Pequi Pulp (Caryocar brasiliense) Oil-Loaded Emulsions as Cosmetic Products for Topical Use
"> Figure 1
<p>FTIR spectrum of pequi pulp oil (PPO).</p> "> Figure 2
<p>Macroscopic aspect of emulsions containing 1, 3, and 5% pequi pulp oil (PPOE).</p> "> Figure 3
<p>Macroscopic aspect of PPOE + CMC emulsions containing 1, 3, and 5% pequi pulp oil (PPOE) and pure 1% CMC solution.</p> "> Figure 4
<p>Micrographs of the (<b>A</b>,<b>A’</b>) pequi pulp oil (PPO), (<b>B</b>,<b>B’</b>) Tween 80<sup>®</sup> surfactant, and (<b>C</b>,<b>C’</b>) CMC.</p> "> Figure 5
<p>Micrographs of the PPOE + CMC emulsions containing (<b>A</b>,<b>A’</b>) 1, (<b>B</b>,<b>B’</b>) 3, and (<b>C</b>,<b>C’</b>) 5% pequi pulp oil.</p> "> Figure 6
<p>Optical microscopy image and visual appearance of the CMC solution.</p> "> Figure 7
<p>Flow curves as a function of shear rate at 25 °C for CMC solution and PPOE + CMC emulsions.</p> "> Figure 8
<p>Viscosity curves as a function of shear rate at 25 °C for CMC solution and PPOE + CMC emulsions.</p> "> Figure 9
<p>Photo of the top view of the PPOE1 emulsion, demonstrating the visible light translucency of the system.</p> "> Figure 10
<p>Micrographs of (<b>A</b>,<b>A’</b>) pure CMC and PPOE + CMC emulsions containing (<b>B</b>,<b>B’</b>) 1, (<b>C</b>,<b>C’</b>) 3, and (<b>D</b>,<b>D’</b>) 5% pequi pulp oil.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sodium Carboxymethyl Cellulose (CMC) Solution
2.2.2. Pequi Pulp Oil-Based Emulsions
2.2.3. Pequi Pulp Oil-Based Emulsions Containing Sodium Carboxymethyl Cellulose
2.2.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.2.5. Gas Chromatography Coupled to Mass Spectrometry (GC-MS)
2.2.6. Macroscopic Evaluation
2.2.7. pH Measurements
2.2.8. Optical Microscopy (OM)
2.2.9. Rheological Test
2.2.10. Hydrodynamic Diameter, Polydispersity Index (PDI), and Zeta Potential (ζ)
2.2.11. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.2. Gas Chromatography Coupled to a Mass Spectrometry (GC-MS)
3.3. Macroscopic Evaluation
3.4. pH Measurements
3.5. Optical Microscopy (OM)
3.6. Rheological Test
3.7. Zeta Potential (ζ), Polydispersity Index (PDI), and Droplet Hydrodynamic Diameters
3.8. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, B.R.; Paiva, R.; Dombroski, J.L.D.; Martinotto, C.; Nogueira, R.C.; Silva, A.A.N. Pequizeiro (Caryocar brasiliense Camb.): Uma espécie promissora do cerrado brasileiro. Bol. Agropecu. Univ. Fed. Lavras 2004, 64, 5–33. [Google Scholar]
- Cordeiro, M.W.S.; Cavallieri, Â.L.F.; Ferri, P.H.; Naves, M.M.V. Características físicas, composição químico-nutricional e dos óleos essenciais da polpa de Caryocar brasiliense nativo do estado de Mato Grosso. Rev. Bras. Frutic. 2013, 35, 1127–1139. [Google Scholar] [CrossRef]
- Bertolino, J.F.; Ferreira, K.; Mascarenhas, L.J.; Oliveira, L.P.; Vulcani, V. Aplicabilidade do óleo de pequi na cicatrização. Enciclopédia Biosf. 2019, 16, 1–15. [Google Scholar] [CrossRef]
- Facioli, N.L.; Gonçalves, L.A.G. Modificação por via enzimática da composição triglicerídica do óleo de piqui (Caryocar brasiliense Camb). Quim. Nova 1998, 21, 16–19. [Google Scholar] [CrossRef]
- Shanley, P.; Medina, G.; Cordeiro, S.; Imbiriba, M. Frutíferas e Plantas Úteis na Vida Amazônica, 2nd ed.; Cifor/Embrapa: Belém, Brazil, 2010; p. 320. [Google Scholar]
- DebMandal, M.; Mandal, S. Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease prevention. Asian Pac. J. Trop. Med. 2011, 4, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.G.; Oliveira, L.G.; Melo, D.S.; Pereira, L.V.C.; Costa, K.B.; Miranda, J.L.; Magalhes, F.C.; Dias-Peixoto, M.F.; Esteves, E.A. Caryocar brasiliense fruit intake ameliorates hepatic fat deposition and improves intestinal structure of rats. J. Med. Plants Res. 2016, 10, 640–648. [Google Scholar] [CrossRef]
- Johner, J.C.F.; Hatami, T.; Meireles, M.A.A. Developing a supercritical fluid extraction method assisted by cold pressing for extraction of pequi (Caryocar brasiliense). J. Supercrit. Fluids 2018, 137, 34–39. [Google Scholar] [CrossRef]
- Nascimento-Silva, N.R.R.D.; Naves, M.M.V. Potential of whole Pequi (Caryocar spp.) fruit—Pulp, almond, oil, and shell—As a medicinal food. J. Med. Food 2019, 22, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.B.R.; Rangel, M.P.; Martins, V.; Hage, M.; Gelain, D.P.; Barbeiro, D.F.; Grisolia, C.K.; Parra, E.R.; Capelozzi, V.L. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis. Braz. J. Med. Biol. Res. 2015, 48, 852–862. [Google Scholar] [CrossRef]
- Duarte, A.C.; Durmic, Z.; Vercoe, P.E.; Chaves, A.V. Dose-response effects of dietary pequi oil on fermentation characteristics and microbial population using a rumen simulation technique (Rusitec). Anaerobe 2017, 48, 59–65. [Google Scholar] [CrossRef]
