An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine
Abstract
:1. Introduction
2. Structure and Properties
3. Biomedical Applications
3.1. Carriers for Drug Delivery Systems
3.2. Scaffolds
3.3. Cardiovascular Applications
3.4. Wound Dressings
3.5. Dental Applications
4. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Colombo, A.; De Bortoli, M.; Pecchio, E.; Schauenburg, H.; Schlitt, H.; Vissers, H. Chamber testing of organic emission from building and furnishing materials. Sci. Total Environ. 1990, 91, 237–249. [Google Scholar] [CrossRef]
- Gama, N.V.; Ferreira, A.; Barros-Timmons, A. Polyurethane foams: Past, present, and future. Materials 2018, 11, 1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zieglowski, M.; Trosien, S.; Rohrer, J.; Mehlhase, S.; Weber, S.; Bartels, K.; Siegert, G.; Trellenkamp, T.; Albe, K.; Biesalski, M. Reactivity of isocyanate-functionalized lignins: A key factor for the preparation of lignin-based polyurethanes. Front. Chem. 2019, 7, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furtwengler, P.; Avérous, L. Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym. Chem. 2018, 9, 4258–4287. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin bionthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Singh, B.; Kashyap, Y.S.; Shukla, M.; Manjunath, B.S.; Gadkari, S.C. Gamma-irradiation-induced micro-structural variations in flame-retardant polyurethane foam using synchrotron X-ray micro-tomography. J. Synchrotron Radiat. 2019, 26, 1797–1807. [Google Scholar] [CrossRef]
- Chauhan, M.; Gupta, M.; Singh, B.; Singh, A.; Gupta, V. Effect of functionalized lignin on the properties of lignin–isocyanate prepolymer blends and composites. Eur. Polym. J. 2014, 52, 32–43. [Google Scholar] [CrossRef]
- Gómez-Fernández, S.; Ugarte, L.; Calvo-Correas, T.; Peña-Rodríguez, C.; Corcuera, M.A.; Eceiza, A. Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Ind. Crop Prod. 2017, 100, 51–64. [Google Scholar] [CrossRef]
- Alves, P.; Ferreira, P.; Gil, M. Biomedical polyurethanes-based materials. In Polyurethane: Properties, Structure and Applications; Cavaco, L.I., Melo, J.A., Eds.; Nova Publishers: New York, NY, USA, 2012; pp. 1–27. [Google Scholar]
- Bellis, M.; The History of Polyurethane-Otto Bayer. ThoughtCo. 2020. Available online: Thoughtco.com/history-of-polyurethane-otto-bayer-4072797 (accessed on 8 May 2020).
- Mellette, M.P.; Bello, D.; Xue, Y.; Yost, M.; Bello, A.; Woskie, S. Testing of disposable protective garments against isocyanate permeation from spray polyurethane foam insulation. Ann. Work Expo. Health 2018, 62, 754–764. [Google Scholar] [CrossRef] [Green Version]
- Takacs, E.S.; Vlachopoulos, J. Biobased, biodegradable polymers for biomedical applications: Properties and processability. Plast. Eng. 2008, 64, 28–33. [Google Scholar] [CrossRef]
- Bianco, A.; Calderone, M.; Cacciotti, I. Electrospun PHBV/PEO co-solution blends: Microstructure, thermal and mechanical properties. Mater. Sci. Eng. C 2013, 33, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Venkateshaiah, A.; Padil, V.V.; Nagalakshmaiah, M.; Waclawek, S.; Černík, M.; Varma, R.S. Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. Polymers 2020, 12, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.P.; Nguyen, Q.; Nguyen, V.-H.; Le, T.-H.; Huynh, V.; Vo, D.-V.N.; Trinh, Q.T.; Kim, S.Y.; Van Le, Q. Silk fibroin-based biomaterials for biomedical applications: A review. Polymers 2019, 11, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura, D.; Souza, M.; Liverani, L.; Rella, G.; Luz, G.; Mano, J.F.; Boccaccini, A. Development of a bioactive glass-polymer composite for wound healing applications. Mater. Sci. Eng. C 2017, 76, 224–232. [Google Scholar] [CrossRef]
- Król, P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog. Mater. Sci. 2007, 52, 915–1015. [Google Scholar] [CrossRef]
- Cooper, S.L.; Jianjun, G. Advances in Polyurethane Biomaterials, 1st ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 3–16. [Google Scholar]
- Gunatillake, P.A.; Martin, D.J.; Meijs, G.F.; McCarthy, S.J.; Adikari, R. Designing biostable polyurethane elastomers for biomedical implants. Aust. J. Chem. 2003, 56, 545–557. [Google Scholar] [CrossRef]
- Lamba, N.M.K.; Woodhouse, K.A.; Cooper, S.L. Polyurethanes in Biomedical Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 1–288. [Google Scholar]
- Szycher, M. Szycher’s Handbook of Polyurethanes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 13–37. [Google Scholar]
- Sawhney, A.; Hubbel, J. Rapidly degraded terpolymers of dl-lactide, glycolide, and e-caprolactone with increased hydrophilicity by copolymerization with polyethers. J. Biomed. Mater. Res. 1990, 24, 1397–1411. [Google Scholar] [CrossRef]
- Stokes, K.; McVenes, R. Polyurethane elastomer biostability. J. Biomater. Appl. 1995, 4, 321–354. [Google Scholar] [CrossRef]
- Cohn, D.; Stern, T.; Gonzales, M.F.; Epstein, J. Biodegradable poly(ethylene oxide)/poly(e-caprolactone) multiblock copolymers. J. Biomed. Mater. Res. 2002, 59, 273–281. [Google Scholar] [CrossRef]
