Prediction Model for Flake Line Defects in Metallic Injection Molding: Considering Skin-Core Velocity and Alignment
<p>Shear phenomenon between surface and core flow due to changes in flow velocity during the charging process: (<b>a</b>) initial filling flow velocity, (<b>b</b>) late filling flow velocity, (<b>c</b>) initial filling flake orientation, (<b>d</b>) late filling flake orientation.</p> "> Figure 2
<p>The definition of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mstyle mathvariant="bold" mathsize="normal"> <mi>v</mi> </mstyle> <mi>i</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mi>θ</mi> </semantics></math> due to the change in velocity between the surface and core flow. (<b>a</b>) Flow front (thickness and direction), and (<b>b</b>) the definition of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mstyle mathvariant="bold" mathsize="normal"> <mi>v</mi> </mstyle> <mi>i</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mi>θ</mi> </semantics></math> for the product surface.</p> "> Figure 3
<p>Flake orientation alignment degree-dependent color differences and <span class="html-italic">M.I.</span> (Misalignment Index) values.</p> "> Figure 4
<p>The color difference mechanism is based on the difference in the angle between the flake and the surface. (<b>a</b>) <math display="inline"><semantics> <msup> <mi>θ</mi> <mo>′</mo> </msup> </semantics></math>: the angle between the normal vector of the flake and the normal vector of the surface; (<b>b</b>) <math display="inline"><semantics> <mrow> <msup> <mi>θ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msup> <mi>θ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <msup> <mi>θ</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>90</mn> </mrow> </semantics></math>; and (<b>e</b>) flake line defect.</p> "> Figure 5
<p>Specimen geometry.</p> "> Figure 6
<p>Actual exterior defects. (<b>a</b>) The flake line of the specimen, (<b>b</b>) the results of the microscopic observation of the No. 1 flake line.</p> "> Figure 7
<p>Result of the distribution of the defect condition function <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi>v</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 8
<p>The result of the distribution of the defect condition function <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi>θ</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 9
<p>The final appearance defect prediction result of the defect evaluation function <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>f</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mo>_</mo> <mi>v</mi> <mi>e</mi> <mi>l</mi> <mi>o</mi> <mi>c</mi> <mi>i</mi> <mi>t</mi> <mi>y</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>The result of the distribution of the defect condition function <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>M</mi> <mo>.</mo> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 11
<p>The result of the distribution of the defect condition function <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>a</mi> <mi>n</mi> <mi>g</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 12
<p>The final appearance defect prediction results of the defect evaluation function <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>f</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mo>_</mo> <mi>a</mi> <mi>l</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mi>m</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Numerical Method
2.1. Velocity Model
2.2. Alignment Model
3. Experiment
4. Results and Discussion
4.1. Flake Line of Specimen
4.2. Velocity Model Result
4.3. Alignment Model Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Maile, F.J.; Pfaff, G.; Reynders, P. Effect pigments—Past, present and future. Prog. Org. Coat. 2005, 54, 150–163. [Google Scholar] [CrossRef]
