Influence of Short-Term Aging on Mechanical Properties and Morphology of Polymer-Modified Bitumen with Recycled Plastics from Waste Materials
"> Figure 1
<p>Gradation of the crumb rubber modifier (CRM) used.</p> "> Figure 2
<p>Logarithm of dynamic viscosity against the reciprocal of absolute temperature (Arrhenius plot) for the binder studied: (<b>a</b>) before aging; (<b>b</b>) after aging at the RTFOT.</p> "> Figure 3
<p>Effect of polymer introduction on the activation energy, pre and post aging.</p> "> Figure 4
<p>Master curves of G′ at 30°C for each polymer-modified bitumen (PMB) at aged and unaged conditions.</p> "> Figure 4 Cont.
<p>Master curves of G′ at 30°C for each polymer-modified bitumen (PMB) at aged and unaged conditions.</p> "> Figure 4 Cont.
<p>Master curves of G′ at 30°C for each polymer-modified bitumen (PMB) at aged and unaged conditions.</p> "> Figure 5
<p>Rheological Aging Index, RAI, for the different binders studied.</p> "> Figure 6
<p>Elastic modulus, G′ and loss modulus, G″, at 10 Hz, as a function of temperature: (<b>a</b>) neat bitumen before aging; (<b>b</b>) neat bitumen after aging at the RTFOT; (<b>c</b>) neat bitumen after mixing protocol at high temperature.</p> "> Figure 6 Cont.
<p>Elastic modulus, G′ and loss modulus, G″, at 10 Hz, as a function of temperature: (<b>a</b>) neat bitumen before aging; (<b>b</b>) neat bitumen after aging at the RTFOT; (<b>c</b>) neat bitumen after mixing protocol at high temperature.</p> "> Figure 7
<p>Elastic modulus, G′ and loss modulus, G″, at 10 Hz, as a function of temperature: (<b>a</b>) binder modified with LDPE before aging; (<b>b</b>) binder modified with LDPE after aging at the RTFOT.</p> "> Figure 8
<p>Elastic modulus, G,’ and loss modulus, G″, at 10 Hz, as a function of temperature: (<b>a</b>) binder modified with HDPE before aging; (<b>b</b>) binder modified with HDPE after aging at the RTFOT.</p> "> Figure 9
<p>Elastic modulus, G′ and loss modulus, G″, at 10 Hz, as a function of temperature: (<b>a</b>) binder modified with LDPE-LLDPE-EVA before aging; (<b>b</b>) binder modified LDPE-LLDPE-EVA after aging at the RTFOT.</p> "> Figure 10
<p>Elastic modulus, G′ and loss modulus, G″, at 10 Hz, as a function of temperature: (<b>a</b>) binder modified with CRM before aging; (<b>b</b>) binder modified CRM after aging at the RTFOT.</p> "> Figure 11
<p>Crossover temperature, Tc, at 10 Hz, for all the binders studied.</p> "> Figure 12
<p>Micrographs of the PMBs produced, before and after short-term aging: (<b>a</b>) binder modified with LDPE before aging; (<b>b</b>) binder modified with LDPE after aging at the RTFOT; (<b>c</b>) binder modified with HDPE before aging; (<b>d</b>) binder modified with HDPE after aging at the RTFOT; (<b>e</b>) binder modified with LDPE-LLDPE-EVA before aging; (<b>f</b>) binder modified with LD/LL/EVA after aging at the RTFOT; (<b>g</b>) binder modified with CRM before aging; (<b>h</b>) binder modified with CRM after aging at the RTFOT.</p> ">
Abstract
:1. Introduction
- Loss of light components by volatility or absorption by porous aggregates;
- Changes in the chemical composition due to oxidation;
- Molecular structuring at low temperature and consequent thixotropic effects (time-dependent, steric hardening).