- Fernández d’Arlas, B.; Rueda, L.; de la Caba, K.; Mondragon, I.; Eceiza, A. Microdomain composition and properties differences of biobiodegradable polyurethanes based on MDI and HDI. Polym. Eng. Sci. 2008, 3, 519–529. [Google Scholar] [CrossRef]
- Klinedinst, D.B.; Yilgor, E.; Yilgor, E.; Zhang, M.; Wilkes, G.L. The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments. Polymers 2012, 23, 5358–5366. [Google Scholar] [CrossRef]
- Ramesh, S.; Rajalingam, P.; Radhakrishnan, G. Chain-extended polyurethanes—Synthesis and characterization. Polym. Int. 1991, 4, 253–256. [Google Scholar] [CrossRef]
- Park, K.-B.; Kim, H.-T.; Her, N.-Y.; Lee, J.-M. Variation of mechanical characteristics of polyurethane foam: Effect of test method. Materials 2019, 12, 2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pivec, T.; Smole, M.S.; Gašparič, P.; Kleinschek, K.S. Polyurethanes for medical use. Tekstilec 2017, 60, 182–197. [Google Scholar] [CrossRef]
- Gil, M.; Coelho, J.; Ferreira, P.; Alves, P. Polymers for biomedical applications: Chemical modification and biofunctionalization. In Nanocomposite Particles for Bio-Applications, 1st ed.; Trindade, T., da Silva, A.L.D., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- Caballero, S.S.R.; Elsayed, H.; Tadier, S.; Montembault, A.; Maire, E.; David, L.; Delair, T.; Colombo, P.; Gremillard, L. Fabrication and characterization of hardystonite-chitosan biocomposite scaffolds. Ceram. Int. 2019, 45, 8804–8814. [Google Scholar] [CrossRef]
- Kiechel, M.A.; Beringer, L.T.; Donius, A.E.; Komiya, Y.; Habas, R.; Wegst, U.G.; Schauer, C.L. Osteoblast biocompatibility of premineralized, hexamethylene-1,6-diaminocarboxysulfonate crosslinked chitosan fibers. J. Biomed. Mater. Res. Part A 2015, 103, 3201–3211. [Google Scholar] [CrossRef] [Green Version]
- Sikder, B.; Jana, T. Effect of solvent and functionality on the physical properties of hydroxyl-terminated polybutadiene (HTPB)-based polyurethane. ACS Omega 2018, 3, 3004–3013. [Google Scholar] [CrossRef]
- Zhan, F.; Xiong, L.; Liu, F.; Li, C. Grafting hyperbranched polymers onto TiO2 Nanoparticles via thiolyne click chemistry and its effect on the mechanical, thermal and surface properties of polyurethane coating. Materials 2019, 12, 2817. [Google Scholar] [CrossRef] [Green Version]
- Ashida, K. Polyurethane and Related Foams Chemistry and Technology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 64–100. [Google Scholar]
- Prieto, E.M.; Guelcher, S.A. Tayloring properties of polymeric biomedical foames. In Biomedical Foams for Tissue Engineering Applications; Netti, P.A., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 129–155. [Google Scholar]
- Santerre, J.P.; Woodhouse, K.; Laroche, G.; Labow, R. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials 2005, 26, 7457–7470. [Google Scholar] [CrossRef]
- Bergmeister, H.; Schreiber, C.; Grasl, C.; Walter, I.; Plasenzotti, R.; Stoiber, M.; Bernhard, D.; Schima, H. Healing characteristics of electrospun polyurethane grafts with various porosities. Acta Biomater. 2013, 9, 6032–6040. [Google Scholar] [CrossRef]
- Chen, X.; Liu, W.; Zhao, Y.; Jiang, L.; Xu, H.; Yang, X. Preparation and characterization of PEG-modified polyurethane pressure-sensitive adhesives for transdermal drug delivery. Drug Dev. Ind. Pharm. 2009, 35, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Cacciotti, I.; Chronopoulou, L.; Palocci, C.; Amalfitano, A.; Cantiani, M.; Cordaro, M.; Lajolo, C.; Callà, C.; Boninsegna, A.; Lucchetti, D.; et al. Controlled release of 18-β-glycyrrhetic acid by nanodelivery systems increases cytotoxicity on oral carcinoma cell line. Nanotechnology 2018, 29, 285101. [Google Scholar] [CrossRef] [PubMed]
- Kaviannasab, E.; Semnani, D.; Khorasani, S.N.; Varshosaz, J.; Khalili, S.; Ghahreman, F. Core-shell nanofibers of poly (ε–caprolactone) and Polyvinylpyrrolidone for drug delivery system. Mater. Res. Express 2019, 6, 115015. [Google Scholar] [CrossRef]
- Coimbra, P.; De Sousa, H.C.C.; Gil, M.H. Preparation and characterization of flurbiprofen-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microspheres. J. Microencapsul. 2008, 25, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37, 281–339. [Google Scholar] [CrossRef]
- Woo, G.; Mittelman, M.; Santerre, J.P. Synthesis and characterization of a novel biodegradable antimicrobial polymer. Biomaterials 2000, 21, 1235–1246. [Google Scholar] [CrossRef]
- Woo, G.L.Y.; Yang, M.L.; Yin, H.Q.; Jaffer, F.; Mittelman, M.W.; Santerre, J.P. Biological characterization of a novel biodegradable antimicrobial polymer synthesized with fluoroquinolones. J. Biomed. Mater. Res. 2002, 59, 35–45. [Google Scholar] [CrossRef]
- Yang, M.; Santerre, J.P. Utilization of quinolone drugs as monomers: Characterization of the synthesis reaction products for poly(norfloxacin diisocyanatododecane polycaprolactone). Biomacromolecules 2001, 2, 134–141. [Google Scholar] [CrossRef]
