araujo, A.C.G.; de Alencar Figueiredo, L.F.; Pereira, B.M.; de Passos Saraiva, M.A.; Silva, R.B.; Danchin, E.G.J.; Guimaraes, P.M.; Brasileiro, A.C.M. Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene. Plant Mol. Biol. 2017, 94, 79–96. [Google Scholar] [CrossRef]
- Lv, L.M.; Zuo, D.Y.; Wang, X.F.; Cheng, H.L.; Zhang, Y.P.; Wang, Q.L.; Song, G.L.; Ma, Z.Y. Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton. BMC Plant Biol. 2020, 20, 223. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, L.; Wang, X.; Han, Z.; Ouyang, B.; Zhang, J.; Li, H. Genome-wide identification and expression analysis of the expansin gene family in tomato. Mol. Genet. Genom. 2016, 291, 597–608. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Zhu, B.; Huang, W.; Chen, J.; Wang, F.; Chen, Y.; Wang, M.; Lai, H.; Zhou, Y. Genome-wide identification of the expansin gene family in netted melon and their transcriptional responses to fruit peel cracking. Front. Plant Sci. 2024, 15, 1332240. [Google Scholar] [CrossRef]
- Backiyarani, S.; Anuradha, C.; Thangavelu, R.; Chandrasekar, A.; Renganathan, B.; Subeshkumar, P.; Giribabu, P.; Muthusamy, M.; Uma, S. Genome-wide identification, characterization of expansin gene family of banana and their expression pattern under various stresses. 3 Biotech 2022, 12, 101. [Google Scholar] [CrossRef]
- Sampedro, J.; Carey, R.E.; Cosgrove, D.J. Genome histories clarify evolution of the expansin superfamily: New insights from the poplar genome and pine ESTs. J. Plant Res. 2006, 119, 11–21. [Google Scholar] [CrossRef]
- Yan, A.; Wu, M.; Yan, L.; Hu, R.; Ali, I.; Gan, Y. AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS ONE 2014, 9, e85208. [Google Scholar] [CrossRef]
- Cho, H.T.; Cosgrove, D.J. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 2002, 14, 3237–3253. [Google Scholar] [CrossRef] [PubMed]
- Noh, S.A.; Lee, H.S.; Kim, Y.S.; Paek, K.H.; Shin, J.S.; Bae, J.M. Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato. J. Exp. Bot. 2013, 64, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.T.; Cosgrove, D.J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2000, 97, 9783–9788. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Lee, Y.; Cho, H.T.; Kende, H. Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 2003, 15, 1386–1398. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Gao, Y.; Wang, J.; Yang, L.; Song, R.; Li, X.; Shi, J. Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnol. J. 2011, 9, 486–502. [Google Scholar] [CrossRef]
- Jiang, F.; Lopez, A.; Jeon, S.; de Freitas, S.T.; Yu, Q.; Wu, Z.; Labavitch, J.M.; Tian, S.; Powell, A.L.T.; Mitcham, E. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. Hortic. Res. 2019, 6, 17. [Google Scholar] [CrossRef]
- Su, G.; Lin, Y.; Wang, C.; Lu, J.; Liu, Z.; He, Z.; Shu, X.; Chen, W.; Wu, R.; Li, B.; et al. Expansin SlExp1 and endoglucanase SlCel2 synergistically promote fruit softening and cell wall disassembly in tomato. Plant Cell 2024, 36, 709–726. [Google Scholar] [CrossRef]
- Bajwa, K.S.; Shahid, A.A.; Rao, A.Q.; Bashir, A.; Aftab, A.; Husnain, T. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton. Front. Plant Sci. 2015, 6, 838. [Google Scholar] [CrossRef]
- Shan, C.M.; Shangguan, X.X.; Zhao, B.; Zhang, X.F.; Chao, L.M.; Yang, C.Q.; Wang, L.J.; Zhu, H.Y.; Zeng, Y.D.; Guo, W.Z.; et al. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat. Commun. 2014, 5, 5519. [Google Scholar] [CrossRef]