- Batista, J.S.; Silva, A.E.; Rodrigues, C.M.F.; Costa, K.; Oliveira, A.F.; Paiva, E.S.; Nunes, F.V.A.; Olinda, R.G. Avaliação da atividade cicatrizante do óleo de pequi (Caryocar coriaceum wittm) em feridas cutâneas produzidas experimentalmente em ratos. Arq. Inst. Biol. 2020, 77, 441–447. [Google Scholar] [CrossRef]
- Bezerra, N.; Barros, T.L.; Coelho, N. A ação do óleo de pequi (Caryocar brasiliense) no processo cicatricial de lesões cutâneas em ratos. Rev. Bras. Plantas Med. 2015, 17, 875–880. [Google Scholar] [CrossRef]
- Firmino, F.; Carneiro, S. Úlceras por pressão, feridas neoplásicas e micose fungoide: Reflexões da prática assistencial no Rio de Janeiro. Rev. Prát. Hosp. 2007, 2, 79–84. [Google Scholar]
- Abraham, A.; Mohapatra, L.N.; Kandhari, K.C.; Pandhi, R.K.; Bhutani, L.K. The effects of some hair oils and unsaturated fatty acids on experimentally induced dermatophytosis. Dermatology 1975, 151, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Rieger, M.M. Skin lipids and their importance to cosmetic science. Cosmet. Toilet. 1987, 102, 45–49. [Google Scholar]
- Čižinauskas, V.; Elie, N.; Brunelle, A.; Briedis, V. Fatty acids penetration into human skin ex vivo: A TOF-SIMS analysis approach. Biointerphases 2017, 12, 011003. [Google Scholar] [CrossRef]
- Medeiros-de-Moraes, I.M.; Gonçalves-de-Albuquerque, C.F.; Kurz, A.R.M.; Oliveira, F.M.d.J.; Abreu, V.H.P.d.; Torres, R.C.; Carvalho, V.F.; Estato, V.; Bozza, P.T.; Sperandio, M. Omega-9 oleic acid, the main compound of olive oil, mitigates inflammation during experimental sepsis. Oxid. Med. Cell. Longev. 2018, 2018, 6053492. [Google Scholar] [CrossRef]
- Miklavčič, M.B.; Taous, F.; Valenčič, V.; Elghali, T.; Podgornik, M.; Strojnik, L.; Ogrinc, N. Fatty acid composition of cosmetic argan oil: Provenience and authenticity criteria. Molecules 2020, 25, 4080. [Google Scholar] [CrossRef]
- Azevedo-Meleiro, C.H.; Rodriguez-Amaya, D.B. Confirmation of the identity of the carotenoids of tropical fruits by HPLC-DAD and HPLC-MS. J. Food Compost. Anal. 2004, 17, 385–396. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Effects of processing and storage on food carotenoids. Sight Life Newsl. 2002, 3, 25–35. [Google Scholar]
- Chen, J.; Li, F.; Li, Z.; McClements, D.J.; Xiao, H. Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability. Food Hydrocoll. 2017, 69, 49–55. [Google Scholar] [CrossRef]
- Kong, L.; Bhosale, R.; Ziegler, G.R. Encapsulation and stabilization of β-carotene by amylose inclusion complexes. Food Res. Int. 2018, 105, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, R.; McClements, D.J. Encapsulation of β-carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocoll. 2016, 61, 1–10. [Google Scholar] [CrossRef]
- Nezamdoost-Sani, N.; Amiri, S.; Khaneghah, A.M. The application of the coacervation technique for microencapsulation bioactive ingredients: A critical review. J. Agric. Food Res. 2024, 18, 101431. [Google Scholar] [CrossRef]
- Coronel-Aguilera, C.P.; San Martín-González, M.F. Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT-Food Sci. Technol. 2015, 62, 187–193. [Google Scholar] [CrossRef]
- Pinto, M.R.M.R.; de Almeida Paula, D.; Alves, A.I.; Rodrigues, M.Z.; Vieira, É.N.R.; Fontes, E.A.F.; Ramos, A.M. Encapsulation of carotenoid extracts from pequi (Caryocar brasiliense Camb) by emulsification (O/W) and foam-mat drying. Powder Technol. 2018, 339, 939–946. [Google Scholar] [CrossRef]
- Comunian, T.A.; Favaro-Trindade, C.S. Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocoll. 2016, 61, 442–457. [Google Scholar] [CrossRef]
- Soukoulis, C.; Tsevdou, M.; Andre, C.M.; Cambier, S.; Yonekura, L.; Taoukis, P.S.; Hoffmann, L. Modulation of chemical stability and in vitro bioaccessibility of beta-carotene loaded in kappa-carrageenan oil-in-gel emulsions. Food Chem. 2017, 220, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Comunian, T.A.; Favaro, L.F.; Thomazini, M.; Pallone, E.M.J.A.; do Amaral Sobral, P.J.; de Castro, I.A.; Favaro-Trindade, C.S. Echium oil with oxidative stability increased by emulsion preparation in the presence of the phenolic compound sinapic acid followed by dehydration by spray and freeze drying processes. J. Food Sci. Technol. 2019, 56, 1155–1164. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, W.-C.; Wu, Y.; Qi, X.; Mao, X. Conformational changes of proteins and oil molecules in fish oil/water interfaces of fish oil-in-water emulsions stabilized by bovine serum albumin. Food Chem. 2019, 274, 402–406. [Google Scholar] [CrossRef]
- Justi, P.N.; Sanjinez-Argandoña, E.J.; Macedo, M.L.R. Microencapsulation of Pequi pulp oil by complex coacervation. Rev. Bras. Frutic. 2018, 40, e-874. [Google Scholar] [CrossRef]