- Shoaib, M.; Rahman, M.S.U.; Saeed, A.; Naseer, M.M. Mesoporous bioactive glass-polyurethane nanocomposites as reservoirs for sustained drug delivery. Colloids Surf. B Biointerfaces 2018, 172, 806–811. [Google Scholar] [CrossRef]
- Mattu, C.; Brachi, G.; Menichetti, L.; Flori, A.; Armanetti, P.; Ranzato, E.; Martinotti, S.; Nizzero, S.; Ferrari, M.; Ciardelli, G. Alternating block copolymer-based nanoparticles as tools to modulate the loading of multiple chemotherapeutics and imaging probes. Acta Biomater. 2018, 80, 341–351. [Google Scholar] [CrossRef]
- Baskaran, R.; Ko, U.J.; Davaa, E.; Park, J.E.; Jiang, Y.; Lee, J.; Yang, S.G. Doxycycline-eluting core-shell type nanofiber-covered trachea stent for inhibition of cellular metalloproteinase and its related fibrotic stenosis. Pharmaceutics 2019, 11, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, N.; Katbab, A.; Mirzadeh, H. Isocyanate-terminated urethane prepolymer as bioadhesive base material: Synthesis and characterization. Int. J. Adhes. Adhes. 2000, 20, 299–304. [Google Scholar] [CrossRef]
- Popa, Z.; Rusu, L.C.; Susan, R.; Pinzaru, I.; Ardelean, E.; Borcan, F.; Voicu, M.; Sas, I.T.; Lazureanu, R.A.P.V. Obtaining and characterization of a polyurethane carrier used for eugenol as a possible remedy in oral therapies. Mater. Plast. 2018, 55, 9–13. [Google Scholar] [CrossRef]
- Lyu, J.; Ma, Y.; Xu, Y.; Nie, Y.; Tang, K. Characterization of the key aroma compounds in marselan wine by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission tests. Molecules 2019, 24, 2978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albishi, T.; Banoub, J.; de Camargo, A.C.; Shahidi, F. Date palm wood as a new source of phenolic antioxidants and in preparation of smoked salmon. J. Food Biochem. 2019, 43, e12760. [Google Scholar] [CrossRef]
- Roberts, J.M.; Jahir, A.; Graham, J.; Pope, T.W. Catch me if you can: The influence of refuge/trap design, previous feeding experience, and semiochemical lures on vine weevil (Coleoptera: Curculionidae) monitoring success. Pest Manag. Sci. 2019, 76, 553–560. [Google Scholar] [CrossRef]
- Huang, Q.; Qian, X.; Jiang, T.; Zheng, X. Effect of eugenol fumigation treatment on chilling injury and CBF gene expression in eggplant fruit during cold storage. Food Chem. 2019, 292, 143–150. [Google Scholar] [CrossRef]
- Lane, T.; Anantpadma, M.; Freundlich, J.S.; Davey, R.A.; Madrid, P.B.; Ekins, S. The natural product eugenol is an inhibitor of the ebola virus in vitro. Pharm. Res. 2019, 36, 104. [Google Scholar] [CrossRef]
- Duicu, O.M.; Pavel, I.Z.; Borcan, F.; Muntean, D.M.; Cheveresan, A.; Bratu, E.A.; Rusu, L.C.; Karancsi, O.L. Characterization of the eugenol effects on the bioenergetic profile of SCC-4 human squamous cell carcinoma cell line. Rev. Chim. 2018, 69, 2567–2570. [Google Scholar] [CrossRef]
- Ji, J.; Ge, X.; Liang, W.; Liang, R.; Pang, X.; Liu, R.; Wen, S.; Sun, J.; Chen, X.; Ge, J. A simple preparation route for bio-phenol MQ silicone resin via the hydrosilylation method and its autonomic antibacterial property. Polymers 2019, 11, 1389. [Google Scholar] [CrossRef] [Green Version]
- Deme, P.; Narasimhulu, C.A.; Parthasarathy, S. Evaluation of anti-inflammatory properties of herbal aqueous extracts and their chemical characterization. J. Med. Food 2019, 22, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.S.; Aboussekhra, A. Sequential combination of cisplatin with eugenol targets ovarian cancer stem cells through the Notch-Hes1 signalling pathway. J. Exp. Clin. Cancer Res. 2019, 38, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, H.; Mishra, P.K.; Iqbal, Z.; Jaggi, M.; Madaan, A.; Bhuyan, K.; Gupta, N.; Gupta, N.; Vats, K.; Verma, R.; et al. Co-delivery of eugenol and dacarbazine by hyaluronic acid-coated liposomes for targeted inhibition of survivin in treatment of resistant metastatic melanoma. Pharmaceutics 2019, 11, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Z.; Liu, Z.; Zheng, J.; Chen, L.; Wu, Q.; Mo, J.; Zhang, G.; Song, L.; Xu, W.; Zhang, S.; et al. Eugenol inhibits non-small cell lung cancer by repressing expression of NF-kB-regulated TRIM59. Phytother. Res. 2019, 33, 1562–1569. [Google Scholar] [CrossRef]
- Heghes, A.; Soica, C.M.; Ardelean, S.; Ambrus, R.; Muntean, D.; Galuscan, A.; Dragos, D.; Ionescu, D.; Borcan, F. Influence of emulsifiers on the characteristics of polyurethane structures used as drug carrier. Chem. Cent. J. 2013, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Munteanu, M.F.; Ardelean, A.; Borcan, F.; Trifunschi, S.I.; Gligor, R.; Ardelean, S.A.; Coricovac, D.; Pinzaru, I.; Andrica, F.; Borcan, L.C. Mistletoe and garlic extracts as polyurethane carriers—A possible remedy for choroidal melanoma. Curr. Drug Deliv. 2017, 14, 1178–1188. [Google Scholar] [CrossRef]
- Galuscan, A.; Jumanca, D.; Borcan, F.; Soica, C.; Ionescu, D.; Rusu, L.; Crainiceanu, Z. Comparative study on polyurethane and cyclodextrin carrier for triclosan. Rev. Chim-Buchar. 2014, 6, 190–193. [Google Scholar]
- WHO Pharmacopoeia Library. Available online: https://apps.who.int/phint/en/p/docf/ (accessed on 7 October 2019).
