The Effect of Biocontamination on Mechanical Strength and Moisture Transfer Performance of Epoxy Basalt Fiber Reinforcement Bar Exposed to Arctic Conditions
<p>Fragments of BFRP bars with provoked biocontamination, 6 mm in diameter, after 54 months of natural exposure in Yakutsk (<b>a</b>) and Tiksi (<b>b</b>).</p> "> Figure 2
<p>Comparison of the distribution of air temperature by month (on the <b>left</b>) and in general (on the <b>right</b>) for the period from 2006 to 2024 for Tiksi and Yakutsk.</p> "> Figure 3
<p>Comparison of the distribution of relative humidity by month (on the <b>left</b>) and in general (on the <b>right</b>) for the period from 2006 to 2024 for Tiksi and Yakutsk.</p> "> Figure 4
<p>Comparison of the climatogram of the dependence of relative and absolute humidity on temperature for Tiksi and Yakutsk for the period from 2006 to 2024.</p> "> Figure 5
<p>Dynamics of changes in the microbial landscape on the surfaces of FRPs exposed at the climatic testing ground (Yakutsk).</p> "> Figure 6
<p>Moisture sorption kinetics in initial BFRP bar samples with a diameter of 6 mm and lengths of H = 50, 70, and 100 mm.</p> "> Figure 7
<p>Moisture sorption modeling of basalt-plastic rebar samples with a length of 100 mm and a diameter of 6 mm using the following equations: (1)—blue curve, (3)—red curve, (4)—green curve.</p> "> Figure 8
<p>Influence of exposure duration on the moisture sorption kinetics of untreated and biologically contaminated basalt-plastic rebar samples with a diameter of 6 mm and a length of H = 50 mm, where: (1) initial state, (2) after 24 months in Tiksi (untreated), (3) after 54 months in Tiksi (untreated), (4) after 24 months in Tiksi (with biological contamination), (5) after 24 months in Yakutsk (with biological contamination).</p> "> Figure 9
<p>Microstructure of BFRP bar with provocative biocontamination after exposure in Yakutsk for 54 months, magnifications: (<b>a</b>) 150×, (<b>b</b>) 3000×.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Rangappa, S.M.; Siengchin, S. Basalt fibers: An environmentally acceptable and sustainable green material for polymer composites. Cons. Build. Mater. 2024, 436, 136834. [Google Scholar] [CrossRef]
- Tavadi, A.R.; Naik, Y.; Kumaresan, K.; Jamadar, N.I.; Rajaravi, C. Basalt fiber and its composite manufacturing and applications: An overview. Int. J. Eng. Sci. Technol. 2021, 13, 50–56. [Google Scholar] [CrossRef]
- Mundhe, G.S.; Mahanwar, P.A.; Patil, J.R.; Elamaran, S. A review on basalt fiber and basalt fiber reinforced polymer composites: Advancement and industrial applications. Int. J. Res. App. Sci. Eng. Technol. 2023, 11, 1729–1752. [Google Scholar] [CrossRef]
- Le Gué, L.; Davies, P.; Arhant, M.; Vincent, B.; Verbouwe, W. Basalt fibre degradation in seawater and consequences for long term composite reinforcement. Compos. Part A 2024, 179, 108027. [Google Scholar] [CrossRef]
- Vafaeva, K.M.; Dhyani, M.; Acharya, P.; Parik, K.; Ledalla, S. Glass-basalt-plastic materials for construction in temperate and Arctic climatic regions. BIO Web of Conf. 2024, 86, 01111. [Google Scholar]
- Startsev, O.V.; Lebedev, M.P.; Kychkin, A.K. Aging of basalt plastics in open climatic conditions. Polym. Sci. Ser. D 2022, 15, 101–109. [Google Scholar] [CrossRef]
- Al-Salloum, Y.A.; El-Gamal, S.; Almusallam, T.H.; Alsayed, S.H.; Aqel, M. Effect of harsh environmental conditions on the tensile properties of GFRP bars. Compos. Part B Eng. 2013, 45, 835–844. [Google Scholar] [CrossRef]
