Preparation and Evaluation of Vancomycin-Loaded N-trimethyl Chitosan Nanoparticles
"> Figure 1
<p>The synthesis of <span class="html-italic">N</span>-trimethyl chitosan (TMC).</p> "> Figure 2
<p>IR spectra of samples prepared in KBr pellets. (<b>A</b>) Chitosan (CS) and (<b>B</b>) <span class="html-italic">N</span>-trimethyl chitosan (TMC).</p> "> Figure 3
<p>Characteristic <sup>1</sup>H-NMR spectrum of <span class="html-italic">N</span>-trimethyl chitosan (TMC) in D<sub>2</sub>O.</p> "> Figure 4
<p>(<b>A</b>) Size distribution and (<b>B</b>) zeta potential of VCM/TMC nanoparticles.</p> "> Figure 5
<p>Morphology of VCM/TMC nanoparticles. (<b>A</b>) TEM image; and (<b>B</b>) AFM image.</p> "> Figure 6
<p>Size and PDI of nanoparticles during 2 days of incubation at 37 °C in Hepes (pH 7.4).</p> "> Figure 7
<p>Release of VCM from TMC nanoparticles in PBS (pH 7.4) at 37 °C.</p> "> Figure 8
<p>Drug release data fitted to various kinetic models. (<b>A</b>) Zero order; (<b>B</b>) First order; (<b>C</b>) Higuchi model; (<b>D</b>) Hixson-Crowell model; and (<b>E</b>) Korsmeyer-Peppas drug diffusion model.</p> "> Figure 9
<p>ALP activity of OBs exposed to TMC-TPP nanoparticles and β-TCP suspension. <b>***</b>, <span class="html-italic">p</span> < 0.001.</p> "> Figure 10
<p><span class="html-italic">In vitro</span> cell uptake by osteoblasts (OBs). OBs were exposed to soluble or nanoparticle-encapsulated QDs for 4 h and measured by flow cytometry. (<b>A</b>) Uptake expressed by mean fluorescence intensity and (<b>B</b>) Data expressed by representative overlay histogram. <b>**</b>, <span class="html-italic">p</span> < 0.01.</p> "> Figure 11
<p>MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay for cell proliferation activity <span class="html-italic">in vitro</span>. <b>***</b>, <span class="html-italic">p</span> < 0.001; <b>**</b>, <span class="html-italic">p</span> < 0.01; and <b>*</b>, <span class="html-italic">p</span> < 0.05.</p> "> Figure 12
<p>IC50 test of various concentrations of VCM/TMC nanoparticles and VCM solution against <span class="html-italic">S. aureus</span>.</p> "> Figure 13
<p>Diameter of inhibition zone test of (<b>A</b>) VCM solution and (<b>B</b>) VCM/TMC nanoparticles against <span class="html-italic">S. aureus</span>. (1). 50 μg/mL; (2). 60 μg/mL; (3). 70 μg/mL; and (4). 80 μg/mL in the LB agar dishes.</p> "> Figure 14
<p>TB assay of VCM/TMC nanoparticles and VCM solution against <span class="html-italic">S. aureus</span>. <b>***</b>, <span class="html-italic">p</span> < 0.001; <b>**</b>, <span class="html-italic">p</span> < 0.01; and <b>*</b>, <span class="html-italic">p</span> < 0.05.</p> "> Figure 15
<p>A schematic diagram showing the formation of TMC polymer and VCM-loaded TMC nanoparticles, and the interaction between nanoparticles and cells during the uptake process. NMP, <span class="html-italic">N</span>-methylpyrrolidone; TMC, <span class="html-italic">N</span>-trimethyl chitosan; TPP, sodium tripolyphosphate; VCM, vancomycin; NP, nanoparticle.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. High-Performance Liquid Chromatography Analysis
2.3. Synthesis and Characterization of N-Trimethyl Chitosan (TMC)
2.4. Preparation of TMC Nanoparticles
2.5. Characterization of VCM/TMC Nanoparticles
2.5.1. Particle Size and Zeta Potential
2.5.2. Nanoparticle Visualization
2.6. Drug Loading
2.7. In Vitro Stability of TMC Nanoparticles
2.8. In Vitro Drug Release Study and Kinetic Modeling