- Salopek, B.; Krasic, D.; Filipowic, S. Measurement and application of zeta-potential. RGN Zbornik 1992, 4, 147–151. [Google Scholar]
- Albulescu, R.C.; Borcan, F.; Paul, C.; Velea, I.; Puiu, M. Development and in vitro evaluation of polyurethane microparticles as carrier for bevacizumab: An alternative treatment for retinopathy of prematurity. Int. Curr. Pharm. J. 2014, 3, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Borcan, L.C.; Dudás, Z.; Len, A.; Fuzi, J.; Borcan, F.; Tomescu, M.C. Synthesis and characterization of a polyurethane carrier used for a prolonged transmembrane transfer of a chili pepper extract. Int. J. Nanomed. 2018, 13, 7155–7166. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Ho, C.-T.; Huang, Q. Extraction, bioavailability, and bioefficacy of capsaicinoids. J. Food Drug Anal. 2017, 25, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, Z.; Daood, H.; Ambrózy, Z.; Helyes, L. Determination of polyphenols, capsaicinoids, and vitamin c in new hybrids of chili peppers. J. Anal. Methods Chem. 2015, 2015, 102125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borcan, F.; Preda, M.; Borcan, L.C.; Pinzaru, I.; Florescu, S.; Sisu, E.; Poenaru, M. Comparative characterization of birch bark extracts encapsulated inside polyurethane microstructures. Mater. Plast. 2018, 55, 385–388. [Google Scholar] [CrossRef]
- Cacciotti, I.; Ciocci, M.; Di Giovanni, E.; Nanni, F.; Melino, S. Hydrogen sulfide-releasing fibrous membranes: Potential patches for stimulating human stem cells proliferation and viability under oxidative stress. Int. J. Mol. Sci. 2018, 19, 2368. [Google Scholar] [CrossRef] [Green Version]
- Sartori, S.; Chiono, V.; Tonda-Turo, C.; Mattu, C.; Gianluca, C. Biomimetic polyurethanes in nano and regenerative medicine. J. Mater. Chem. B 2014, 2, 5128–5144. [Google Scholar] [CrossRef]
- Wismayer, K.; Mehrban, N.; Bowen, J.; Birchall, M. Improving cellular migration in tissue-engineered laryngeal scaffolds. J. Laryngol. Otol. 2019, 133, 135–148. [Google Scholar] [CrossRef]
- Mehrban, N.; Bowen, J.; Tait, A.; Darbyshire, A.; Virasami, A.K.; Lowdell, M.W.; Birchall, M.A. Silsesquioxane polymer as a potential scaffold for laryngeal reconstruction. Mater. Sci. Eng. C 2018, 92, 565–574. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; Mani, M.P.; Supriyanto, E. Blood compatibility assessments of electrospun polyurethane nanocomposites blended with megni oil for tissue engineering applications. An. Acad. Bras. Ciências 2019, 91, e20190018. [Google Scholar] [CrossRef]
- Brudzynski, K.; Carlone, R. Stage-dependent modulation of limb regeneration by caffeic acid phenethyl ester (CAPE)-immunocytochemical evidence of a CAPE-evoked delay in mesenchyme formation and limb regeneration. J. Exp. Zoöl. 2004, 301, 389–400. [Google Scholar] [CrossRef]
- Yuan, Y.; Basu, S.; Lin, M.H.; Shukla, S.; Sarkar, D. Colloidal gels for guiding endothelial cell organization via microstructural morphology. ACS Appl. Mater. Interfaces 2019, 11, 31709–31728. [Google Scholar] [CrossRef]
- Shokraei, N.; Asadpour, S.; Shokraei, S.; Sabet, M.N.; Faridi-Majidi, R.; Ghanbari, H. Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering. Microsc. Res. Tech. 2019, 82, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Tawagi, E.; Ganesh, T.; Cheng, H.-L.M.; Santerre, J.P. Synthesis of degradable-polar-hydrophobic-ionic co-polymeric microspheres by membrane emulsion photopolymerization: In vitro and in vivo studies. Acta Biomater. 2019, 89, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fu, Q.-W.; Sun, T.-W.; Chen, F.; Qi, C.; Wu, J.; Cai, Z.-Y.; Qian, Q.-R.; Zhu, Y.-J. Amorphous calcium phosphate, hydroxyapatite and poly(d,l-lactic acid) composite nanofibers: Electrospinning preparation, mineralization and in vivo bone defect repair. Colloids Surf. B Biointerfaces 2015, 136, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Mani, M.P.; Jaganathan, S.K.; Supriyanto, E. Enriched mechanical strength and bone mineralisation of electrospun biomimetic scaffold laden with ylang ylang oil and zinc nitrate for bone tissue engineering. Polymers 2019, 11, 1323. [Google Scholar] [CrossRef] [Green Version]
- Watcharajittanont, N.; Putson, C.; Pripatnanont, P.; Meesane, J. Layer-by-layer electrospun membranes of polyurethane/silk fibroid based on mimicking of oral soft tissue for guided bone regeneration. Biomed. Mater. 2019, 14, 055011. [Google Scholar] [CrossRef]
- Bianco, A.; Di Federico, E.; Caccioti, I. Electrospun poly(ε-caprolactone)-based composites using synthesized β-tricalcium phosphate. Polym. Adv. Technol. 2011, 22, 1832–1841. [Google Scholar] [CrossRef]
- Baykan, E.; Koç, A.; Elcin, A.E.; Elçin, Y.M. Evaluation of a biomimetic poly(ε-caprolactone)/β-tricalcium phosphate multispiral scaffold for bone tissue engineering: In vitro and in vivo studies. Biointerphases 2014, 9, 29011. [Google Scholar] [CrossRef] [Green Version]
- Norouz, F.; Halabian, R.; Salimi, A.; Ghollasi, M. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro. Mater. Sci. Eng. C 2019, 103, 109857. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, N.; Moore, J.; McCoy, C.P.; Ziminska, M.; Rafferty, C.; Sarri, G.; Hamilton, A.R.; Li, Y.; Zhang, L.; et al. Nanoscale hybrid coating enables multifunctional tissue scaffold for potential multimodal therapeutic applications. ACS Appl. Mater. Interfaces 2019, 11, 27269–27278. [Google Scholar] [CrossRef]
- Moreira, A.F.; Rodrigues, C.F.; Jacinto, T.A.; Miguel, S.P.; Costa, E.C.; Correia, I.J. Microneedle-based delivery devices for cancer therapy: A review. Pharmacol. Res. 2019, 148, 104438. [Google Scholar] [CrossRef]
- Hu, W.; Bai, X.; Wang, Y.; Lei, Z.; Luo, H.; Tong, Z.-Z. Upper critical solution temperature polymer-grafted hollow mesoporous silica nanoparticles for near-infrared-irradiated drug release. J. Mater. Chem. B 2019, 7, 5789–5796. [Google Scholar] [CrossRef] [PubMed]