- Alexandre, J.d.B.; Barroso, T.L.C.T.; Oliveira, M.d.A.; Mendes, F.R.d.S.; Costa, J.M.C.d.; Moreira, R.d.A.; Furtado, R.F. Cross-linked coacervates of cashew gum and gelatin in the encapsulation of pequi oil. Cienc. Rural 2019, 49, e20190079. [Google Scholar] [CrossRef]
- Silva, L.C.d.; Castelo, R.M.; Magalhães, H.C.R.; Furtado, R.F.; Cheng, H.N.; Biswas, A.; Alves, C.R. Characterization and controlled release of pequi oil microcapsules for yogurt application. LWT Food Sci. Technol. 2022, 157, 113105. [Google Scholar] [CrossRef]
- Castelo, R.M.; da Silva, L.C.; Sousa, J.R.; Magalhães, H.C.R.; Furtado, R.F. Development and Characterization of Pequi Oil (Caryocar coriaceum Wittm.) microparticles by vibration nozzle encapsulation. In Proceedings of the Macromolecular Symposia, Bento Gonçalves, Rio Grande do Sul, Brazil, 27–31 October 2019. [Google Scholar]
- Ombredane, A.S.; Araujo, V.H.S.; Borges, C.O.; Costa, P.L.; Landim, M.G.; Pinheiro, A.C.; Szlachetka, Í.O.; Benedito, L.E.C.; Espindola, L.S.; Dias, D.J.S.; et al. Nanoemulsion-based systems as a promising approach for enhancing the antitumoral activity of pequi oil (Caryocar brasilense Cambess.) in breast cancer cells. J. Drug Deliv. Sci. Technol. 2020, 58, 101819. [Google Scholar] [CrossRef]
- Marangon, C.A.; Bertolo, M.R.V.; da C Amaro Martins, V.; Nitschke, M.; Maria de Guzzi Plepis, A. Formulation of Chitosan/Gelatin/Pequi Oil Emulsions: Rheological, Thermal, and Antimicrobial Properties. ACS Appl. Polym. Mater. 2021, 3, 5826–5835. [Google Scholar] [CrossRef]
- Comunian, T.A.; Silva, M.P.; Moraes, I.C.F.; Favaro-Trindade, C.S. Reducing carotenoid loss during storage by co-encapsulation of pequi and buriti oils in oil-in-water emulsions followed by freeze-drying: Use of heated and unheated whey protein isolates as emulsifiers. Food Res. Int. 2020, 130, 108901. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2000, 45, 89–121. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J.; Sankalia, M.G.; Loughlin, R.G.; Donnelly, R.F.; Jenkins, M.G.; McArron, P.A. Physical characterisation and component release of poly(vinyl alcohol)–tetrahydroxyborate hydrogels and their applicability as potential topical drug delivery systems. Int. J. Pharm. 2012, 423, 326–334. [Google Scholar] [CrossRef]
- Trinca, R.B.; Westin, C.B.; da Silva, J.A.F.; Moraes, Â.M. Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur. Polym. J. 2017, 88, 161–170. [Google Scholar] [CrossRef]
- Heidrick, G.W.; Pippitt, C.H., Jr.; Morgan, M.A.; Thurnau, G.R. Efficacy of intraperitoneal sodium carboxymethylcellulose in preventing postoperative adhesion formation. J. Reprod. Med. 1994, 39, 575–578. [Google Scholar] [PubMed]
- Lakshmi, D.S.; Trivedi, N.; Reddy, C.R.K. Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydr. Polym. 2017, 157, 1604–1610. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, K.R.S.; Luz, R.C.d.S.; Fagundes, F.P.; Balaban, R.d.C. Effect of carboxymethylcellulose on colloidal properties of calcite suspensions in drilling fluids. Polímeros 2018, 28, 373–379. [Google Scholar] [CrossRef]
- Pagano, C.; Calarco, P.; Di Michele, A.; Ceccarini, M.R.; Beccari, T.; Primavilla, S.; Scuota, S.; Marmottini, F.; Ramella, D.; Ricci, M.; et al. Development of sodium carboxymethyl cellulose based polymeric microparticles for in situ hydrogel wound dressing formation. Int. J. Pharm. 2021, 602, 120606. [Google Scholar] [CrossRef] [PubMed]
- Cancela, M.A.; Álvarez, E.; Maceiras, R. Effects of temperature and concentration on carboxymethylcellulose with sucrose rheology. J. Food Eng. 2005, 71, 419–424. [Google Scholar] [CrossRef]
- Wang, J.; Somasundaran, P. Adsorption and conformation of carboxymethyl cellulose at solid–liquid interfaces using spectroscopic, AFM and allied techniques. J. Colloid Interface Sci. 2005, 291, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Simonsen, J. Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J. Nanosci. Nanotechnol. 2006, 6, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, A.; Fattahi, R. Biodegradable carboxymethyl cellulose–polyvinyl alcohol composite incorporated with Glycyrrhiza glabra L. essential oil: Physicochemical and antibacterial features. Food Sci. Nutr. 2021, 9, 4974–4985. [Google Scholar] [CrossRef]
- Agis, H.; Beirer, B.; Watzek, G.; Gruber, R. Effects of carboxymethylcellulose and hydroxypropylmethylcellulose on the differentiation and activity of osteoclasts and osteoblasts. J. Biomed. Mater. Res. Part A 2010, 95, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Tso, C.-p.; Shih, Y.-h. The influence of carboxymethylcellulose (CMC) on the reactivity of Fe NPs toward decabrominated diphenyl ether: The Ni doping, temperature, pH, and anion effects. J. Hazard. Mater. 2017, 322, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Almasian, A.; Najafi, F.; Eftekhari, M.; Ardekani, M.R.S.; Sharifzadeh, M.; Khanavi, M. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies. Mater. Sci. Eng. C 2020, 114, 111039. [Google Scholar] [CrossRef]