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Aging Procedures and Testing Methods
3. Results and Discussion
3.1. Conventional Tests
3.2. Dynamic Viscosity
3.3. Aging Indices
3.4. DSR Results
3.5. Morphology
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Adv. Colloid Interface Sci. 2015, 224, 72–112. [Google Scholar] [CrossRef] [PubMed]
- Lesueur, D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, M.; Costa, L.; Oliveira, J.; Silva, H.M.R.D.; Celauro, C. Asphalt Surface Mixtures with Improved Performance Using Waste Polymers via Dry and Wet Processes. J. Mater. Civ. Eng. 2017, 29, 04017169. [Google Scholar] [CrossRef]
- Celauro, C.; Bosurgi, G.; Sollazzo, G.; Ranieri, M. Laboratory and in-situ tests for estimating improvements in asphalt concrete with the addition of an LDPE and EVA polymeric compound. Constr. Build. Mater. 2019, 196, 714–726. [Google Scholar] [CrossRef]
- Joohari, I.B.; Giustozzi, F. Hybrid Polymerisation: An Exploratory Study of the Chemo-Mechanical and Rheological Properties of Hybrid-Modified Bitumen. Polymers 2020, 12, 945. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, X.; Zhang, Z.; Zou, B.; Zhu, Z.; Lu, G.; Xu, W.; Yu, J.; Yu, H. Effect of Aging on Chemical and Rheological Properties of Bitumen. Polymers 2018, 10, 1345. [Google Scholar] [CrossRef] [Green Version]
- Petersen, J.C. Chapter 14 Chemical Composition of Asphalt as Related to Asphalt Durability. In Developments in Petroleum Science; Elsevier: Amsterdam, The Netherlands, 2000; Volume 40, pp. 363–399. [Google Scholar]
- Mastrofini, D.; Scarsella, M. The application of rheology to the evaluation of bitumen ageing. Fuel 2000, 79, 1005–1015. [Google Scholar] [CrossRef]
- Lu, X.; Isacsson, U. Effect of ageing on bitumen chemistry and rheology. Constr. Build. Mater. 2002, 16, 15–22. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, L.; Qin, Y. Aging mechanism of SBS modified asphalt based on chemical reaction kinetics. Constr. Build. Mater. 2015, 91, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Jing, R.; Varveri, A.; Liu, X.; Scarpas, A.; Erkens, S. Ageing effect on chemo-mechanics of bitumen. Road Mater. Pavement Des. 2019, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Airey, G. State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials. Int. J. Pavement Eng. 2003, 4, 165–176. [Google Scholar] [CrossRef]
- Hofko, B.; Falchetto, A.C.; Grenfell, J.; Huber, L.; Lu, X.; Porot, L.; Poulikakos, L.D.; You, Z. Effect of short-term ageing temperature on bitumen properties. Road Mater. Pavement Des. 2017, 18, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Loeber, L.; Müller, G.; Morel, J.; Sutton, O. Bitumen in colloid science: A chemical, structural and rheological approach. Fuel 1998, 77, 1443–1450. [Google Scholar] [CrossRef]
- Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt modification with different polyethylene-based polymers. Eur. Polym. J. 2005, 41, 2831–2844. [Google Scholar] [CrossRef]
- Saroufim, E.; Celauro, C.; Mistretta, M.C. A simple interpretation of the effect of the polymer type on the properties of PMBs for road paving applications. Constr. Build. Mater. 2018, 158, 114–123. [Google Scholar] [CrossRef]
