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Abstract: Interocclusal records (IORs) created with bite registration materials (BRMs) ac-
curately reflect the opposing teeth’s physiological and anatomical associations in digital
and traditional dentistry. This study assessed the linear dimensional accuracy of vinyl
polysiloxane-based scannable and transparent BRMs over obligatory clinical time intervals
(1, 24, 72, and 168 h/s). A total of 3 scannable [Flexitime Bite, Occlufast CAD, Virtual
CADBite] and 3 transparent [Maxill Bite, Charmflex Bite, Defend ClearBite] VPS-based
BRMs were divided into 28 subgroups by time interval: 1, 24, 72, and 168 h/s. Stereomicro-
scope measurements of 420 standardised disk-shaped specimens with three distinct linear
distances between crossing vertical and horizontal lines were taken. Comparisons with
the conventional BRM determined the scannable and transparent BRMs’ accuracy, while
comparisons with die dimensions yielded linear dimensional changes. Statistical analysis
used median rank scores, interquartile range, and median. Using a one-way ANOVA rank
and Dunn test, differences were assessed between and within groups at a probability ‘p’
value of 0.05 (p ≤ 0.05). Mean linear dimensions for CAD and transparent IOR materials
were [−0.06 (−0.24%) to −0.15 (−0.6%)] and [−0.06 (0.24%) to −0.10 (0.40%)] millimetres,
respectively. Virtual CADBite and Maxill Bite had the lowest linear disagreement after 1 h,
but both showed significant variations at 7 days. Other commercial brands maintained their
clinically acceptable linear accuracy (0.11). Flexitime Bite (CAD) was the sole material with
a linear accuracy above the clinical threshold. IOR shrinkage reduced the linear dimensions
in all materials. Until 7 days, all IOR materials except Flexitime bite (CAD) were clinically
correct. Virtual CADBite and Maxill bite changed significantly during 1 h and 7 days.

Keywords: jaw relation records; polymeric bite registration materials; polyvinyl siloxane;
therapeutic occlusion; bite record storage
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1. Introduction
An interocclusal record (IOR) (synonym, bite registration record (BRR)) defines both

the static and dynamic relationships of teeth in relation to adjacent and opposing teeth
arches, jaws, and to the cranium. Digital methods of jaw relation and bite registration
records (virtual and physical) have not only paved the way for conventional materials
but have also diminished human-induced errors in such critical dental restorative proce-
dures [1]. Errors in occlusion have also become easier to locate with the use of various
scanning devices (T scan, intraoral scans) [2]. Among various currently available digital
jaw relation procedures, one technology mounts a CADCAM generated dental cast (virtual
cast) using algorithms (best fit alignment), thereby eliminating the need for a physical
IOR [3]. Intraoral scanning and scanning of patients’ casts/models and/or IORs can also
produce virtual casts [4]. When CADCAM made physical casts are to be mounted, scan-
ning of the buccal surfaces of the maxillary/mandibular teeth in maximum intercuspation
provides data that are analysed with software [3]. Occlusal contacts provided from virtual
occlusion are accurate in addition to providing objective data like occlusal timings, contact
sequences, and quantity of force [5]. Virtual IOR (iTero Element scanner, Align Technology,
Inc., Tempe, AZ, USA) is another technology that has shown promising results in terms
of accuracy and reproducibility when compared with polyvinylsiloxane (PVS) physical
records [6]. Currently, however, the most common digital technique utilises scanning of
a polyvinylsiloxane IOR in the intercuspal position, which provides a two-dimensional
image that is analysed with image computer software [7,8]. Multiple studies have reported
this technique to be highly reliable and valid for determining occlusal contacts [9–11], so
it has thus been considered a standard method for digital jaw relations. Irrespective of
the technique, the digital static occlusal analysis is accomplished in three steps: patient
closing in maximum intercuspation on an indicator (sensor, silicone material, or articulation
indicator), interpretation of the IOR on a computer, and finally, storage and transfer of the
IOR. All different indicators have been found to have high reliability and validity [12,13].
The digital articulator system that is required for mounting these records, however, have
been found to be less accurate than the conventional articulator system [14], with VPS
being more accurate than wax in either the conventional or digital articulator system. In
another study, digital scans (t scan (Tekscan)/3D intraoral scan) were found to be less
reliable in measuring occlusal contact area when compared with occlusal registration [9].
The size of the occlusal contact and the intensity of the contact are also significant factors in
determining the amount of correction required in addition to the accuracy of the working
and non-working casts [15]. IOR, irrespective of the material used, can provide information
about the contact intensity, which has been reported to be less precise when virtual occlusal
records are used [16]. Despite less variance with scanning IORs than conventional physical
IORs, there are certain limitations with the use of scanning, especially the use of intraoral
scanners. They have trouble creating accurate virtual images and scanning entire dental
arches or edentulous arches [17,18]. To reduce background noise and scanning errors,
titanium dioxide powder should be applied to objects, but different application distances
and times can cause coating thickness variations, causing scan errors [19]. Liquid-type
scanning-aid agents and powder-free intraoral scanners have advantages, but the optical
properties can be affected by environmental factors [4,11], and powder coatings can im-
prove accuracy [20]. Longer scans, like full-arch scans, may result in enhanced errors due to
matching or stitching errors [4,14], which increase with scan length [11]. Intraoral scanners
use single images stitched together to create 3D models [21].