- Kim, H.Y.; Park, Y.H.; You, Y.J.; Moon, C.K. Moon Short-term durability test for GFRP rods under various environmental conditions. Compos. Struct. 2008, 83, 37–47. [Google Scholar] [CrossRef]
- Robert, M.; Benmokrane, B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars. Constr. Build. Mater. 2013, 38, 274–284. [Google Scholar] [CrossRef]
- El-Hassan, H.; El-Maaddawy, T.; Al-Sallamin, A.; Al-Saidy, A. Performance evaluation and microstructural characterization of GFRP bars in seawater-contaminated concrete. Constr. Build. Mater. 2017, 147, 66–78. [Google Scholar] [CrossRef]
- Zeng, J.-J.; Hao, Z.-H.; Liang, Q.-J.; Zhuge, Y.; Liu, Y. Durability assessment of GFRP bars exposed to combined accelerated aging in alkaline solution and a constant load. Eng. Struct. 2023, 297, 116990. [Google Scholar] [CrossRef]
- Gu, J.D.; Mitchell, R. Biodeterioration. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 309–341. [Google Scholar]
- Eliaz, N.; Ron, E.Z.; Gozin, M.; Younger, S.; Biran, D.; Tal, N. Microbial degradation of epoxy. Materials 2018, 11, 2123. [Google Scholar] [CrossRef] [PubMed]
- Glaser, J.A. Biological Degradation of Polymers in the Environment. Plast. Environ. 2019, 1, 13. [Google Scholar]
- Breister, A.M.; Imam, M.A.; Zhou, Z.; Ahsan, M.A.; Noveron, J.C.; Fnantharaman, K.; Prabhakar, P. Soil microbiomes mediate degradation of vinyl ester-based polymer composites. Commun. Mater. 2020, 1, 101. [Google Scholar] [CrossRef]
- Startsev, V.O.; Krivushina, A.A.; Mineeva, T.V. Development of methods for testing polymer materials for microbiological resistance. Review. Polym. Sci. Ser. D 2023, 16, 609–615. [Google Scholar] [CrossRef]
- Krivushina, A.A.; Kogan, A.M.; Startsev, V.O. Preservation of the properties of paint coatings after exposure to climatic factors and micromycetes-destructors. Tr. VIAM 2024, 7, 66–76. [Google Scholar]
- Erofeevskaya, L.A.; Kychkin, A.K.; Kychkin, A.A.; Lebedev, M.P. Research of biological effects on basaltoplastic rebars. Arct. Subarct. Nat. Res. 2022, 27, 152–166. [Google Scholar]
- Cavasin, M.; Sangermano, M.; Thomson, B.; Giannis, S. Exposure of glass fiber reinforced polymer composites in seawater and the effect on their physical performance. Materials 2019, 12, 807. [Google Scholar] [CrossRef]
- Russian Gost. Available online: https://www.russiangost.com/p-72603-gost-r-mek-60068-2-10-2009.aspx (accessed on 21 January 2025).
- Russian Gost. Available online: https://www.russiangost.com/p-18986-gost-16350-80.aspx (accessed on 21 January 2025).
- Russian Gost. Available online: https://www.russiangost.com/p-19279-gost-15150-69.aspx (accessed on 21 January 2025).
- Kablov, E.N.; Startsev, V.O. The influence of internal stresses on the aging of polymer composite materials: A review. Mech. Compos. Mat. 2021, 57, 565–576. [Google Scholar] [CrossRef]
- RussianGost. Available online: https://www.russiangost.com/p-138607-gost-32492-2015.aspx (accessed on 12 December 2024).
- Kychkin, A.K.; Erofeevskya, L.A.; Kychkin, A.A.; Vasileva, E.D.; Struchkov, N.F.; Lebedev, M.P. Investigation of biofouling and its effect on the properties of basalt fiber reinforced plastic rebars exposed to extremely cold climate conditions. Polymers 2022, 14, 369. [Google Scholar] [CrossRef]
- Gavrilieva, A.A.; Startsev, O.V.; Lebedev, M.P.; Krotov, A.S.; Kychkin, A.K.; Lukachevskaya, I.G. Size effects in climatic aging of epoxy basalt fiber reinforcement bar. Polymers 2024, 16, 2550. [Google Scholar] [CrossRef] [PubMed]