- Rawson, K.W.; Allan, P.S.; Bevis, M.J. Controlled orientation of reflective pigment and optical property characterization of injection-molded polypropylene. Polym. Eng. Sci. 1999, 39, 177–189. [Google Scholar] [CrossRef]
- Sasayama, T.; Okamoto, H.; Kawada, J.; Sato, N.; Ishibashi, T. Orientation of flake pigments in injection-molded polymer: Numerical simulation and its application to appearance prediction. Powder Technol. 2023, 428, 118848. [Google Scholar] [CrossRef]
- Kim, D.; Ryu, Y.; Lee, J.-H.; Cha, S.W. Effect of Aluminum Flakes on Mechanical and Optical Properties of Foam Injection Molded Parts. Polymers 2021, 13, 2930. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Kim, N. Effect of Process Parameters on the Appearance of Defects of Flake-Pigmented Metallic Polymer. Polymers 2024, 16, 2193. [Google Scholar] [CrossRef]
- Li, X.; Zuo, Z.; Mi, H.; Chen, Y.; Wang, J.; Gu, L.; Dong, B.; Liu, C.; Shen, C. Effect of supercritical nitrogen content on the weld lines and mechanical properties of microcellular injection molded double gate PP/Al parts. J. Appl. Polym. Sci. 2024, 141, e55006. [Google Scholar] [CrossRef]
- Sasayama, T.; Okamoto, H.; Sato, N.; Kawada, J. Numerical simulation of plate-like particle orientation in injection molding. Powder Technol. 2022, 404, 117481. [Google Scholar] [CrossRef]
- Kim, S.L.; Choi, T.G.; Cho, H.S.; Lyu, M.-Y.; Lim, J.; Lee, S. Orientation of two dimensional fillers and surface appearance in an injection molded article. Polym. Korea 2016, 40, 871–879. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Teramoto, G.; Kanai, T. The unique flow of polypropylene at the weld line behind an obstacle in injection molding. Polym. Eng. Sci. 2011, 51, 526–531. [Google Scholar] [CrossRef]
- Nikawa, M.; Shirota, T.; Yamagata, H. Influence of resin flow state on aluminum flake orientation in a metallic-like resin product manufactured through injection molding. Int. J. Autom. Technol. 2016, 10, 94–100. [Google Scholar] [CrossRef]
- LeFave, J.T. Method of protecting surfaces with aluminum flaked composition. U.S. Patent No. 6,872,767, 29 March 2005. [Google Scholar]
- Liu, Q.; Liu, Y.; Jiang, C.; Zheng, S. Modeling and simulation of weld line location and properties during injection molding based on viscoelastic constitutive equation. Rheol. Acta 2020, 59, 109–121. [Google Scholar] [CrossRef]
- Choi, M.J.; Cho, J.M.; Choi, Y.H.; Choi, M.H.; Lee, C.S.; Sung, H.K.; Lee, K.S.; Park, K.H.; Hwang, S.J. Development of Paint-free Metallic Plastic Material for Automotive Parts. Korean Chem. Eng. Res. 2022, 60, 295–299. [Google Scholar]
- Lim, J.S.; Ban, S.H.; Kim, D.S.; Kwon, K.Y.; Lee, S.H.; Lim, J.K.; Cho, S.H. Development of a noble aluminum-pigmented metallic polymer: Recommendations for visible flow and weld line mitigation. J. Appl. Polym. Sci. 2020, 137, 49084. [Google Scholar] [CrossRef]
- Yang, X.; Su, J.; Li, H. Processing Qualities and Applications of Injection Molded Spray free Plastic Parts. China Plast. 2020, 34, 118. [Google Scholar]
- Hong, X.; Xiao, X.; Zhang, Z.; Yang, J.; Zhang, J. Influence of surface topography, crystallinity, and thermal conductivity on reflectance and color of metallic-effect high-density polyethylene parts filled with aluminum pigments. Polym. Eng. Sci. 2018, 58, 642–651. [Google Scholar] [CrossRef]
- Sung, L.; Nadal, M.E.; McKnight, M.E.; Marx, E.; Dutruc, R.; Laurenti, B.; America, E. Effect of aluminum flake orientation on coating appearance. In Proceedings of the 79th Annual Meeting Technical Program of the FSCT, Washington, DC, USA, 9–13 January 2001. [Google Scholar]
- Park, S.H.; Lyu, M.-Y. Observation of two-dimensional shaped aluminum flake orientation during injection molding and its orientation mechanism. Macromol. Res. 2019, 27, 481–489. [Google Scholar] [CrossRef]