- Goh, H.H.; Sloan, J.; Dorca-Fornell, C.; Fleming, A. Inducible repression of multiple expansin genes leads to growth suppression during leaf development. Plant Physiol. 2012, 159, 1759–1770. [Google Scholar] [CrossRef]
- Gray-Mitsumune, M.; Blomquist, K.; McQueen-Mason, S.; Teeri, T.T.; Sundberg, B.; Mellerowicz, E.J. Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen. Plant Biotechnol. J. 2008, 6, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Z.R.; Gao, C.J.; Miao, Y.C.; Cui, K. Overexpression of DsEXLA2 gene from Dendrocalamus sinicus accelerates the plant growth rate of Arabidopsis. Phytochemistry 2022, 199, 113178. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Gou, J.Y.; Li, F.G.; Shangguan, X.X.; Zhao, B.; Yang, C.Q.; Wang, L.J.; Yuan, S.; Liu, C.J.; Chen, X.Y. A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production. Mol. Plant 2013, 6, 945–958. [Google Scholar] [CrossRef]
- Li, A.; Liu, A.; Du, X.; Chen, J.Y.; Yin, M.; Hu, H.Y.; Shrestha, N.; Wu, S.D.; Wang, H.Q.; Dou, Q.W.; et al. A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Hortic. Res. 2020, 7, 194. [Google Scholar] [CrossRef]
- Shen, C.; Du, H.; Chen, Z.; Lu, H.; Zhu, F.; Chen, H.; Meng, X.; Liu, Q.; Liu, P.; Zheng, L.; et al. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol. Plant 2020, 13, 1250–1261. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, Y.; Yang, Y.; Huang, L.; Tang, B.; Zhang, H.; Hao, F.; Liu, W.; Li, Y.; Liu, Y.; et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat. Commun. 2020, 11, 2494. [Google Scholar] [CrossRef]
- Long, R.; Zhang, F.; Zhang, Z.; Li, M.; Chen, L.; Wang, X.; Liu, W.; Zhang, T.; Yu, L.X.; He, F.; et al. Genome assembly of alfalfa cultivar “Zhongmu-4” and identification of SNPs associated with agronomic traits. Genom. Proteom. Bioinform. 2022, 20, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Clements, J.; Arndt, W.; Miller, B.L.; Wheeler, T.J.; Schreiber, F.; Bateman, A.; Eddy, S.R. HMMER web server: 2015 update. Nucleic Acids Res. 2015, 43, W30–W38. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, X.; Yue, J.X.; Tian, D.; Chen, J.Q. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol. Gen. Genom. 2008, 280, 187–198. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Liu, T.; Li, M.; Dong, X.; Han, Y.; Xu, C.; Li, S.; Zhang, J.; He, X.; Zhou, Q.; et al. MODMS: A multi-omics database for facilitating biological studies on alfalfa (Medicago sativa L.). Hortic. Res. 2023, 11, uhad245. [Google Scholar] [CrossRef] [PubMed]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Li, Y.; Zhang, J.; Wang, Y.; Zhang, J.; Li, Y.; Zheng, Y.; Li, X.B. The bHLH/HLH transcription factors GhFP2 and GhACE1 antagonistically regulate fiber elongation in cotton. Plant Physiol. 2022, 189, 628–643. [Google Scholar] [CrossRef]
- Huang, J.; Ma, S.; Zhou, M.; Liu, Z.; Liang, Q. Cytochemical localization and synthesis mechanism of the glucomannan in pseudobulbs of Bletilla striata Reichb. f. Hortic. Res. 2024, 11, uhae092. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, L.; Zhu, R.J.; Jiang, X.F.; Yue, C.; Su, Y.; Ren, H.P.; Wang, M.L. A Gain-of-Function mutant of IAA7 inhibits stem elongation by transcriptional repression of EXPA5 genes in Brassica napus. Int. J. Mol. Sci. 2021, 22, 9018. [Google Scholar] [CrossRef]
- Lee, Y.; Kende, H. Expression of beta-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol. 2001, 127, 645–654. [Google Scholar] [CrossRef]