- Polacco, G.; Muscente, A.; Biondi, D.; Santini, S. Effect of composition on the properties of SEBS modified asphalts. Eur. Polym. J. 2006, 42, 1113–1121. [Google Scholar] [CrossRef]
- Munera, J.; Ossa, E.A. Polymer modified bitumen: Optimization and selection. Mater. Des. 2014, 62, 91–97. [Google Scholar] [CrossRef]
- Celauro, B.; Celauro, C.; Presti, D.L.; Bevilacqua, A. Definition of a laboratory optimization protocol for road bitumen improved with recycled tire rubber. Constr. Build. Mater. 2012, 37, 562–572. [Google Scholar] [CrossRef]
- Wang, H.; Apostolidis, P.; Zhu, J.; Liu, X.; Scarpas, T.; Erkens, S. The role of thermodynamics and kinetics in rubber–bitumen systems: A theoretical overview. Int. J. Pavement Eng. 2020, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, X.; Apostolidis, P.; Van De Ven, M.; Erkens, S.; Skarpas, A. Effect of laboratory aging on chemistry and rheology of crumb rubber modified bitumen. Mater. Struct. 2020, 53, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, J.P.; Van Doormaal, P.M. The rheological properties of asphaltic bitumens. J. Inst. Pet. Technol. 1936, 22, 414–440. [Google Scholar]
- Mangiafico, S.; Di Benedetto, H.; Sauzéat, C.; Olard, F.; Pouget, S.; Planque, L. Effect of colloidal structure of bituminous binder blends on linear viscoelastic behaviour of mixtures containing Reclaimed Asphalt Pavement. Mater. Des. 2016, 111, 126–139. [Google Scholar] [CrossRef]
- Laidler, K.J. The development of the Arrhenius equation. J. Chem. Educ. 1984, 61, 494. [Google Scholar] [CrossRef]
- Salomon, D.; Zhai, H. Asphalt binder flow activation energy and its significance for compaction effort. Mater. Sci. 2004, 2, 1754–1762. Available online: https://trid.trb.org/view/743962 (accessed on 28 August 2020).
- Jamshidi, A.; Hamzah, M.O.; Shahadan, Z.; Yahaya, A.S. Evaluation of the Rheological Properties and Activation Energy of Virgin and Recovered Asphalt Binder Blends. J. Mater. Civ. Eng. 2015, 27, 04014135. [Google Scholar] [CrossRef]
- Ragni, D.; Ferrotti, G.; Lu, X.; Canestrari, F. Effect of temperature and chemical additives on the short-term ageing of polymer modified bitumen for WMA. Mater. Des. 2018, 160, 514–526. [Google Scholar] [CrossRef]
- Domingos, M.D.I.; Faxina, A.L. Accelerated short-term ageing effects on the rheological properties of modified bitumens with similar high PG grades. Road Mater. Pavement Des. 2015, 16, 469–480. [Google Scholar] [CrossRef]
- Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. [Google Scholar] [CrossRef]
- Cavalli, M.; Zaumanis, M.; Mazza, E.; Partl, M.; Poulikakos, L. Effect of ageing on the mechanical and chemical properties of binder from RAP treated with bio-based rejuvenators. Compos. Part B Eng. 2018, 141, 174–181. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Falchetto, A.C.; Wang, D.; Porot, L.; Hofko, B. Impact of asphalt aging temperature on chemo-mechanics. RSC Adv. 2019, 9, 11602–11613. [Google Scholar] [CrossRef] [Green Version]
- Soenen, H.; Lu, X.; Redelius, P. The Morphology of Bitumen-SBS Blends by UV Microscopy. Road Mater. Pavement Des. 2008, 9, 97–110. [Google Scholar] [CrossRef]