Polyether- and VPS-based bite registration materials (BRMs) are increasingly favoured
for their handling properties, precision, and durability [8,18]. They resemble dental im-
pression materials but exhibit changed qualities due to less well-known adjustments in the
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mix of plasticisers and catalysts [22]. These materials, however, necessitate a carrier and
are economically viable. The set material possesses sufficient elasticity for removal from
the mouth without deformation [6], while simultaneously exhibiting enough rigidity to
enable it to withstand any deformation under applied stresses [7,12]. They are basically a
composite of different elemental compositions in which Si, C, and O elements are higher
than Al, Ti, Ca, Na, Mg [23]. VPS BRMs are essentially particle-reinforced composites
within the organic (vinyl polysiloxane) matrix, rendering them multiphase (two or more)
phase systems, with the difference in phases due to the mean atomic number distribution
and contrast [12,23]. SiO2 or silicate-glass filler particles, as well as the vinyl-polysiloxane
matrix, are responsible for the high C, Si, and O content observed in all products [14].
All scannable IBRR materials have a higher TiO2 concentration to add to the material’s
high reflectivity [13], which is intended to meet the criteria for CADCAM optical scan-
ning [13,23]. As a non-reinforcing filler, CaCO3 is utilised to enhance dispersion, processing,
and extrudability and to regulate the viscosity and sagging of the finished product, together
with Al, Mg, and Zn oxides or various salts [18,23]. Setting of the matrix also results in the
production of hydrogen, which is absorbed by the alkaline CaCO3 [24,25]. In evaluating a
material’s scannability, contrast and brightness are the two most critical factors, each ideally
set at 100% [26]. Intraoral recording materials are enhanced with pigments that improve
contrast and brightness levels, thereby increasing their scannability [14,19]. This enhances
the dynamic value of the material’s scannability [26]. Metal oxides, hydroxides, metal
oxide hydrates, metal carbonates, or metal sulphates are incorporated into interocclusal
recording materials at a concentration ranging from 15 to 80 weight percent to improve
the brightness of these materials [23]. To enhance the material’s contrast, incorporate
black or black-greyish pigments at concentrations between 0.01 and 0.0001 weight per-
cent [26]. Suitable additives include metals, carbon, metal oxides, metal hydroxides, metal
oxide hydrates, metal silicates, sulphur-containing metal silicates, metal sulphides, metal
cyanides, metal selenides, metal chromates, or organic dyes [24,26,27]. Many clinical [27,28]
and in vitro research studies [29–36] have revealed that the PVS-based BRMs have higher
dimensional stability than other BRMs. Furthermore, noted in these investigations are
PVS BRMs’ greater dimensional stability than polyether-based BRMs [29–36]. Polyether,
however, was reported by Michalakis KX et al. [37], Tejo SK et al. [38], Pokale SV et al. [39],
and Sonkesriya S et al. [40] to be more dimensionally accurate initially, with few of these
studies indicating that PVS continues to maintain its accuracy better than polyether at
subsequent time intervals (48 and 72 h) [37,39]. Sharma A et al. [41] and Lozano F et al. [42]
both noted, at the same time, PVS BRMs to be more dimensionally stable than polyether.
Lozano F. et al. [42] evaluated the dimensional correctness of three IORs (Aluwax, Godiva
[thermoplastic bar], Occlufast Rock [VPS], and Futar D (injectable silicones), finding that al-
though Occlufast silicone remained stable for as long as 7 days, Futar D was clinically viable
for 22 days. In addition to these studies evaluating the linear accuracy, investigators have
also evaluated the vertical accuracy of different BRMs in clinical [28] and in vitro [26,30,34]
settings. Polyvinylsiloxane BRMs were found to be the most stable in both the vertical
and lateral axis. Conventional (Registrado Xtra, Futar D Fast, and O-Bite) and scannable
(Registrado Scan, Futar Cut & Trim Fast, and O-Bite Scan) BRM materials were investigated
recently by Yazigi C et al. [26] for their ability to record maxillary–mandibular relationships
(vertical accuracy) and their dimensional stability after one hour and forty-eight hours of
storage. Scannable materials had far fewer discrepancies than conventional ones, according
to the results, which demonstrated a notable difference in vertical discrepancies between
the two materials. After 1 hour, the median vertical discrepancy varied between −2 µm
(FS) and 11 µm (O-Bite), reaching 13 µm (Registrado Xtra and O-Bite) after 48 h, and
3 µm (Futar Cut & Trim Fast) after 48 h. After 48 h, there was an increase in the number of