- Basu, P.; Narendrakumar, U.; Arunachalam, R.; Devi, S.; Manjubala, I. Characterization and evaluation of carboxymethyl cellulose-based films for healing of full-thickness wounds in normal and diabetic rats. ACS Omega 2018, 3, 12622–12632. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.M.; Pereira, C.F.; Ribeiro, A.A.; Casanova, F.; Freixo, R.; Pintado, M.; Ramos, O.L. Characterization and evaluation of commercial carboxymethyl cellulose potential as an active ingredient for cosmetics. Appl. Sci. 2022, 12, 6560. [Google Scholar] [CrossRef]
- Koneru, A.; Dharmalingam, K.; Anandalakshmi, R. Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose–grapefruit seed extract nanoparticles for potential wound healing applications. Int. J. Biol. Macromol. 2020, 148, 833–842. [Google Scholar] [CrossRef]
- Li, H.; Shi, H.; He, Y.; Fei, X.; Peng, L. Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. Int. J. Biol. Macromol. 2020, 164, 4104–4112. [Google Scholar] [CrossRef]
- Manninen, H.; Sandell, M.; Mattila, S.; Hopia, A.; Laaksonen, T. Comparing the taste-modifying properties of nanocellulose and carboxymethyl cellulose. J. Food Sci. 2021, 86, 1928–1935. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.; Govintharaju, P. Development and characterisation (drug loading, drug release and expansion study) of carboxymethylcellulose–sodium alginate based hydrogel as wound dressing application. Nat. Volatiles Essent. Oils 2021, 8, 3990–4005. [Google Scholar]
- Tanaka, K.; Hashimoto, H.; Misawa, T.; Akiba, T. The Prevention of Carboxymethylcellulose on Bowel Adhesions Induced by Talc Peritonitis in Mice. J. Surg. Res. 2019, 234, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Verger, A.; Kichou, H.; Huang, N.; Perse, X.; Ardeza, I.M.; Pradel, C.; Goncalves Martins Da Conceicao, R.; Atanasova, B.; Legrand, F.X.; Despres, A. Effects of Hydrophilic Natural Deep Eutectic Solvents on the Rheological, Textural, and Sensory Properties of Carboxymethylcellulose-Based Cosmetic Hydrogels. ACS Sustain. Chem. Eng. 2024, 12, 7187–7199. [Google Scholar] [CrossRef]
- Nunes, J.C.; Melo, P.T.S.; Aouada, F.A.; Moura, M.R.d. Influence of lemon nanoemulsion in films gelatin-based. Quim. Nova 2018, 41, 1006–1010. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2017; p. 804. [Google Scholar]
- McClements, D.J. Emulsion design to improve the delivery of functional lipophilic components. Annu. Rev. Food Sci. Technol. 2010, 1, 241–269. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, F.; Zendehboudi, S. A comprehensive review on emulsions and emulsion stability in chemical and energy industries. Can. J. Chem. Eng. 2019, 97, 281–309. [Google Scholar] [CrossRef]
- Ferrari, M. Desenvolvimento e Avaliação da Eficácia Fotoprotetora de Emulsões Múltiplas Contendo Metoxicinamato de Etilexila e Óleo de Andiroba (Carapa guyanensis). Ph.D. Thesis, Universidade de São Paulo, Ribeirão Preto, Brazil, 2002. [Google Scholar]
- Pianovski, A.R.; Vilela, A.F.G.; Silva, A.A.S.d.; Lima, C.G.; Silva, K.K.d.; Carvalho, V.F.M.; Musis, C.R.D.; Machado, S.R.P.; Ferrari, M. Uso do óleo de pequi (Caryocar brasiliense) em emulsões cosméticas: Desenvolvimento e avaliação da estabilidade física. Rev. Bras. Ciênc. Farm. 2008, 44, 249–259. [Google Scholar] [CrossRef]
- Ferreira, E.N.; Arruda, T.B.M.G.; Rodrigues, F.E.A.; Arruda, D.T.D.; da Silva Júnior, J.H.; Porto, D.L.; Ricardo, N.M.P.S. Investigation of the thermal degradation of the biolubricant through TG-FTIR and characterization of the biodiesel—Pequi (Caryocar brasiliensis) as energetic raw material. Fuel 2019, 245, 398–405. [Google Scholar] [CrossRef]
- Sena, D.M.; Rodrigues, F.F.G.; Freire, P.T.C.; De Lima, S.G.; Coutinho, H.D.M.; Carvajal, J.C.L.; da Costa, J.G.M. Physicochemical and spectroscopical investigation of Pequi (Caryocar coriaceum Wittm.) pulp oil. Grasas Aceites 2010, 61, 191–196. [Google Scholar] [CrossRef]
- Gunstone, F.D. Movements towards tailor-made fats. Prog. Lipid Res. 1998, 37, 277–305. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, M.S.F.; Fechine, F.V.; Macedo, R.N.d.; Monteiro, D.L.S.; Oliveira, C.C.; Brito, G.A.d.C.; Moraes, M.E.A.d.; Moraes, M.O.d. Effect of a combination of medium chain triglycerides, linoleic acid, soy lecithin and vitamins A and E on wound healing in rats. Acta Cir. Bras. 2008, 23, 262–269. [Google Scholar] [CrossRef]
- Simões, C.M.O. Farmacognosia: Da Planta ao Medicamento, 1st ed.; UFRGS: Florianópolis, Brazil, 2001; p. 1104.