- Handle, F.; Füssl, J.; Neudl, S.; Grossegger, D.; Eberhardsteiner, L.; Hofko, B.; Hospodka, M.; Blab, R.; Grothe, H. The bitumen microstructure: A fluorescent approach. Mater. Struct. 2014, 49, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Sengoz, B.; Isikyakar, G. Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods. J. Hazard. Mater. 2008, 150, 424–432. [Google Scholar] [CrossRef]
- Sengoz, B.; Isikyakar, G. Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Constr. Build. Mater. 2008, 22, 1897–1905. [Google Scholar] [CrossRef]
Physical Properties | Specific Gravity @25 °C | Penetration | Softening Point | Fraass Breaking Point | Ductility |
---|---|---|---|---|---|
Units | g/cm3 | 0.1 mm | (°C) | (°C) | (mm) |
Specification | EN-ISO-3838 | EN 1426 | EN 1427 | EN 12593 | EN 13398 |
Test results | 1.051 | 68 | 50.5 | −12 | over 100 |
Requirements | - | 50–70 | 46–54 | ≤−8 | ≥100 |
Fraction | Polarity | Percentage (%) | Characteristics | Color |
---|---|---|---|---|
Saturates | Non-polar | 2.4 | Viscous oil | White |
Aromatics | Non-polar | 55.6 | Viscous liquid | Dark brown |
Resins | Highly polar | 25.4 | Solid to semi-solid | Dark brown |
Asphaltenes | Highly polar | 16.6 | Solid | Brown to black |
Polymer | Sample Code | MFI, g/10 min | Density (g/cm3) | Melting Point (°C) | Degree of Crystallinity (%) |
---|---|---|---|---|---|
LDPE, | Riblene FC39 | 0.25 | 0.924 | 114 | 32 |
HDPE, | Eraclene MP 90 | 7 | >0.96 | 137 | 67 |
LLDPE | Clearflex FG106 | 1 | 0.918 | 125 | - |
EVA 1 | Greenflex ML 60 | 2.5 | - | 74 | 7 |
Characteristic | Description |
---|---|
Type | Powder and fine granulate |
Specific gravity [g/cm3] | 1.10–1.20 |
Color | Black |
Grinding method | mechanical |
source | Rubber granulate from waste tires |
Average diameter [mm] | <0.4 |
Phase continuity | P: continuous polymer phase |
B: Continuous bitumen phase | |
X: Continuity of both (crosslinking) | |
Phase description | H: Homogeneous |
I: Heterogeneous | |
Size description | S: Small (<10 μm) |
M: Medium (from 10 μm to 100 μm) | |
L: Large (>100 μm) | |
Shape description | r: Round, cylindrical |
s: Elongated | |
o: Other |
Requirement | Pen @ 25 °C | TR&B | Penetration Index PI | Pen @ 25 °C | TR&B | Penetration Index PI | ∆TR&B | Change in mass |
---|---|---|---|---|---|---|---|---|
Characteristics | Pre-RTFO | Post-RTFOT | M | |||||
Standard | EN 1426 | EN 1427 | EN 12591 | EN 1426 | EN 1427 | EN 12591 | EN 12607-1 | |
Unit | dmm | °C | dmm | °C | °C | % | ||
BITUMEN 50/70 | 68 | 50 | −0.46 | 44 | 54 | −0.55 | 4 | −0.19 |
LDPE | 35.7 | 56 | −0.57 | 23 | 62.25 | −0.23 | 6.25 | −0.82 |
HDPE | 25.7 | 58 | −0.81 | 18.4 | 64.25 | −0.29 | 6.25 | −0.87 |
LD/LL/EVA | 35 | 61 | 0.39 | 20 | 63 | −0.72 | 2 | −0.47 |
CRM | 45 | 58 | 0.36 | 28 | 63 | 0.29 | 5 |
Requirements | Storage Stability | Elastic Recovery |
---|---|---|
Characteristics | ∆TR&B | Average |
Standard | EN 13399 | EN 13398 |
Unit | °C | % |
LDPE FC39 | 28 | 9.25 |
HDPE MP90 | 20 | 9.5 |
LD/LL/EVA | 5 | 15 |
CRM | 14 | 60 |
Test | Dynamic Viscosity Pre-RTFO | Dynamic Viscosity Post-RTFOT | ||||||