Polymers 2025, 17, 52 4 of 19

materials that showed clinically acceptable disparities. The accuracy of conventional and
digital systems in locating occlusal contacts was examined in a recent study by Rovira-lastra
B et al. [43], who discovered that Occlufast Rock (regular BRM) achieved an agreement
in occlusal contact location between sessions of 85–95%. In comparison, Occlufast CAD,
200 µm articulating film, and T-Scan offered agreements of 79–86%, 68–75%, and 65–75%,
respectively. In addition to scannable BRMs, transparent BRMs are also available that over-
come the drawbacks of conventional opaque BRMs in that voids and bubbles introduced
within the BRR are visible; these are a major source of clinical repetition and inducing
iatrogenic errors in patients’ cast mounting. Compared with scannable BRMs, they contain
a vinyl-terminated polydimethylsiloxane and replace silicon dioxide with quartz silica
as major components. A previous study reported high tensile strength and high elastic
moduli, which are critical requirements for BRMs [44]. Errors in mounting can be either
vertical or horizontal (lateral or anteroposterior). While both are critical, horizontal errors
are more sensitive, as a minor error can result in misfit of the casts on the BRR. The influence
of vertical errors, at the same time, can be minimised by facebow use. The permissible
errors in mountings have also been studied, and the threshold in such transfers has been
estimated to be in the range of 0.07 mm to 0.11 mm (anteroposterior and lateral) and less
than 1 mm vertically [45,46].

This study, therefore, aimed to evaluate the influence of various time intervals upon
the linear accuracy of regular, scannable, and transparent vinyl polysiloxane-based bite
registration materials for indirect dental restoration fabrication. The main objective of the
study was to find whether scannable and transparent BRMs are as accurate as regular BRMs
through clinical processing time (1 h) and various recommended laboratory processing
times (24, 72, 168 h). Also, the study results were aimed at finding whether these changes
are acceptable within the clinical threshold of predefined limits in terms of linear changes
within a BRR.

2. Materials and Methods
2.1. Ethics

Following the guidelines laid out by the organisation, written ethical permission was
acquired for the conduct of this study under registration number (Ref. No. CODJU-2326I).
All substances under investigation have been duly approved by both international and
local drug organisations, and they are all biocompatible with humans.

2.2. Study Design

Control and test specimens were randomly assigned to different groups in this in vitro
investigation, which used a comparative multiple-group experimental design approach.
The time intervals (1 h; 1, 3, and 7 days) [38,39,41] and the BRR materials (CAD and trans-
parent) were considered independent variables, whereas the linear accuracy (in millimetres
and percentage) was the dependent variable. Several steps were included in the experiment,
including machining a stainless-steel standard three-component die, assembling the mould,
preparing the specimen, and measuring surface markings that indicated linear accuracy.