- Jamet, E.; Canut, H.; Boudart, G.; Pont-Lezica, R.F. Cell wall proteins: A new insight through proteomics. Trends Plant Sci. 2006, 11, 33–39. [Google Scholar] [CrossRef]
- Pien, S.; Wyrzykowska, J.; McQueen-Mason, S.; Smart, C.; Fleming, A. Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc. Natl. Acad. Sci. USA 2001, 98, 11812–11817. [Google Scholar] [CrossRef]
- Sloan, J.; Backhaus, A.; Malinowski, R.; McQueen-Mason, S.; Fleming, A.J. Phased control of expansin activity during leaf development identifies a sensitivity window for expansin-mediated induction of leaf growth. Plant Physiol. 2009, 151, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Yamaji, N.; Shen, R.F.; Ma, J.F. An Al-inducible expansin gene, OsEXPA10 is involved in root cell elongation of rice. Plant J. 2016, 88, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Nicol, F.; His, I.; Jauneau, A.; Vernhettes, S.; Canut, H. A plasma membrane-bound putative endo-1, 4-bD-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 1998, 17, 5563–5576. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Rupe, M.A.; Dieter, J.A.; Zou, J.; Spielbauer, D.; Duncan, K.E.; Howard, R.J.; Hou, Z.; and Simmons, C.R. Cell number regulator1 affects plant and organ size in maize: Implications for crop yield enhancement and heterosis. Plant Cell 2010, 22, 1057–1073. [Google Scholar] [CrossRef]
- Caderas, D.; Muster, M.; Vogler, H.; Mandel, T.; Rose, J.K.; McQueen-Mason, S.; Kuhlemeier, C. Limited correlation between expansin gene expression and elongation growth rate. Plant Physiol. 2000, 123, 1399–1414. [Google Scholar] [CrossRef]
- Fan, N.; Xu, Q.; Yang, Z.; Zhuang, L.; Yu, J.; Huang, B.R. Identification of expansin genes as promoting or repressing factors for leaf elongation in tall fescue. Physiol. Plant 2023, 175, e13861. [Google Scholar] [CrossRef]
- Croce, R.; Carmo-Silva, E.; Cho, Y.B.; Ermakova, M.; Harbinson, J.; Lawson, T.; McCormick, A.J.; Niyogi, K.K.; Ort, D.R.; Patel-Tupper, D.; et al. Perspectives on improving photosynthesis to increase crop yield. Plant Cell 2024, koae132. ahead of print. [Google Scholar] [CrossRef]
- Volenec, J.J.; Cunningham, S.M.; Haagenson, D.M.; Berg, W.K.; Joern, B.C.; Wiersma, D.W. Physiological genetics of alfalfa improvement: Past failures, future prospects. Field. Crop. Res. 2002, 75, 97–110. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Zhao, M.; Hu, Y.; Xu, Q.; Lu, R. Identification and Functional Characterization of Alfalfa (Medicago sativa L.) Expansins in Regulating Arabidopsis Shoot and Root Development. Agronomy 2024, 14, 2492. https://doi.org/10.3390/agronomy14112492
Hu L, Zhao M, Hu Y, Xu Q, Lu R. Identification and Functional Characterization of Alfalfa (Medicago sativa L.) Expansins in Regulating Arabidopsis Shoot and Root Development. Agronomy. 2024; 14(11):2492. https://doi.org/10.3390/agronomy14112492
Chicago/Turabian StyleHu, Longxing, Mengran Zhao, Yu Hu, Qian Xu, and Rui Lu. 2024. "Identification and Functional Characterization of Alfalfa (Medicago sativa L.) Expansins in Regulating Arabidopsis Shoot and Root Development" Agronomy 14, no. 11: 2492. https://doi.org/10.3390/agronomy14112492
APA StyleHu, L., Zhao, M., Hu, Y., Xu, Q., & Lu, R. (2024). Identification and Functional Characterization of Alfalfa (Medicago sativa L.) Expansins in Regulating Arabidopsis Shoot and Root Development. Agronomy, 14(11), 2492. https://doi.org/10.3390/agronomy14112492