- Angelis, R.C.d. Novos conceitos em nutrição: Reflexões a respeito do elo dieta e saúde. Arq. Gastroenterol. 2001, 38, 269–271. [Google Scholar] [CrossRef]
- Whelan, J.; Fritsche, K. Linoleic Acid. Adv. Nutr. 2013, 4, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Whigham, L.D.; Cook, M.E.; Atkinson, R.L. Conjugated linoleic acid: Implications for human health. Pharmacol. Res. 2000, 42, 503–510. [Google Scholar] [CrossRef]
- Alves, A.M.; Fernandes, D.C.; Borges, J.F.; Sousa, A.G.d.O.; Naves, M.M.V. Oilseeds native to the Cerrado have fatty acid profile beneficial for cardiovascular health. Rev. Nutr. 2016, 29, 859–866. [Google Scholar] [CrossRef]
- Cândido, T.L.N.; Silva, M.R. Comparison of the physicochemical profiles of buriti from the Brazilian Cerrado and the Amazon region. Food Sci. Technol. 2017, 37, 78–82. [Google Scholar] [CrossRef]
- Martin, C.A.; Almeida, V.V.d.; Ruiz, M.R.; Visentainer, J.E.L.; Matshushita, M.; Souza, N.E.d.; Visentainer, J.V. Ácidos graxos poliinsaturados ômega-3 e ômega-6: Importância e ocorrência em alimentos. Rev. Nutr. 2006, 19, 761–770. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Lee, J.-H.; Park, J.G.; Lee, J. Inhibition of Candida albicans and Staphylococcus aureus biofilms by centipede oil and linoleic acid. Biofouling 2020, 36, 126–137. [Google Scholar] [CrossRef]
- Declair, V. Tratamento de úlceras crônicas de difícil cicatrizaçäo com ácido linoleico. J. Bras. Med. 2002, 82, 36–41. [Google Scholar]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press: London, UK, 2009; p. 888. [Google Scholar]
- Iranloye, T.A.; Parrott, E.L. Effects of compression force, particle size, and lubricants on dissolution rate. J. Pharm. Sci. 1978, 67, 535–539. [Google Scholar] [CrossRef]
- Holman, R.T. Essential fatty acid deficiency. Prog. Chem. Fats Other Lipids 1971, 9, 275–348. [Google Scholar] [CrossRef]
- Wan, Y.; Lee, J.-M. Toward value-added dicarboxylic acids from biomass derivatives via thermocatalytic conversion. ACS Catal. 2021, 11, 2524–2560. [Google Scholar] [CrossRef]
- Menezes, E.L.A. Inseticidas Botânicos: Seus Princípios Ativos, Modo de Ação e Uso Agrícola, 1st ed.; Embrapa Agrobiologia: Rio de Janeiro, Brazil, 2005; p. 58. [Google Scholar]
- Girão Filho, J.E.; Alcântara Neto, F.; Pádua, L.E.M.; Pessoa, E.F. Repelência e atividade inseticida de pós vegetais sobre Zabrotes subfasciatus Boheman em feijão-fava armazenado. Rev. Bras. Plantas Med. 2014, 16, 499–504. [Google Scholar] [CrossRef]
- Avelino, L.D.; Portela, G.L.F.; Girão Filho, J.E.; de Melo Junior, L.C. Repelência de óleos essenciais e vegetais sobre pulgão-preto Aphis craccivora Koch na cultura do feijão-fava (Phaseolus lunatus L.). Rev. Verde Agroecol. Desenvolv. Sustent. 2019, 14, 21–26. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Appelqvist, L.Å. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef]
- Dziedzic, S.Z.; Robinson, J.L.; Hudson, B.J.F. The fate of propyl gallate and diphosphatidylethanolamine in lard during autoxidation at 120.degree.C. J. Agric. Food. Chem. 1986, 34, 1027–1029. [Google Scholar] [CrossRef]
- Batista, E.d.S.; Costa, A.G.V.; Pinheiro-Sant’ana, H.M. Adição da vitamina E aos alimentos: Implicações para os alimentos e para a saúde humana. Rev. Nutr. 2007, 20, 525–535. [Google Scholar] [CrossRef]
- Hartmann, M.-A. Plant sterols and the membrane environment. Trends Plant Sci. 1998, 3, 170–175. [Google Scholar] [CrossRef]
- Andersson, S.W.; Skinner, J.; Ellegård, L.; Welch, A.A.; Bingham, S.; Mulligan, A.; Andersson, H.; Shaw, K.T. Intake of dietary plant sterols is inversely related to serum cholesterol concentration in men and women in the EPIC Norfolk population: A cross-sectional study. Eur. J. Clin. Nutr. 2004, 58, 1378–1385. [Google Scholar] [CrossRef]
- ÓleodePequi. Available online: https://www.oleodepequi.com.br/artigos-e-reportagens (accessed on 6 November 2024).