2.3. Operational Definitions [47]

Records of the static or dynamic relationship between two teeth, arches, or jaws that
are opposing are referred to as a BRR (synonym bit, occlusal, or interocclusal record) [47].
By transferring maxillomandibular relationships from the mouth to the articulator, the BRR
ensures horizontal stability and prevents rotation or translation of the cast by capturing
the position of opposing teeth. BRR types include centric and eccentric, which further are
divided into protrusive and right and left lateral BRRs.
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2.4. Materials

Three of the six BRMs studied belonged to the scannable (CAD) category, while
the other three were transparent; a brief summary of each is provided in Table 1. The
basic ingredient of all BRMs is vinyl polysiloxane elastomers; the only changes are in the
composition and percentages of the individual components. Each brand’s manufacturer-
recommended clinical criteria for the amount of time spent mixing, manipulating, working,
and setting were adhered to [48–53] (Table 1).

Table 1. List of materials and instruments used in the study.

Material Manufacturer Types

Occlufast Rock Zhermak, Badia Polesine, Italy
Lot No.: 419353 (Conventional BRM)
WT = 30 s, ST = 60 s, H = 95, DR = 20 µm,
DS = 7 D

Occlufast CAD Zhermak, Badia Polesine, Italy.
Lot No.: 404891; CAD BRM (scannable)
WT = 30 s, ST = 60 s, H = 95, DR = 20 µm,
DS = 7 D

Virtual CADBite Virtual CADBite, ivoclar vivadent,
Amherst, NY, USA.

Lot No.: ZL09W7
CAD BRM (no contrast medium required while
scanning)
WT = 30 s, ST = 45 s, H = 85, DS = 1.5% linear
change, DR = 2 µm.

Flexitime Bite Kulzer, South Bend, IN, USA.
Lot No.: K010133 (CAD BRM)
WT = 30 s, ST = 60 s, H = 90, DS = 1.5% linear
change, DR = 2 µm.

Maxill Bite Maxill, Cortland, OH, USA. Lot No.: 85500522 (Clear BRM)
WT = 30 s, ST = 75 s

Charmflex Bite Nongshim-ro, Gunpo-si,
Gyeonggi-do, Republic of Korea.

Lot No.: 58123003 (Clear BRM)
WT = 30 s, ST = 60 s, ER = 99.9%, H = 90
Dispenser D2 (50 mL cartridge)

Defend ClearBite Defend, Wendt Street Algonquin,
IL, USA.

Lot No.: 85500123 [Clear BRM (regular set)]
WT = 60 s, ST = 60 s, H = 60–65,
Mousse-like and Thixotropic, VPS
Visibility for voids or bubbles

MD 520 Durr Dental, Kornwestheim,
Germany, Lot No.: 2214103

Combination of aldehydes, quaternary
ammonium cations, special surfactants, and
excipients in aqueous solution; 100 g MD 520
contain 0.5 g glutaraldehyde, 0.25 g alkyl
benzyl dimethyl ammonium chloride.
Disinfection time = 10 M; pH: 4.3 ± 0.5

Abbreviations: BRM = bite registration material, WT = working time, ST = setting time, ER = elastic recovery, H
(shoreA) = hardness, DR = detail reproduction, DS = dimensional stability, D = days, VPS = vinyl polysiloxane,
M = minutes, CAD = computer-aided diagnosis (scannable BRM); Clear BRM = transparent material that shows
voids and defects; Compositions: scannable–Vinyl polysiloxane (20–30%), Methylhydrogensiloxane (5–10%),
Organoplatinic complex (0.01–0.05%), Silicon dioxide (40–50%), Pigment (10–20%), Food dyes/aroma (0.1–0.5%);
Transparent–Polydimethylsiloxane vinyl terminated (20–40%), Dimethylsiloxane copolymer (1–10%), Quartz
silica (30–50%), Polysiloxane (<5%).

2.5. Sample Size

The research was structured with two primary experimental groups (material type
based), each of which used three distinct commercially available BRMs. There were four
subgroups for each commercial BRM according to the time interval: control (1 h) and
1, 3, and 7 days. With a power assumption of 80%, a type 1 error rate of 0.05, and an
effect size of 0.28, the predicted total sample size was 420 specimens, with a minimum of
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15 specimens in each subgroup. The results were collected from the Nquery program (v7.0;
Informer Technologies, California, Los Angeles, CA, USA), which determined the sample
size using the formula [(N = 2 σ2 × (Z α + Z β) 2/2)] [54].