2.9. In Vitro Cellular Study
2.9.1. Cell Line and Culture Media
2.9.2. Alkaline Phosphatase Activity
2.9.3. Cell Uptake Study
2.9.4. Cell Proliferation
2.10. Ex Vivo Antibacterial Analysis
2.10.1. Bacterial Culture
2.10.2. Minimum Inhibitory Concentration Test
2.10.3. Half Maximal Inhibitory Concentration (IC50) Test
2.10.4. The Diameter of Inhibition Zone Test
2.10.5. Turbidimetric Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of TMC
3.2. Characterization of VCM/TMC Nanoparticles
3.3. In Vitro Drug Release and Kinetic Modeling
3.4. Alkaline Phosphatase Activity
3.5. Cell Uptake Study
3.6. Cell Proliferation
3.7. The Antibacterial Activities
Concentrations (µg/mL) | VCM/TMC-TPP | VCM |
---|---|---|
6.25 | + | + |
12.5 | + | + |
25 | + | + |
50 | + | + |
60 | − | + |
70 | − | + |
80 | − | − |
90 | − | − |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abed, N.; Couvreur, P. Nanocarriers for antibiotics: A promising solution to treat intracellular bacterial infections. Int. J. Antimicrob. Agents 2014, 43, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.H.; Bao, Y.; Yang, X.Z.; Zhu, Y.H.; Wang, J. Delivery of antibiotics with polymeric particles. Adv. Drug Deliv. Rev. 2014, 78, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Uskokovic, V.; Desai, T.A. Simultaneous bactericidal and osteogenic effect of nanoparticulate calcium phosphate powders loaded with clindamycin on osteoblasts infected with staphylococcus aureus. Mater. Sci. Eng. C 2014, 37, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 2011, 156, 128–145. [Google Scholar] [CrossRef] [PubMed]
- Zakeri-Milani, P.; Loveymi, B.D.; Jelvehgari, M.; Valizadeh, H. The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids Surf. B 2013, 103, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Kalhapure, R.S.; Mocktar, C.; Sikwal, D.R.; Sonawane, S.J.; Kathiravan, M.K.; Skelton, A.; Govender, T. Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles. Colloids Surf. B 2014, 117, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Sindhura Reddy, N.; Sowmya, S.; Bumgardner, J.D.; Chennazhi, K.P.; Biswas, R.; Jayakumar, R. Tetracycline nanoparticles loaded calcium sulfate composite beads for periodontal management. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 2080–2090. [Google Scholar] [CrossRef] [PubMed]
- Mansur, H.S.; Mansur, A.A.; Curti, E.; de Almeida, M.V. Bioconjugation of quantum-dots with chitosan and N,N,N-trimethyl chitosan. Carbohydr. Polym. 2012, 90, 189–196. [Google Scholar] [CrossRef] [PubMed]
- De Britto, D.; Celi Goy, R.; Campana Filho, S.P.; Assis, O.B.G. Quaternary salts of chitosan: History, antimicrobial features, and prospects. Int. J. Carbohydr. Chem. 2011, 2011, 12. [Google Scholar] [CrossRef]
- Amidi, M.; Romeijn, S.G.; Borchard, G.; Junginger, H.E.; Hennink, W.E.; Jiskoot, W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Control. Release 2006, 111, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Verheul, R.J.; Amidi, M.; van der Wal, S.; van Riet, E.; Jiskoot, W.; Hennink, W.E. Synthesis, characterization and in vitro biological properties of O-methyl free N,N,N-trimethylated chitosan. Biomaterials 2008, 29, 3642–3649. [Google Scholar] [CrossRef] [PubMed]