- Ribeiro, D.M.; Fernandes, D.C.; Alves, A.M.; Naves, M.M.V. Carotenoids are related to the colour and lipid content of the pequi (Caryocar brasiliense Camb.) pulp from the Brazilian Savanna. Food Sci. Technol. 2014, 34, 507–512. [Google Scholar] [CrossRef]
- de Morais Cardoso, L.; Reis, B.D.L.; Hamacek, F.R.; Sant’ana, H.M.P. Chemical characteristics and bioactive compounds of cooked pequi fruits (Caryocar brasiliense Camb.) from the Brazilian Savannah. Fruits 2013, 68, 3–14. [Google Scholar] [CrossRef]
- García, P.; Brenes, M.; Romero, C.; Garrido, A. Color and texture of acidified ripe olives in pouches. J. Food Sci. 1999, 64, 248–251. [Google Scholar] [CrossRef]
- Nascimento, N.R.R.D.O.; Alves, A.M.; Silva, M.R.; Naves, M.M.V. Antioxidant capacity of pequi (Caryocar brasiliense Camb.) pulp is preserved by freeze-drying and light-resistant packaging. Rev. Bras. Frutic. 2017, 39, e-150. [Google Scholar] [CrossRef]
- Morais, J.M.; Santos, O.D.H.; Nunes, J.R.L.; Zanatta, C.F.; Rocha-Filho, P.A. W/O/W Multiple Emulsions Obtained by One-Step Emulsification Method and Evaluation of the Involved Variables. J. Dispers. Sci. Technol. 2008, 29, 63–69. [Google Scholar] [CrossRef]
- Porto, A.S.; Almeida, I.V.d.; Vicentini, V.E.P. Nanoemulsões formuladas para uso tópico: Estudo de síntese e toxicidade. Rev. Fitos 2020, 14, 513–527. [Google Scholar] [CrossRef]
- Berton-Carabin, C.C.; Ropers, M.H.; Genot, C. Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer. Compr. Rev. Food Sci. Food Saf. 2014, 13, 945–977. [Google Scholar] [CrossRef]
- Lopez, C.G.; Rogers, S.E.; Colby, R.H.; Graham, P.; Cabral, J.T. Structure of sodium carboxymethyl cellulose aqueous solutions: A SANS and rheology study. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, G.R.; Gaspar, L.R.; Campos, P.M.B.G. Estudo da variação do pH da pele humana exposta à formulação cosmética acrescida ou não das vitaminas A, E ou de ceramida, por metodologia não invasiva. An. Bras. Dermatol. 2002, 77, 563–569. [Google Scholar] [CrossRef]
- Menoita, E.; Seara, A.; Santos, V. Plano de Tratamento dirigido aos Sinais Clínicos da Infeção da Ferida. J. Aging Innov. 2014, 3, 62–73. [Google Scholar]
- Svensson, E.; Wahlström, E. Monitoring pH in Wounds: The Possibilities of Textiles in Healthcare; University of Borås: Borås, Sweden, 24 May 2017; p. 95. [Google Scholar]
- Percival, S.L.; Finnegan, S.; Donelli, G.; Vuotto, C.; Rimmer, S.; Lipsky, B.A. Antiseptics for treating infected wounds: Efficacy on biofilms and effect of pH. Crit. Rev. Microbiol. 2016, 42, 293–309. [Google Scholar] [CrossRef]
- Delgado-Charro, M. Sistemas dispersos heterogeneous. In Tecnología Farmacéutica. Aspectos Fundamentales de los Sistemas Farmacéuticos y Operaciones Básicas, 1st ed.; Editorial Sintesis: Madrid, Spain, 1997; Volume 1, pp. 207–316. [Google Scholar]
- Gomes, R.K.; Damazio, M.G. Cosmetologia: Descomplicando os Princípios Ativos, 5th ed.; Livraria Médica Paulista: São Paulo, Brazil, 2013; p. 528. [Google Scholar]
- Periotto, D.K. Cosmetologia Aplicada: Princípios Básico, 1st ed.; 2008. [Google Scholar]
- Rebello, T. Guia de Produtos Cosméticos, 12th ed.; Editora Senac: São Paulo, Brazil, 2019; p. 320. [Google Scholar]
- Shaw, D.J. Introduction to Colloid and Surface Chemistry, 4th ed.; Butterworth-Heinemann: Oxônia, UK, 1992; p. 320. [Google Scholar]
- Tadros, T.F. Emulsion formation, stability, and rheology. In Emulsion Formation and Stability; Tadros, T.F., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2013; pp. 1–75. [Google Scholar]
- Amid, B.T.; Mirhosseini, H. Stabilization of water in oil in water (W/O/W) emulsion using whey protein isolate-conjugated durian seed gum: Enhancement of interfacial activity through conjugation process. Colloids Surf. B 2014, 113, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Benna-Zayani, M.; Kbir-Ariguib, N.; Trabelsi-Ayadi, M.; Grossiord, J.L. Stabilisation of W/O/W double emulsion by polysaccharides as weak gels. Colloids Surf. A 2008, 316, 46–54. [Google Scholar] [CrossRef]
- Bahtz, J.; Gunes, D.Z.; Syrbe, A.; Mosca, N.; Fischer, P.; Windhab, E.J. Quantification of spontaneous W/O emulsification and its impact on the swelling kinetics of multiple W/O/W emulsions. Langmuir 2016, 32, 5787–5795. [Google Scholar] [CrossRef]
- Guglielmi, D.; Neves, W.; Buoso, A. Caracterização da carboximetilcelulose comercial. Ceram. Ind. 2008, 13, 1–8. [Google Scholar]
- Bruxel, F.; Laux, M.; Wild, L.B.; Fraga, M.; Koester, L.S.; Teixeira, H.F. Nanoemulsões como sistemas de liberação parenteral de fármacos. Quim. Nova 2012, 35, 1827–1840. [Google Scholar] [CrossRef]
- Torres, M.d.P.R.; Raiser, A.L.; Marcilio, M.R.; Ribeiro, E.B.; Andrighetti, C.R.; Valladao, D. Development, Stability and Antioxidant Activity of Microemulsion Containing Pequi (Caryocar brasiliense Camb.) Oil. Rev. Virtual Quím. 2018, 10, 346–361. [Google Scholar] [CrossRef]