2.6. Standardization of Specimen and Preparation (Figure 1)

Multiple clinical guidelines agree that three millimetres is the optimal thickness for
a BRR. In that context, a three-piece (ruled cylinder, mould spacer, riser) stainless-steel
(austenitic) die was fabricated according to standard specifications for measuring dimen-
sional accuracy of dental elastomers used to make impressions (American Dental Asso-
ciation specification no. 19) [55]. Figure 1 shows the components, engraved vertical and
horizontal lines, coordinates, and dimensions of the multipiece standardised die. When
assembled together, the mould forms a 3 mm uniform space for BRM with engraved lines
transferred to the material specimen. The linear accuracy of test specimen was measured
at three different intersections or coordinates (p1–p2, p3–p4, p5–p6) between vertical (cc′,
dd′) and horizontal lines (X, Y, and Z). Distance between three coordinates was uniformly
placed at 25 mm, the average of which served as control. A thickness of 3 mm was ensured
by the mould spacer, which was 6 mm in height, 3 mm of which were embedded into the
shoulder of the cylinder block and 3 mm left for material space. A riser in the form of a
33 mm stainless steel sheet was fabricated for the purpose of removal of the specimen from
the mould. Distance between three horizontal lines was standardised at 2.5 mm.
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used for measuring linear accuracy.

2.7. BRM Dispensing

Each BRM that was studied is currently on the commercial market in the form of a
standard 100 mL two-conjoined-cartridge system, with one cartridge serving as a base and
the other as a catalyst, all placed on a sterile dispenser [48–53]. The dispenser is hydraulicly
shaped and operates similarly to a toy gun. An autoclave cycle (pre-vacuum, 3 min contact,
132-degree centigrade heat, 20 min cool time) for complete sterilization and a chemical
mixture (15% isopropyl alcohol, 0.3% ammonium salt) for disinfection are standard man-
ufacturers’ recommendations before cartridge exchange and each use, respectively. Each
brand was stored, manipulated, and changed according to the manufacturer’s instructions,
which typically included insignificant temperature differences. An automix plastic tip
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is secured to the cartridge system using a key–keyway lock mechanism, which joins the
individual cartridges that contain catalyst and base VPS pastes at the front. Two sepa-
rate plungers, one for each cartridge, are housed in the dispenser. Squeezing the trigger
causes the plungers to go forward, which forces the material through the automix tip and
allows the gun to dispense equal amounts. The automix tip uses its length to combine the
two components, and then it may be used to apply a clean mixture directly to the affected
area [48–53].

2.8. Specimen Preparation/Grouping/Subgrouping (Figure 2)

Specimens were prepared for each BRM subgroup by placing the constructed mould
on top of the dispenser and releasing material. After filling, any surplus was removed with
a polythene laminated glass slab that also acted as a model for the occlusion compression
pressure (0.5 kg gram load) [33,37]. All materials were subjected to the load at the times
specified in Table 1 (setting times). In order to replicate the conditions found in the mouth,
the mould containing the load was immersed in a water bath that was thermostatically
controlled (37 ± 1 degrees Celsius) until the materials had set. After removing each
specimen from the mould, any extra was either thinned out or polished off. Thus, all
samples were uniformly 30 mm in diameter and 3 mm thick, with the following inscribed
lines: X, Y, Z, cd, c′d′, and coordinates (p1–p2, p3–p4, p5–p6). After soaking each piece
of tissue in a 0.5% glutaraldehyde solution for 10 min, we followed the same protocol as
the clinical recommendation [56]. After that, according to the specified groups and time
intervals, washing, drying, and storing were carried out. The specimens for each subgroup
were kept in a sealed, humidity-free polythene bag and kept at room temperature until
their measurements were taken. Thus, 60 specimens were prepared for regular (Occlufast
rock) with four subgroups (1 h, 24 h, 72 h, 168 h), each subgroup serving as control for
test materials (scannable, transparent). For experimental subgroups, 180 specimens each
were prepared for 3 scannable (Flexitime CAD Bite (SF1, SF24, SF72, SF168), Occlufast CAD
(SO1, SO24, SO72, SO168), and Virtual CADBite (SV1, SV24, SV72, SV168)) and transparent
(Charmflex Bite (TC1, TC24, TC72, TC168), Defend Clearbite (TD1, TD24, TD72, TD168),
and Maxill Bite (TM1, TM24, TM72, TM168)) BRMs, with 4 time-interval subgroups (1 h,
24 h, 72 h, 168 h). A total of 28 subgroups, with each subgroup having 15 specimens, were
measured for linear accuracy.