- Gheisari, Y.; Vasei, M.; Shafiee, A.; Soleimani, M.; Seyedjafari, E.; Omidkhoda, A.; Langroudi, L.; Ahmadbeigi, N. A three-dimensional scaffold-based system for modeling the bone marrow tissue. Stem Cells Dev. 2016, 25, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Kuan, Y.H.; Dasi, L.P.; Yoganathan, A.; Leo, H.L.; Leo, A.H.L. Recent advances in polymeric heart valves research. Int. J. Biomater. Res. Eng. 2011, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Arjun, G.N.; Parameswaran, R. Structural characterization, mechanical properties, andin vitrocytocompatibility evaluation of fibrous polycarbonate urethane membranes for biomedical applications. J. Biomed. Mater. Res. Part A 2012, 100, 3042–3050. [Google Scholar] [CrossRef] [PubMed]
- Kütting, M.; Roggenkamp, J.; Urban, U.; Schmitz-Rode, T.; Steinseifer, U. Polyurethane heart valves: Past, present and future. Expert Rev. Med Devices 2011, 8, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Styan, K.; Martin, D.J.; Simmons, A.; Poole-Warren, L.A. In vivo biostability of polyurethane–organosilicate nanocomposites. Acta Biomater. 2012, 8, 2243–2253. [Google Scholar] [CrossRef]
- Sarkar, S.; Burriesci, G.; Wojcik, A.; Aresti, N.; Hamilton, G.; Seifalian, A. Manufacture of small calibre quadruple lamina vascular bypass grafts using a novel automated extrusion-phase-inversion method and nanocomposite polymer. J. Biomech. 2009, 42, 722–730. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; Supriyanto, E.; Murugesan, S.; Balaji, A.; Asokan, M.K. Biomaterials in cardiovascular research: Applications and clinical implications. BioMed Res. Int. 2014, 2014, 459465. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.T.; Wu, J.C. Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev. Cardiovasc. Ther. 2012, 10, 1039–1049. [Google Scholar] [CrossRef]
- Rau, J.V.; Fosca, M.; Cacciotti, I.; Laureti, S.; Bianco, A.; Teghil, R. Nanostructured Si-substituted hydroxyapatite coatings for biomedical applications. Thin Solid Films 2013, 543, 167–170. [Google Scholar] [CrossRef]
- Rau, J.V.; Cacciotti, I.; Laureti, S.; Fosca, M.; Varvaro, G.; Latini, A. Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Hasan, J.; Crawford, R.; Ivanova, E.P. Antibacterial surfaces: The quest for a new generation of biomaterials. Trends Biotechnol. 2013, 31, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Qi, P.; Maitz, M.F.; Huang, N. Surface modification of cardiovascular materials and implants. Surf. Coat. Technol. 2013, 233, 80–90. [Google Scholar] [CrossRef]
- Thierfelder, N.; Koenig, F.; Bombien, R.; Fano, C.; Reichart, B.; Wintermantel, E.; Schmitz, C.; Akra, B. In vitro comparison of novel polyurethane aortic valves and homografts after seeding and conditioning. ASAIO J. 2013, 59, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehle, K.; Li, J.; Zimmermann, H.; Hartmann, B.; Wehner, D.; Schmid, T.; Schmid, C. In vitro endothelialization and platelet adhesion on titaniferous upgraded polyether and polycarbonate polyurethanes. Materials 2014, 7, 623–636. [Google Scholar] [CrossRef] [Green Version]
- Taite, L.J.; Yang, P.; West, J.L.; Jun, H.-W. Nitric oxide-releasing polyurethane–PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 84, 108–116. [Google Scholar] [CrossRef]
- Ruiz, A.; Rathnam, K.R.; Masters, K.S. Effect of hyaluronic acid incorporation method on the stability and biological properties of polyurethane-hyaluronic acid biomaterials. J. Mater. Sci. Mater. Electron. 2013, 25, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Zhao, H.; Behl, M.; Lendlein, A.; Guo, J.; Yang, D. Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility. J. Mater. Sci. Mater. Electron. 2013, 24, 61–70. [Google Scholar] [CrossRef]
- Guldner, N.W.; Bastian, F.; Weigel, G.; Zimmermann, H.; Maleika, M.; Scharfschwerdt, M.; Rohde, D.; Sievers, H.-H. Nanocoating with titanium reduces iC3b- and granulocyte-activating immune response against glutaraldehyde-fixed bovine pericardium: A new technique to improve biologic heart valve prosthesis durability? J. Thorac. Cardiovasc. Surg. 2012, 143, 1152–1159. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, B.; Muraleedharan, C.; Ananthakumar, R.; Jayachandran, M. A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surf. Coat. Technol. 2011, 205, 5014–5020. [Google Scholar] [CrossRef]
- Wilson, A.C.; Chou, S.-F.; Lozano, R.; Chen, J.Y.; Neuenschwander, P.F. Thermal and physico-mechanical characterizations of thromboresistant polyurethane films. Bioengineering 2019, 6, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Xiao, M.; Yuan, L.; Zhang, J.; Hou, Z. Preparation, physicochemical properties and hemocomptibility of biodegradable chitooligosaccharide-based polyurethane. Polymers 2018, 10, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szott, L.M.; Horbett, T.A. Protein interactions with surfaces: Cellular responses, complement activation, and newer methods. Curr. Opin. Chem. Biol. 2011, 15, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Ovcharenko, E.A.; Rezvova, M.A.; Nikishau, P.; Kostjuk, S.V.; Glushkova, T.; Antonova, L.V.; Trebushat, D.; Akentieva, T.; Shishkova, D.; Krivikina, E.; et al. Polyisobutylene-based thermoplastic elastomers for manufacturing polymeric heart valve leaflets: In vitro and in vivo results. Appl. Sci. 2019, 9, 4773. [Google Scholar] [CrossRef] [Green Version]
- Wisman, C.B.; Pierce, W.S.; Donachy, J.H.; Pae, W.E.; Myers, J.L.; Prophet, G.A. A polyurethane trileaflet cardiac valve prosthesis: In vitro and in vivo studies. Trans. Am. Soc. Artif. Intern. Organs 1982, 28, 164–168. [Google Scholar]
- Hyde, J.A.; Chinn, J.A.; Phillips, R.E. Polymer heart valves. J. Heart Valve Dis. 1999, 8, 331–339. [Google Scholar]
- Claiborne, T.; Slepian, M.J.; Hossainy, S.; Bluestein, D. Polymeric trileaflet prosthetic heart valves: Evolution and path to clinical reality. Expert Rev. Med. Devices 2012, 9, 577–594. [Google Scholar] [CrossRef] [Green Version]