- Gagani, A.; Krauklis, A.; Echtermeyer, A.T. Anisotropic fluid diffusion in carbon fiber reinforced composite rods: Experimental, analytical and numerical study. Mar. Struct. 2018, 59, 47–59. [Google Scholar] [CrossRef]
- Xiao, G.Z.; Shanahan, M.E.R. Water absorption and desorption in an epoxy resin with degradation. J. Polym. Sci. B Polym. Phys. 1997, 35, 2659–2670. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975; Volume 414. [Google Scholar]
- Carter, H.G.; Kibler, K.G. Langmuir-type model for anomalous moisture diffusion in composite resins. J. Compos. Mater. 1978, 12, 118–131. [Google Scholar] [CrossRef]
Exposure Duration, Months | Material Condition | σf, MPa ** |
---|---|---|
0 | Initial state | 1041 ± 9.4/100 |
24 | Untreated | 983 ± 8.8/94 |
24 | Biologically contaminated | 882 ± 7.9/85 |
24 * | Biologically contaminated | 877 ± 7.9/84 |
Exposure Duration, Months | Material Condition | Eb, GPa ** | σb, MPa ** | ||
---|---|---|---|---|---|
6 mm | 8 mm | 6 mm | 8 mm | ||
0 | Initial state | 53.2 ± 0.5/100 | 50.8 ± 0.5/100 | 1120 ± 11.2/100 | 1000 ± 10/100 |
12 | Untreated | 52.7 ± 5.3/99 | 51.2 ± /101 | 1210 ± 12.1/108 | 1020 ± /102 |
12 | Biologically contaminated | 49.7 ± 4.9/93 | 44.7 ± /88 | 910 ± 9.1/82 | 792 ± 7.9/79 |
24 | Untreated | 52.7 ± 5.3/99 | 51.2 ± 5.2/101 | 1200 ± 11.8/107 | 1080 ± 10.8/108 |
24 | Biologically contaminated | 48.8 ± 5.1/92 | 45.1 ± 4.4/89 | 920 ± 9.2/82 | 931 ± 9.3/93 |
54 | Untreated | 53.5 ± 5.3/101 | 52.1 ± 5.2/103 | 1280 ± 12.8/114 | 1080 ± 10.8/108 |
54 | Biologically contaminated | 53.0 ± 5.3/100 | 46.7 ± 4.5/92 | 990 ± 9.9/88 | 870 ± 8.7/87 |
54 * | Biologically contaminated | 47.2 ± 4.8/89 | 50.0 ± 4.9/98 | 942 ± 9.4/84 | 853 ± 8.5/85 |
Test Location | t, Months | Bar Condition | w0, % | Dz mm2/Day | DR mm2/Day | B | G | Bc, % | Kc, 1/Day | tc, Day |
---|---|---|---|---|---|---|---|---|---|---|
Initial | 0 | Untreated | 0.22 | 1.1 | 0.014 | 0.079 | 0.32 | 0.19 | 0.16 | 36 |
Tiksi | 24 | Untreated | 0.16 | 1.4 | 0.023 | 0.12 | 0.26 | 0.10 | 0.10 | 46 |
Tiksi | 54 | Untreated | 0.16 | 1.8 | 0.032 | 0.099 | 0.24 | 0.10 | 0.14 | 43 |
Tiksi | 24 | Bio * | 0.15 | 1.2 | 0.041 | 0.079 | 0.20 | 0.07 | 0.10 | 43 |
Yakutsk | 24 | Bio * | 0.15 | 1.2 | 0.047 | 0.10 | 0.18 | 0.06 | 0.18 | 43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kychkin, A.K.; Startsev, O.V.; Lebedev, M.P.; Kychkin, A.A.; Lukachevskaia, I.G. The Effect of Biocontamination on Mechanical Strength and Moisture Transfer Performance of Epoxy Basalt Fiber Reinforcement Bar Exposed to Arctic Conditions. Polymers 2025, 17, 460. https://doi.org/10.3390/polym17040460
Kychkin AK, Startsev OV, Lebedev MP, Kychkin AA, Lukachevskaia IG. The Effect of Biocontamination on Mechanical Strength and Moisture Transfer Performance of Epoxy Basalt Fiber Reinforcement Bar Exposed to Arctic Conditions. Polymers. 2025; 17(4):460. https://doi.org/10.3390/polym17040460
Chicago/Turabian StyleKychkin, Anatoly K., Oleg V. Startsev, Mikhail P. Lebedev, Aisen A. Kychkin, and Irina G. Lukachevskaia. 2025. "The Effect of Biocontamination on Mechanical Strength and Moisture Transfer Performance of Epoxy Basalt Fiber Reinforcement Bar Exposed to Arctic Conditions" Polymers 17, no. 4: 460. https://doi.org/10.3390/polym17040460
APA StyleKychkin, A. K., Startsev, O. V., Lebedev, M. P., Kychkin, A. A., & Lukachevskaia, I. G. (2025). The Effect of Biocontamination on Mechanical Strength and Moisture Transfer Performance of Epoxy Basalt Fiber Reinforcement Bar Exposed to Arctic Conditions. Polymers, 17(4), 460. https://doi.org/10.3390/polym17040460