2.9. Measurements

From one side’s point of intersection (cc′) to the other side (dd′) in three coordinates
(p1–p2, p3–p4, p5–p6), a stereomicroscope was utilised to take three linear measurements,
yielding three readings per specimen. A single operator, previously calibrated to the usage
and measurement of the stereoscope, measured all observations. Using the stage plate
to orient the specimens’ flat surfaces, we then illuminated them using upper and lower
lights and controlled the camera, which was connected via a USB CCD. After adjusting and
focussing the eyepiece dioptre on a regular basis, all specimens were inspected with conven-
tional settings (10× magnification) until the marking lines (edges of the line) were clearly
apparent. The mean of each specimen was obtained by averaging three measurements
between these coordinates: p1–p2, p3–p4, p5–p6.
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Figure 2. Study flow chart showing materials, variables, groups, and subgroups.

2.10. Statistical Analysis

Before running the statistical analysis in Statistical Package for the Social Sciences
(SPSS, Version 25, IBM Corp., Armonk, NY, USA), all of the raw data from each sub-
group were imported into MS Excel (version 20H2) to be cleaned, standardised, and
coded. The main source of statistical interpretation between the experimental and con-
trol groups was in the form or median values, interquartile range, and mean rank scores
(MRSs). the dimensional changes were expressed in terms of distance in millimetres and
frequency distribution (percentage) when compared with the original distances on the
die. Normality tests (Shapiro–Wilk) determined the distribution of data, which indicated
the use of median values and mean rank scores to avoid errors induced by asymmetric
data distribution. A one-way ANOVA rank test (Kruskal–Wallis) was used to analyse
the differences between control (regular) and experimental BRMs subgroups (scannable
and transparent) using their mean rank scores, which provides a more sensitive differ-
ential. The differences within subgroups at individual time intervals were performed
using post hoc multiple comparison Dunn test after correcting the probability value. The
correction was performed by using the formula (Corrected α = α/m), where α denotes the
set probability value (0.05) and m stands for the number of total subgroups. A primary
arithmetic operation in the form of subtraction (X − Y) gave linear dimensional changes
between each subgroup value (in millimetres) (Y) and the original dimension on the die
(Y), thus describing the average physical change in each material subgroup at different
time intervals. Increase in dimensions was considered to be positive (+), while decreased
dimensions indicated negative (−). The same numerical equations also derived the to-
tal dimensional change expressed in percent using the following mathematical formula:
D (dimensional change).% = [(X − Y)/X × 100], where X and Y values are the same as in
the previous section [38,39].
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3. Results
3.1. Regular (Occlufast Rock) BRM

Table 2 presents the comparative differences in the median values and their interquar-
tile ranges for the control and experimental VPS BRM (scannable and transparent) sub-
groups based on time intervals. Since all subgroups of this material served as the control
to determine whether scannable and transparent BRMs are equally accurate, results show
that all commercial brands of both scannable and transparent BRMs are more accurate than
the regular BRM. Gp SF1 was the only material that had linear changes that were similar to
the regular at 1 h, it but showed lesser changes at subsequent time intervals of 24, 72, 168 h.

Table 2. Comparative differences in the median values and interquartile ranges of standard and
six novel addition vinyl polysiloxane-based (scannable and transparent) bite registration materials
observed at four different time periods.