- Bernacca, G.; Mackay, T.; Gulbransen, M.; Donn, A.; Wheatley, D. Polyurethane heart valve durability: Effects of leaflet thickness and material. Int. J. Artif. Organs 1997, 20, 327–331. [Google Scholar] [CrossRef]
- Bezuidenhout, D.; Williams, D.F.; Zilla, P. Polymeric Heart Valves for Surgical Implantation, Catheter-Based Technologies and Heart Assist Devices. Biomaterials 2015, 36, 6–25. [Google Scholar] [CrossRef]
- Wheatley, D.; Raco, L.; Bernacca, G.; Sim, I.; Belcher, P.; Boyd, J. Polyurethane: Material for the next generation of heart valve prostheses? Eur. J. Cardio-Thorac. Surg. 2000, 17, 440–448. [Google Scholar] [CrossRef]
- Ghanbari, H.; Viatge, H.; Kidane, A.G.; Burriesci, G.; Tavakoli, M.; Seifalian, A. Polymeric heart valves: New materials, emerging hopes. Trends Biotechnol. 2009, 27, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Resor, C.D.; Bhatt, D.L. Polymeric heart valves: Back to the future? Phys. B Condens. Matter 2019, 1, 30–32. [Google Scholar] [CrossRef]
- Motta, S.E.; Lintas, V.; Fioretta, E.S.; Dijkman, P.E.; Putti, M.; Caliskan, E.; Biefer, H.R.C.; Lipiski, M.; Sauer, M.; Cesarovic, N.; et al. Human cell-derived tissue-engineered heart valve with integrated Valsalva sinuses: Towards native-like transcatheter pulmonary valve replacements. NPJ Regen. Med. 2019, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Parrag, I.C.; Zandstra, P.W.; Woodhouse, K.A. Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering. Biotechnol. Bioeng. 2012, 109, 813–822. [Google Scholar] [CrossRef]
- De Gaetano, F.; Serrani, M.; Bagnoli, P.; Brubert, J.; Stasiak, J.; Moggridge, G.D.; Costantino, M.L. Fluid dynamic characterization of a polymeric heart valve prototype (Poli-Valve) tested under continuous and pulsatile flow conditions. Int. J. Artif. Organs 2015, 38, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Stachelek, S.J.; Alferiev, I.; Fulmer, J.; Ischiropoulos, H.; Levy, R.J. Biological stability of polyurethane modified with covalent attachment of di-tert-butyl-phenol. J. Biomed. Mater. Res. Part A 2007, 82, 1004–1011. [Google Scholar] [CrossRef]
- Çelebi-Saltik, B.; Öteyaka, M.Ö.; Gökçinar-Yagci, B. Stem cell-based small-diameter vascular grafts in dynamic culture. Connect. Tissue Res. 2019, 16, 1–13. [Google Scholar] [CrossRef]
- Mi, H.-Y.; Jiang, Y.; Jing, X.; Enriquez, E.; Li, H.; Li, Q.; Turng, L.-S. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Mater. Sci. Eng. C 2019, 98, 241–249. [Google Scholar] [CrossRef]
- Mi, H.-Y.; Jing, X.; Li, Z.-T.; Lin, Y.-J.; Thomson, J.A.; Turng, L.-S. Fabrication and modification of wavy multicomponent vascular grafts with biomimetic mechanical properties, antithrombogenicity, and enhanced endothelial cell affinity. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 2397–2408. [Google Scholar] [CrossRef]
- Gossart, A.; Letourneur, D.; Gand, A.; Regnault, V.; Ben Mlouka, M.A.; Cosette, P.; Pauthe, E.; Ollivier, V.; Santerre, J.P. Mitigation of monocyte driven thrombosis on cobalt chrome surfaces in contact with whole blood by thin film polar/hydrophobic/ionic polyurethane coatings. Biomaterials 2019, 217, 119306. [Google Scholar] [CrossRef]
- Griffin, M.; Naderi, N.; Kalaskar, D.M.; Seifalian, A.; Butler, P. Argon plasma surface modification promotes the therapeutic angiogenesis and tissue formation of tissue-engineered scaffolds in vivo by adipose-derived stem cells. Stem Cell Res. Ther. 2019, 10, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Fei, J.; Kondyurin, A.; Fu, K.; Ye, L.; Bilek, M.M.; Bao, S. Enhanced biocompatibility of polyurethane-type shape memory polymers modified by plasma immersion ion implantation treatment and collagen coating: An in vivo study. Mater. Sci. Eng. C 2019, 99, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.; Hung, K.-C.; Hung, H.-S.; Hsu, S.-H. Modulation of macrophage phenotype by biodegradable polyurethane nanoparticles: Possible relation between macrophage polarization and immune response of nanoparticles. ACS Appl. Mater. Interfaces 2018, 23, 19436–19448. [Google Scholar] [CrossRef] [PubMed]
- Mansur, S.; Othman, M.H.D.; Ismail, A.F.; Kadir, S.H.S.A.; Goh, P.S.; Hasbullah, H.; Ng, B.C.; Abdullah, M.S.; Kamal, F.; Abidin, M.N.Z.; et al. Synthesis and characterization of composite sulphonated polyurethane/polyethersulphone membrane for blood purification application. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Qiu, Y.-R. 2-methoxyethylacrylate modified polyurethane membrane and its blood compatibility. Prog. Biophys. Mol. Biol. 2017, 631, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Villani, M.; Consonni, R.; Canetti, M.; Bertoglio, F.; Iervese, S.; Bruni, G.; Visai, L.; Iannace, S.; Bertini, F. Polyurethane-Based Composites: Effects of Antibacterial Fillers on the Physical-Mechanical Behavior of Thermoplastic Polyurethanes. Polymers 2020, 12, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, P.; Nalos, L.; Dejmek, J.; Soukup, M. The method of long-term catheterization of the vena jugularis in pigs. J. Pharmacol. Toxicol. Methods 2019, 98, 106584. [Google Scholar] [CrossRef]
- Sutrave, S.; Kikhney, J.; Schmidt, J.; Petrich, A.; Wiessner, A.; Kursawe, L.; Gebhardt, M.; Kertzscher, U.; Gabel, G.; Goubergrits, L.; et al. Effect of daptomycin and vancomycin on Staphylococcus epidermidis biofilms: An in vitro assessment using fluorescence in situ hybridization. PLoS ONE 2019, 14, e0221786. [Google Scholar] [CrossRef]
- Macphee, R.A.; Koepsel, J.; Tailly, T.; Vangala, S.K.; Brennan, L.; Cadieux, P.A.; Burton, J.P.; Wattengel, C.; Razvi, H.; Dalsin, J. Application of novel 3,4-dihydroxyphenylalanine-containing antimicrobial polymers for the prevention of uropathogen attachment to urinary biomaterials. J. Endourol. 2019, 33, 590–597. [Google Scholar] [CrossRef]