- Corrêa, N.M.; Camargo Júnior, F.B.; Ignácio, R.F.; Leonardi, G.R. Avaliação do comportamento reológico de diferentes géis hidrofílicos. Rev. Bras. Ciênc. Farm. 2005, 41, 73–78. [Google Scholar] [CrossRef]
- Yaqoob Khan, A.; Talegaonkar, S.; Iqbal, Z.; Jalees Ahmed, F.; Krishan Khar, R. Multiple emulsions: An overview. Curr. Drug Deliv. 2006, 3, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Raiser, A.L.; Ludwig, L.; Marcilio, M.R.; Torres, M.P.R.; Ribeiro, E.B.; Andrighetti, C.R.; Agostini, J.S.; Valladão, D.M.S. Stability and potential antioxidant activity essay of pequi oil (Caryocar brasiliense Camb.) in Cosmetic Emulsions. Lat. Am. J. Pharm. 2018, 37, 144–151. [Google Scholar]
- Tadros, T. Principles of emulsion stabilization with special reference to polymeric surfactants. J. Cosmet. Sci. 2006, 57, 153–169. [Google Scholar]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Yaşar, F.; Toğrul, H.; Arslan, N. Flow properties of cellulose and carboxymethyl cellulose from orange peel. J. Food Eng. 2007, 81, 187–199. [Google Scholar] [CrossRef]
- Zhang, F.; Cai, X.; Ding, L.; Wang, S. Effect of pH, ionic strength, chitosan deacetylation on the stability and rheological properties of O/W emulsions formulated with chitosan/casein complexes. Food Hydrocoll. 2021, 111, 106211. [Google Scholar] [CrossRef]
- Li, X.-M.; Xie, Q.-T.; Zhu, J.; Pan, Y.; Meng, R.; Zhang, B.; Chen, H.-Q.; Jin, Z.-Y. Chitosan hydrochloride/carboxymethyl starch complex nanogels as novel Pickering stabilizers: Physical stability and rheological properties. Food Hydrocoll. 2019, 93, 215–225. [Google Scholar] [CrossRef]
- Gaspar, L.R.; Maia Campos, P.M.B.G. Rheological behavior and the SPF of sunscreens. Int. J. Pharm. 2003, 250, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Lanes, P.K.D.; Ribeiro, E.B.; Chaud, N.G.A.; Pessoa, R.S.; França, E.L.; Honorio-França, A.C. Effects of microemulsion incorporated with Orbignya martiana Rodr on the functional activity of blood phagocytes. Wulfenia J 2016, 1, 214–236. [Google Scholar]
- Pessoa, A.S.; Podestá, R.; Block, J.M.; Franceschi, E.; Dariva, C.; Lanza, M. Extraction of pequi (Caryocar coriaceum) pulp oil using subcritical propane: Determination of process yield and fatty acid profile. J. Supercrit. Fluids 2015, 101, 95–103. [Google Scholar] [CrossRef]
- Ribeiro, E.B.; Lanes, P.K.D.; Chaud, N.G.A.; Pessoa, R.S.; Honorio-Franca, A.C.; França, E.L. Microemulsions with levamisole delivery systems as novel immunomodulating agents with potential for amebiasis therapies. Sci. Adv. Mater. 2015, 7, 15–27. [Google Scholar] [CrossRef]
- Jiao, J.; Burgess, D.J. Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80. AAPS PharmSci 2003, 5, 62–73. [Google Scholar] [CrossRef]
- Prajapati, H.N.; Dalrymple, D.M.; Serajuddin, A.T.M. A comparative evaluation of mono-, di-and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development. Pharm. Res. 2012, 29, 285–305. [Google Scholar] [CrossRef] [PubMed]
- Washington, C. Stability of lipid emulsions for drug delivery. Adv. Drug Deliv. Rev. 1996, 20, 131–145. [Google Scholar] [CrossRef]
- Wiącek, A.; Chibowski, E. Zeta potential, effective diameter and multimodal size distribution in oil/water emulsion. Colloids Surf. A 1999, 159, 253–261. [Google Scholar] [CrossRef]
- Wiącek, A.E.; Chibowski, E. Zeta potential and droplet size of n-tetradecane/ethanol (protein) emulsions. Colloids Surf. B 2002, 25, 55–67. [Google Scholar] [CrossRef]
- Neves, J.K.O. Desenvolvimento e Caracterização de Microemulsões Antimicrobianas e Anti-Inflamatórias Contendo óleo de Copaíba (Copaifera multijuga). Master’s Thesis, Universidade Estadual da Paraíba, Campina Grande, Brazil, 2013. [Google Scholar]
- Pires, V.G.A.; Moura, M.R.d. Preparação de novos filmes poliméricos contendo nanoemulsões do óleo de melaleuca, copaíba e limão para aplicação como biomaterial. Quim. Nova 2017, 40, 1–5. [Google Scholar] [CrossRef]
- Roland, I.; Piel, G.; Delattre, L.; Evrard, B. Systematic characterization of oil-in-water emulsions for formulation design. Int. J. Pharm. 2003, 263, 85–94. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Lee, K.; Gong, M.-s.; Joo, S.-W. Control of gold nanoparticle aggregates by manipulation of interparticle interaction. Langmuir 2005, 21, 9524–9528. [Google Scholar] [CrossRef] [PubMed]
- de Barros, H.R.; Cardoso, M.B.; de Oliveira, C.C.; Franco, C.R.C.; de Lima Belan, D.; Vidotti, M.; Riegel-Vidotti, I.C. Stability of gum arabic-gold nanoparticles in physiological simulated pHs and their selective effect on cell lines. RSC Adv. 2016, 6, 9411–9420. [Google Scholar] [CrossRef]