- Bal, S.M.; Slutter, B.; van Riet, E.; Kruithof, A.C.; Ding, Z.; Kersten, G.F.; Jiskoot, W.; Bouwstra, J.A. Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J. Control. Release 2010, 142, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.; Lipsky, B.A. Optimising antimicrobial therapy in diabetic foot infections. Drugs 2007, 67, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.; Jana, S.; Sen, K.K. In-vitro release of acyclovir loaded Eudragit RLPO® nanoparticles for sustained drug delivery. Int. J. Biol. Macromol. 2014, 67, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Peng, H.; Ning, F.; Yao, L.; Luo, M.; Zhao, Q.; Zhu, X.; Xiong, H. Amphiphilic chitosan derivative-based core-shell micelles: Synthesis, characterisation and properties for sustained release of vitamin D3. Food Chem. 2014, 152, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.K.; Ghosh, S.K.; Kundu, B.; de, D.K.; Basu, D. Evaluation of new porous β-tri-calcium phosphate ceramic as bone substitute in goat model. Small Rumin. Res. 2008, 75, 144–153. [Google Scholar] [CrossRef]
- Nandi, S.K.; Mukherjee, P.; Roy, S.; Kundu, B.; de, D.K.; Basu, D. Local antibiotic delivery systems for the treatment of osteomyelitis—A review. Mater. Sci. Eng. C 2009, 29, 2478–2485. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, D.; Zhang, J.; Fong, C.; Yang, M. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater. Sci. Eng. C 2014, 42, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.K.; Heo, D.N.; Moon, H.J.; Lee, S.J.; Bae, M.S.; Lee, J.B.; Sun, I.C.; Jeon, H.B.; Park, H.K.; Kwon, I.K. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J. Colloid Interface Sci. 2015, 438, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Yeon, S.J.; Lee, J.W.; Lee, J.W.; Kwark, Y.J.; Kim, S.H.; Lee, K.Y. Effect of nano-structured polymer surfaces on osteoblast adhesion and proliferation. J. Control. Release 2011, 152, e257–e258. [Google Scholar] [CrossRef] [PubMed]
- Prucek, R.; Tucek, J.; Kilianova, M.; Panacek, A.; Kvitek, L.; Filip, J.; Kolar, M.; Tomankova, K.; Zboril, R. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 2011, 32, 4704–4713. [Google Scholar] [CrossRef] [PubMed]
- Bat, E.; van Kooten, T.G.; Feijen, J.; Grijpma, D.W. Macrophage-mediated erosion of gamma irradiated poly(trimethylene carbonate) films. Biomaterials 2009, 30, 3652–3661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kuijer, R.; Bulstra, S.K.; Grijpma, D.W.; Feijen, J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 2006, 27, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, A.C.; van Kooten, T.G.; Grijpma, D.W.; Bos, R.R. In vivo behaviour of a biodegradable poly(trimethylene carbonate) barrier membrane: A histological study in rats. J. Mater. Sci. 2012, 23, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Xu, B.; Shou, D.; Xia, X.; Hu, Y. Preparation and Evaluation of Vancomycin-Loaded N-trimethyl Chitosan Nanoparticles. Polymers 2015, 7, 1850-1870. https://doi.org/10.3390/polym7091488
Xu J, Xu B, Shou D, Xia X, Hu Y. Preparation and Evaluation of Vancomycin-Loaded N-trimethyl Chitosan Nanoparticles. Polymers. 2015; 7(9):1850-1870. https://doi.org/10.3390/polym7091488
Chicago/Turabian StyleXu, Jiaojiao, Beihua Xu, Dan Shou, Xiaojing Xia, and Ying Hu. 2015. "Preparation and Evaluation of Vancomycin-Loaded N-trimethyl Chitosan Nanoparticles" Polymers 7, no. 9: 1850-1870. https://doi.org/10.3390/polym7091488
APA StyleXu, J., Xu, B., Shou, D., Xia, X., & Hu, Y. (2015). Preparation and Evaluation of Vancomycin-Loaded N-trimethyl Chitosan Nanoparticles. Polymers, 7(9), 1850-1870. https://doi.org/10.3390/polym7091488