---|---|---|---|---|---|---|---|---|
Temperature (°C) | 180 | 150 | 135 | 100 | 180 | 150 | 135 | 100 |
Standard | EN 13702 | |||||||
unit | Pa∙s | |||||||
Bitumen 50/70 | - | 0.22 | 0.44 | 3.92 | 0.05 | 0.23 | 0.47 | 4.50 |
Bitumen 50/70 mixed | 0.08 | 0.25 | 0.52 | 4.91 | 0.10 | 0.32 | 0.67 | 7.13 |
LDPE FC39 | 0.15 | 0.46 | 0.92 | 8.78 | 0.18 | 0.58 | 1.23 | 13.30 |
HDPE MP90 | 0.15 | 0.46 | 0.98 | 16.30 | 0.21 | 0.67 | 1.43 | 28.20 |
LD/LL/EVA | 0.17 | 0.50 | 1.00 | 8.28 | 0.20 | 0.64 | 1.34 | 12.70 |
CRM | - | 0.32 | 0.59 | 5.47 | 0.23 | 0.70 | 1.46 | 15.30 |
Stage | Unaged | After Short-Term Aging | ||||
---|---|---|---|---|---|---|
Binder | A | Ea (kJ/mol) | R² | A | Ea (kJ/mol) | R² |
Bitumen 50/70 | 8 × 10−11 | 72.46 | 0.9921 | 5 × 10−10 | 77.79 | 0.9993 |
Bitumen 50/70 mixed | 3 × 10−10 | 72.88 | 0.9941 | 1 × 10−10 | 76.41 | 0.9939 |
LDPE | 7 × 10−10 | 71.67 | 0.9921 | 3 × 10−10 | 76.05 | 0.9924 |
HDPE | 3 × 10−11 | 82.98 | 0.9795 | 2 × 10−10 | 86.76 | 0.9769 |
LD/LL/EVA | 2 × 10−9 | 69.97 | 0.9911 | 6 × 10−10 | 73.82 | 0.9934 |
CRM | 1 × 10−10 | 75.51 | 0.9961 | 5 × 10−10 | 74.76 | 0.9918 |
Polymer | AIRV | AITR&B | AIPEN (%) | |||
---|---|---|---|---|---|---|
T (°C) | 180 | 150 | 135 | 100 | ||
Bitumen 50/70 | - | 1.02 | 1.08 | 1.15 | 1.08 | 64.71 |
Bitumen 50/70 mixed | 1.19 | 1.26 | 1.29 | 1.45 | - | - |
LDPE | 1.19 | 1.25 | 1.34 | 1.51 | 1.11 | 64.43 |
HDPE | 1.40 | 1.45 | 1.46 | 1.73 | 1.10 | 71.6 |
LD/LL/EVA | 1.19 | 1.30 | 1.37 | 1.48 | 1.03 | 71.43 |
CRM | - | 2.17 | 2.46 | 2.80 | 1.09 | 62.22 |
STAGE | Unaged | After Short-Term Aging | ||||||
---|---|---|---|---|---|---|---|---|
PMB | Phase continuity | Phase description | Size description | Shape description | Phase continuity | Phase description | Size description | Shape description |
LDPE | B | I | S | r/o | B | I | M | r |
HDPE | B | I | M | r/o | B | I | M | r/o |
LD/LL/EVA | B | H | S | s/r | B | I | M | s/r |
CRM | X | I/H | S | r/o | B | I | M | r |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celauro, C.; Saroufim, E.; Mistretta, M.C.; La Mantia, F.P. Influence of Short-Term Aging on Mechanical Properties and Morphology of Polymer-Modified Bitumen with Recycled Plastics from Waste Materials. Polymers 2020, 12, 1985. https://doi.org/10.3390/polym12091985
Celauro C, Saroufim E, Mistretta MC, La Mantia FP. Influence of Short-Term Aging on Mechanical Properties and Morphology of Polymer-Modified Bitumen with Recycled Plastics from Waste Materials. Polymers. 2020; 12(9):1985. https://doi.org/10.3390/polym12091985
Chicago/Turabian StyleCelauro, Clara, Edwina Saroufim, Maria Chiara Mistretta, and Francesco Paolo La Mantia. 2020. "Influence of Short-Term Aging on Mechanical Properties and Morphology of Polymer-Modified Bitumen with Recycled Plastics from Waste Materials" Polymers 12, no. 9: 1985. https://doi.org/10.3390/polym12091985
APA StyleCelauro, C., Saroufim, E., Mistretta, M. C., & La Mantia, F. P. (2020). Influence of Short-Term Aging on Mechanical Properties and Morphology of Polymer-Modified Bitumen with Recycled Plastics from Waste Materials. Polymers, 12(9), 1985. https://doi.org/10.3390/polym12091985