- Jäger, A.; Stefani, V.; Guterres, S.S.; Pohlmann, A.R. Physico-chemical characterization of nanocapsule polymeric wall using fluorescent benzazole probes. Int. J. Pharm. 2007, 338, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Marchiori, M.L.; Lubini, G.; Dalla Nora, G.; Friedrich, R.B.; Fontana, M.C.; Ourique, A.F.; Bastos, M.O.; Rigo, L.A.; Silva, C.B.; Tedesco, S.B. Hydrogel containing dexamethasone-loaded nanocapsules for cutaneous administration: Preparation, characterization, and in vitro drug release study. Drug Dev. Ind. Pharm. 2010, 36, 962–971. [Google Scholar] [CrossRef]
- Bender, E.A.; Adorne, M.D.; Colomé, L.M.; Abdalla, D.S.P.; Guterres, S.S.; Pohlmann, A.R. Hemocompatibility of poly(ɛ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int. J. Pharm. 2012, 426, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Ferrarini, S.R. Síntese de Derivados Aminados do Limoneno e Desenvolvimento de Nanopartículas Estáveis para o Tratamento de Leishmaniose e Câncer Cervical. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2013. [Google Scholar]
- Fiel, L.A.; Rebêlo, L.M.; de Melo Santiago, T.; Adorne, M.D.; Guterres, S.S.; de Sousa, J.S.; Pohlmann, A.R. Diverse deformation properties of polymeric nanocapsules and lipid-core nanocapsules. Soft Matter 2011, 7, 7240–7247. [Google Scholar] [CrossRef]
- de Morais, J.M.; dos Santos, O.D.H.; Delicato, T.; da Rocha-Filho, P.A. Characterization and evaluation of electrolyte influence on canola oil/water nano-emulsion. J. Dispers. Sci. Technol. 2006, 27, 1009–1014. [Google Scholar] [CrossRef]
- Ursica, L.; Tita, D.; Palici, I.; Tita, B.; Vlaia, V. Particle size analysis of some water/oil/water multiple emulsions. J. Pharm. Biomed. Anal. 2005, 37, 931–936. [Google Scholar] [CrossRef]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef]
- Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D.J. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. J. Food Eng. 2014, 142, 57–63. [Google Scholar] [CrossRef]
- Sanguansri, P.; Augustin, M.A. Nanoscale materials development—A food industry perspective. Trends Food Sci. Technol. 2006, 17, 547–556. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; González, C.; Maestro, A.; Solè, I.; Pey, C.M.; Nolla, J. Nano-emulsions: New applications and optimization of their preparation. Curr. Opin. Colloid Interface Sci. 2008, 13, 245–251. [Google Scholar] [CrossRef]
- Akhtar, H.M.S.; Riaz, A.; Hamed, Y.S.; Abdin, M.; Chen, G.; Wan, P.; Zeng, X. Production and characterization of CMC-based antioxidant and antimicrobial films enriched with chickpea hull polysaccharides. Int. J. Biol. Macromol. 2018, 118, 469–477. [Google Scholar] [CrossRef]
- Bertolino, J.F. Biomaterial de Quitosana, Gelatina e Óleo de Pequi: Obtenção, Caracterização, Avaliação da Biocompatibilidade e da Atividade Antimicrobiana. Master’s Thesis, Universidade Federal de Goiás, Goiânia, Brazil, 2018. [Google Scholar]
Retention Time (min) | Compounds | Composition (%) | Molecular Formula |
---|---|---|---|
31.55 | Oleic Acid | 31.25 | C18H34O2 |
32.90 | Linoleic Acid | 27.42 | C18H32O2 |
28.03 | Palmitic Acid | 24.11 | C16H32O2 |
31.88 | Stearic Acid | 9.65 | C18H36O2 |
32.25 | Malonic Acid | 3.74 | C16H29ClO4 |
29.00 | Geraniol | 2.85 | C20H34O |
45.65 | γ-Tocopherol | 0.75 | C28H48O2 |
46.30 | β-Sitosterol | 0.22 | C29H50O |
TOTAL | 100.00 |
Sample | pH | ||||||
---|---|---|---|---|---|---|---|
Days | |||||||
1 | 7 | 15 | 30 | 60 | 90 | 120 | |
PPOE1 | 4.10 | 4.50 | 4.45 | 4.40 | 4.38 | 4.35 | 4.30 |
PPOE3 | 4.35 | 4.89 | 4.85 | 4.72 | 4.68 | 4.61 | 4.52 |
PPOE5 | 4.43 | 4.86 | 4.76 | 4.73 | 4.69 | 4.65 | 4.52 |
CMC | 7.10 | 7.00 | 6.98 | 6.96 | 6.95 | 6.92 | 6.89 |
PPOE1 + CMC | 6.78 | 6.75 | 6.69 | 6.65 | 6.63 | 6.63 | 6.58 |
PPOE3 + CMC | 6.89 | 6.85 | 6.79 | 6.75 | 6.70 | 6.65 | 6.61 |
PPOE5 + CMC | 6.85 | 6.80 | 6.76 | 6.71 | 6.67 | 6.55 | 6.50 |
Sample | Zeta Potential (mV) | Droplet Hydrodynamic Diameter (nm) | Polydispersity Index |
---|---|---|---|
PPOE1 | −25.20 ± 0.71 | 328.79 ± 3.48 | 0.35 ± 0.06 |
PPOE3 | −25.26 ± 1.26 | 140.10 ± 4.95 | 0.34 ± 0.01 |
PPOE5 | −20.92 ± 0.97 | 95.93 ± 1.85 | 0.32 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, T.F.; Borchardt, H.; Wanderley, W.F.; Vasconcelos, U.; Leite, I.F. Pequi Pulp (Caryocar brasiliense) Oil-Loaded Emulsions as Cosmetic Products for Topical Use. Polymers 2025, 17, 226. https://doi.org/10.3390/polym17020226
Pereira TF, Borchardt H, Wanderley WF, Vasconcelos U, Leite IF. Pequi Pulp (Caryocar brasiliense) Oil-Loaded Emulsions as Cosmetic Products for Topical Use. Polymers. 2025; 17(2):226. https://doi.org/10.3390/polym17020226
Chicago/Turabian StylePereira, Tácio Fragoso, Huelinton Borchardt, Wvandson F. Wanderley, Ulrich Vasconcelos, and Itamara F. Leite. 2025. "Pequi Pulp (Caryocar brasiliense) Oil-Loaded Emulsions as Cosmetic Products for Topical Use" Polymers 17, no. 2: 226. https://doi.org/10.3390/polym17020226
APA StylePereira, T. F., Borchardt, H., Wanderley, W. F., Vasconcelos, U., & Leite, I. F. (2025). Pequi Pulp (Caryocar brasiliense) Oil-Loaded Emulsions as Cosmetic Products for Topical Use. Polymers, 17(2), 226. https://doi.org/10.3390/polym17020226