- Park, J.M.; Jeong, S.J.; Park, S.J. Numerical prediction of flake orientation and surface color in injection molding of flake-pigmented thermoplastics. Polym. Compos. 2011, 32, 1297–1303. [Google Scholar] [CrossRef]
- Saito, T.; Satoh, I.; Uesugi, K.; Handa, K. A Study of Weld Line Formation around an Obstructive Pin in Injection Molded Products Flow Visualization and Temperature Measurement during the Filling Process. Seikei-Kakou 2000, 12, 325–331. [Google Scholar] [CrossRef]
- Dong, Z.; Walter, B.; Marschner, S.; Greenberg, D.P. Predicting appearance from measured microgeometry of metal surfaces. ACM Trans. Graph. 2015, 35, 1–13. [Google Scholar] [CrossRef]
- Kirchner, E.; Houweling, J. Measuring flake orientation for metallic coatings. Prog. Org. Coat. 2009, 64, 287–293. [Google Scholar] [CrossRef]
- Demski, N.M.; Lasson, B.; Reinert, K.E.; Kamm, P.H.; Neu, T.R.; García-Moreno, F.; Jagodzinski, M.; Rolón, D.A.; Malcher, M.; Oberschmidt, D. Manufacturing of tetrahedral metal effect pigment particles and analysis of their orientation in polymer melts. Powder Technol. 2022, 408, 117717. [Google Scholar] [CrossRef]
- Sung, L.-P.; Nadal, M.E.; McKnight, M.E.; Marx, E.; Laurenti, B. Optical reflectance of metallic coatings: Effect of aluminum flake orientation. J. Coat. Technol. 2002, 74, 55–63. [Google Scholar] [CrossRef]
- Kugler, S.K.; Kech, A.; Cruz, C.; Osswald, T. Fiber orientation predictions—A review of existing models. J. Compos. Sci. 2020, 4, 69. [Google Scholar] [CrossRef]
- Folgar, F.; Tucker, C.L. Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Compos. 1984, 3, 98–119. [Google Scholar] [CrossRef]
- Wang, J.; Jin, X. Comparison of recent fiber orientation models in autodesk moldflow insight simulations with measured fiber orientation data. In Proceedings of the Polymer Processing Society 26th Annual Meeting, Banff, AB, Canada, 4–8 July 2010. [Google Scholar]
- Advani, S.G.; Tucker, C.L. The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 1987, 31, 751–784. [Google Scholar] [CrossRef]
- Song, K.; Xie, M.; Ai, Q.; Yang, L.; Liu, H.; Tan, H. Effects of size, volume fraction, and orientation of metallic flake particles on infrared radiation characteristics of Al/acrylic resin composite coatings. Prog. Org. Coat. 2020, 145, 105680. [Google Scholar] [CrossRef]
- Feng, H.; Xu, H.; Zhang, F.; Wang, Z. Color prediction of metallic coatings from measurements at common geometries in portable multiangle spectrophotometers. J. Coat. Technol. Res. 2018, 15, 957–966. [Google Scholar] [CrossRef]
- Sung, L.-P.; Jasmin, J.; Gu, X.; Nguyen, T.; Martin, J.W. Use of laser scanning confocal microscopy for characterizing changes in film thickness and local surface morphology of UV-exposed polymer coatings. J. Coat. Technol. Res. 2004, 1, 267–276. [Google Scholar] [CrossRef]
- Kirchner, E. Film shrinkage and flake orientation. Prog. Org. Coat. 2009, 65, 333–336. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Park, D.; Lee, S.; Song, M.; Kim, N. Prediction Model for Flake Line Defects in Metallic Injection Molding: Considering Skin-Core Velocity and Alignment. Polymers 2025, 17, 245. https://doi.org/10.3390/polym17020245
Choi S, Park D, Lee S, Song M, Kim N. Prediction Model for Flake Line Defects in Metallic Injection Molding: Considering Skin-Core Velocity and Alignment. Polymers. 2025; 17(2):245. https://doi.org/10.3390/polym17020245
Chicago/Turabian StyleChoi, Seungkwon, Donghwi Park, Seungcheol Lee, Minho Song, and Naksoo Kim. 2025. "Prediction Model for Flake Line Defects in Metallic Injection Molding: Considering Skin-Core Velocity and Alignment" Polymers 17, no. 2: 245. https://doi.org/10.3390/polym17020245
APA StyleChoi, S., Park, D., Lee, S., Song, M., & Kim, N. (2025). Prediction Model for Flake Line Defects in Metallic Injection Molding: Considering Skin-Core Velocity and Alignment. Polymers, 17(2), 245. https://doi.org/10.3390/polym17020245