- Wang, C.; Zolotarskaya, O.Y.; Ashraf, K.M.; Wen, X.; Ohman, D.E.; Wynne, K.J. Surface characterization, antimicrobial effectiveness, and human cell response for a biomedical grade polyurethane blended with a mixed soft block PTMO-quat/PEG copolyoxetane polyurethane. ACS Appl. Mater. Interfaces 2019, 23, 20699–20714. [Google Scholar] [CrossRef]
- Albertini, F.; Struglia, M.; Faraone, V.; Fioravanti, R.; Niutta, S.B. Effectiveness of the ECG method in the correct positioning of PICC type central venous catheters in patients with atrial fibrillation. Minerva Cardioangiol. 2019, 67, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Schierholz, J.M. The antimicrobial efficacy of a new central venous catheter with long-term broad-spectrum activity. J. Antimicrob. Chemother. 2000, 46, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piozzi, A.; Francolini, I.; Occhiaperti, L.; Venditti, M.; Marconi, W. Antimicrobial activity of polyurethanes coated with antibiotics: A new approach to the realization of medical devices exempt from microbial colonization. Int. J. Pharm. 2004, 280, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, V.; Francolini, I.; Donelli, G.; Piozzi, A. Synthesis, characterization, andin vitro activity of antibiotic releasing polyurethanes to prevent bacterial resistance. J. Biomed. Mater. Res. Part A 2007, 81, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-E.; Kim, S.-R.; Lee, S.-H.; Lee, C.-H.; Kim, D.D. The effect of pore formers on the controlled release of cefadroxil from a polyurethane matrix. Int. J. Pharm. 2000, 201, 29–36. [Google Scholar] [CrossRef]
- Ferreira, P.; Coelho, J.F.J.; Pereira, R.; Silva, A.F.M.; Gil, M.H. Synthesis and characterization of polyethylene glycol pre-polymer to be applied as bioadhesive. J. Appl. Polym. Sci. 2007, 105, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, P.; Silva, A.F.; Pinto, M.I.; Gil, M.H. Development of a biodegradable bioadhesive containing urethane groups. J. Mater. Sci. Mater. Med. 2008, 19, 111–120. [Google Scholar] [CrossRef]
- Spicer, P.P.; Mikos, A.G. Fibrin glue as a drug delivery system. J. Control. Release 2010, 148, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Daniel-Da-Silva, A.L.; Martín-Martínez, J.M.; Bordado, J. Influence of the free isocyanate content in the adhesive properties of reactive trifunctional polyether urethane quasi-prepolymers. Int. J. Adhes. Adhes. 2006, 26, 355–362. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; Mani, M.P. Electrospinning synthesis and assessment of physicochemical properties and biocompatibility of cobalt nitrate fibers for wound healing applications. An. Acad. Bras. Ciências 2019, 91, e20180237. [Google Scholar] [CrossRef] [Green Version]
- Zeimaran, E.; Pourshahrestani, S.; Kadri, N.A.; Kong, D.; Shirazi, S.F.S.; Naveen, S.V.; Murugan, S.S.; Kumaravel, T.S.; Salamatinia, B. Self-healing polyester urethane supramolecular elastomers reinforced with cellulose nanocrystals for biomedical applications. Macromol. Biosci. 2019, 23, e1900176. [Google Scholar] [CrossRef] [PubMed]
- Jaganathan, S.K.; Mani, M.P.; Khudzari, A.Z.M. Electrospun combination of peppermint oil and copper sulphate with conducive physico-chemical properties for wound dressing applications. Polymers 2019, 11, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, J.; Czarnecka, B. Materials for the Direct Restoration of Teeth, 1st ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 21–36. [Google Scholar]
- Gilbert, J.L. Acrylics in Biomedical Engineering. In Encyclopedia of Materials: Science and Technology, 2nd ed.; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 11–18. [Google Scholar]
- Nassif, M.; El Askary, F. Nanotechnology and nanoparticles in contemporary dental adhesives. In Nanobiomaterials in Clinical Dentistry; Elsevier: Amsterdam, The Netherlands, 2013; pp. 131–164. [Google Scholar]
- Subramaniam, A.; Sethuraman, S. Biomedical applications of nondegradable polymers. In Natural and Synthetic Biomedical Polymers; Elsevier: Amsterdam, The Netherlands, 2014; pp. 301–308. [Google Scholar]
- De Aguiar, K.M.R.; Nascimento, M.V.; Faccioni, J.L.; Noeske, P.-L.M.; Gätjen, L.; Rischka, K.; Rodrigues-Filho, U.P. Urethanes PDMS-based: Functional hybrid coatings for metallic dental implants. Appl. Surf. Sci. 2019, 484, 1128–1140. [Google Scholar] [CrossRef]
- Gonzalez, J.B. Polyurethane elastomers for facial prostheses. J. Prosthet. Dent. 1978, 39, 179–187. [Google Scholar] [CrossRef]
- Bortun, C.; Cernescu, A.; Ghiban, N.; Faur, N.; Ghiban, B.; Gombos, O.; Podariu, A.C. Durability evaluation of complete dentures realized with “eclipse prosthetic resin system”. Mat. Plast. 2010, 47, 457–460. [Google Scholar]
- Zhang, G.; Wu, Y.; Chen, W.; Han, D.; Lin, X.; Xu, G.; Zhang, Q. Open-cell rigid polyurethane foams from peanut shell-derived polyols prepared under different post-processing conditions. Polymers 2019, 11, 1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-C.; Huang, C.-H.; Liu, Y.-L. Polymerization of meldrum’s acid and diisocyanate: An effective approach for preparation of reactive polyamides and polyurethanes. ACS Omega 2019, 4, 7884–7890. [Google Scholar] [CrossRef]
- Lu, D.; Zhou, J.; Hou, S.; Xiong, Q.; Chen, Y.; Pu, K.; Ren, J.; Duan, H. Functional macromolecule-enabled colloidal synthesis: From nanoparticle engineering to multifunctionality. Adv. Mater. 2019, 31, e1902733. [Google Scholar] [CrossRef]
- Liu, X.; Shi, H.; Xie, B.; Dionysiou, D.D.; Zhao, Y. Microplastics as both a sink and a source of bisphenol a in the marine environment. Environ. Sci. Technol. 2019, 53, 10188–10196. [Google Scholar] [CrossRef]
- Zocchi, M.; Sommaruga, R. Microplastics modify the toxicity of glyphosate on Daphnia magna. Sci. Total Environ. 2019, 697, 134194. [Google Scholar] [CrossRef]
- Peez, N.; Becker, J.; Ehlers, S.M.; Fritz, M.; Fischer, C.B.; Koop, J.H.E.; Winkelmann, C.; Imhof, W. Quantitative analysis of PET microplastics in environmental model samples using quantitative 1H-NMR spectroscopy: Validation of an optimized and consistent sample clean-up method. Anal. Bioanal. Chem. 2019, 411, 7409–7418. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, X.; Wei, N.; Song, Z.; Li, D. Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health. Environ. Int. 2019, 132, 105127. [Google Scholar] [CrossRef] [PubMed]
- Zdrahala, R.J.; Zdrahala, I.J. Biomedical applications of polyurethanes: A review of past promises, present realities, and a vibrant future. J. Biomater. Appl. 1999, 14, 67–90. [Google Scholar] [CrossRef] [PubMed]
- Gostev, A.A.; Karpenko, A.A.; Laktionov, P.P. Polyurethanes in cardiovascular prosthetics. Polym. Bull. 2018, 75, 4311–4325. [Google Scholar] [CrossRef]
- Bernacca, G.M.; Mackay, T.G.; Wilkinson, R.; Wheatley, D. Calcification and fatigue failure in a polyurethane heart value. Biomaterials 1995, 16, 279–285. [Google Scholar] [CrossRef]
- Khudyakov, I.V.; Zopf, D.R.; Turro, N.J. Polyurethane Nanocomposites. Des. Monomers Polym. 2009, 12, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Hamilton, G. The performance of a small-caliber graft for vascular reconstructions in a senescent sheep model. Biomaterials 2014, 35, 9033–9040. [Google Scholar] [CrossRef]
- Hong, Y. Electrospun fibrous polyurethane scaffolds in tissue engineering. In Advances in Polyurethane Biomaterials; Cooper, S.L., Guan, J., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 543–559. [Google Scholar]
- Miguel, S.P.; Figueira, D.R.; Simões, D.; Ribeiro, M.P.; Coutinho, P.; Ferreira, P.; Correia, I.J. Electrospun polymeric nanofibres as wound dressings: A review. Colloids Surf. B 2018, 169, 60–71. [Google Scholar] [CrossRef]
- Cacciotti, I.; Fortunati, E.; Puglia, D.; Kenny, J.M.; Nanni, F. Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: Morphology, thermal properties and mechanical behavior. Carbohydr. Polym. 2014, 103, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Cacciotti, I.; House, J.N.; Mazzuca, C.; Valentini, M.; Madau, F.; Palleschi, A.; Straffi, P.; Nanni, F. Neat and GNPs loaded natural rubber fibers by electrospinning: Manufacturing and characterization. Mater. Des. 2015, 88, 1109–1118. [Google Scholar] [CrossRef]
- Goh, Y.F.; Shakir, I.; Hussain, R. Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J. Mater. Sci. 2013, 48, 3027–3054. [Google Scholar] [CrossRef]
- Cacciotti, I.; Calderone, M.; Bianco, A. Tailoring the properties of electrospun PHBV mats: Co-solution blending and selective removal of PEO. Eur. Polym. J. 2013, 49, 3210–3222. [Google Scholar] [CrossRef]
- Sell, S.A.; McClure, M.J.; Garg, K.; Wolfe, P.S.; Bowlin, G.L. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 2009, 61, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Ishii, O.; Shin, M.; Sueda, T.; Vacanti, J.P. In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix–like topography. J. Thorac. Cardiovasc. Surg. 2005, 130, 1358–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mani, M.P.; Jaganathan, S.K.; Faudzi, A.A.M.; Sunar, M.S. Engineered electrospun polyurethane composite patch combined with Bi-functional components rendering high strenght for cardiac tissue engineering. Polymers 2019, 11, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyfi, J.; Panahi-Sarmad, M.; Oraei-Ghodousi, A.; Goodarzi, V.; Khonakdar, H.A.; Asefnejad, A.; Shojaei, S. Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles. Colloids Surf. B Biointerfaces 2019, 183, 110438. [Google Scholar] [CrossRef]
- Sehmi, S.K.; Noimark, S.; Weiner, J.; Allan, E.; MacRobert, A.J.; Parkin, I.P. Potent antibacterial activity of copper embedded into silicone and polyurethane. ACS Appl. Mater. Interfaces 2015, 7, 22807–22813. [Google Scholar] [CrossRef]
Component | Type | |
---|---|---|
Diisocyanates | Aromatic | Toluene-2,4-diisocyanate and toluene-2,6-diisocyanate, 4,4′-methylene-bis-(phenylisocyanate) |
Alicylic | Isophoronediisocyanate, 4,4′-methylene-bis(cyclohexylisocyanate) | |
Aliphatic | 1,6-diisocyanatohexane | |
Polyols | Aliphatic linearpolyethers | Polyethylene oxide, polypropyleneoxide poly(tetramethylene oxide) glycol |
Aromatic polyethers | Dianole 24 | |
Aliphatic saturatedpolyesters | Polyadipates of ethylene glycol, diethylene glycol or propylene glycol, polycaprolactonediol | |
Chain extenders | Diols | Ethylene glycol, 1,4-butanediol |
Diamines | 1,2-ethylenediamine; 1,6-hexamethylene diamine | |
Catalysts | Amine | 1,4-diazabicyclo-[2,2,2]-octane |
Tin | Dibutyltindilaurate |
Type of PU Carrier | Action | Reference |
---|---|---|
PU with eugenol | Antiseptic Anti-inflammatory | [51,57] |
Inhibitory effects on mitochondrial respiration | ||
PU with Allium sativum (garlic) | Antiproliferative effect Higher mobility of the compound | [64] |
PU with Viscum album (mistletoe) | Antiproliferative effect | [64] |
PU with chili pepper extract | Supressing angiogenesis | [69] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, L.-C.; Ardelean, L.C.; Jitariu, A.-A.; Miu, C.A.; Streian, C.G. An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers 2020, 12, 1197. https://doi.org/10.3390/polym12051197
Rusu L-C, Ardelean LC, Jitariu A-A, Miu CA, Streian CG. An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers. 2020; 12(5):1197. https://doi.org/10.3390/polym12051197
Chicago/Turabian StyleRusu, Laura-Cristina, Lavinia Cosmina Ardelean, Adriana-Andreea Jitariu, Catalin Adrian Miu, and Caius Glad Streian. 2020. "An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine" Polymers 12, no. 5: 1197. https://doi.org/10.3390/polym12051197
APA StyleRusu, L. -C., Ardelean, L. C., Jitariu, A. -A., Miu, C. A., & Streian, C. G. (2020). An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers, 12(5), 1197. https://doi.org/10.3390/polym12051197