Bite Registration
Material (BRM) BRM Type Group Time Interval (Hours) n Median IQR Minimum Maximum

Regular
(Code R)
(n = 60)

Occlufast Rock Gp R

R1 15 24.89 0.090 24.81 24.97

R24 15 24.87 0.079 24.81 24.95

R72 15 24.86 0.080 24.80 24.95

R168 15 24.83 0.050 24.79 24.91

Scannable
(Code S)
(n = 180)

Occlufast CAD
(Code O)

Gp SO

SO1 15 24.93 0.060 24.87 24.97

SO24 15 24.92 0.060 24.87 24.97

SO72 15 24.91 0.059 24.86 24.96

SO168 15 24.90 0.060 24.85 24.95

Virtual CADBite
(Code V)

Gp SV

SV1 15 24.94 0.030 24.88 25.00

SV24 15 24.94 0.030 24.87 24.99

SV72 15 24.93 0.039 24.87 24.97

SV168 15 24.91 0.070 24.77 24.97

Flexitime Bite
(Code F)

Gp SF

SF1 15 24.89 0.090 24.80 24.94

SF24 15 24.88 0.079 24.80 24.93

SF72 15 24.87 0.090 24.80 24.93

SF168 15 24.86 0.080 24.79 24.92

Transparent
(Code T)
(n = 180)

Maxill Bite
(Code M)

Gp TM

TM1 15 24.94 0.030 24.89 24.98

TM24 15 24.93 0.029 24.89 24.97

TM72 15 24.92 0.030 24.89 24.96

TM168 15 24.92 0.030 24.88 24.95

Charmflex Bite
(Code C)

Gp TC

TC1 15 24.93 0.059 24.84 24.96

TC24 15 24.93 0.050 24.84 24.96

TC72 15 24.92 0.050 24.84 24.96

TC168 15 24.91 0.050 24.83 24.95

Defend ClearBite
(Code D)

Gp TD

TD1 15 24.94 0.050 24.89 24.97

TD24 15 24.93 0.040 24.88 24.96

TD72 15 24.92 0.050 24.87 24.95

TD168 15 24.91 0.050 24.86 24.94

Abbreviations: BRM = bite registration material; Gp = group; N = number of specimens; IQR = Interquartile range.
Interpretation of Groups: S = scannable (computer-assisted diagnosis) bite registration material; T = transparent
bite registration material.

3.2. Scannable BRM (Occlufast CAD, Virtual CADBite, Flexitime Bite)

All three scannable BRMs showed fewer linear changes than the regular BRM at all
time intervals, with Virtual CADBite not only showing the fewest changes at all time
intervals but showing no change between 1 and 24 h. Flexitime bite (Mdn (IQR), 24.89
(0.09) at 1 h to 24.86 (0.08) at 172 h) showed more changes among the scannable BRMs at all
time intervals, but apart from the 1 h, it showed fewer changes than the regular BRM (Mdn
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(IQR), 24.89 (0.09) at 1 h to 24.83 (0.05) at 172 h). Table 3 presents the one-way ANOVA rank
test results for comparative differences between the regular and experimental BRMs at
four different time intervals. The differences were calculated for mean rank scores, which
showed that the lowest ranks based on medians were allotted to Flexitime Bite at all time
intervals except at 72 h (MRS 27.17) and 168 h (MRS 28.80), where the regular BRM had
the lowest ranks. This indicates that at 72 and 168 h, Flexitime Bite shows more accuracy
than the regular material. The post hoc Dunn test results are presented in Table 4, which
depicts a clear picture of the significance of differences. Among the three scannable BRMs,
at 1 h only Virtual CADBite had accuracy that was more significant than regular BRM. It
therefore can be concluded that at 1 h, only Gp SV had significantly more accuracy than
regular, while it maintained significant accuracy throughout all time intervals. The only
material that showed more significant accuracy than regular at 168 h was Occlufast CAD.
When differences within scannable groups were analysed, the Virtual CADBite showed
more significant accuracy than Flexitime bite at all time intervals while having no difference
with Occlufast CAD, indicating that both Gp SO and Gp SV are equally accurate.

Table 3. One-way ANOVA (Kruskal–Wallis rank test) results for median values of linear dimensional
accuracy observed in various bite registration materials at four different time intervals.

BRM Types Time Intervals (Hours)
Sub Groups n MRS H Statistic p Value

1 h

R1 15 37.4

26.6251 0.00017 *

SO1 15 53.87

SV1 15 71.23

SF1 15 25.67

TM1 15 69.63

TC1 15 54.9

TD1 15 58.3

24 h

R24 15 31.5

33.111 0.0000 *

SO24 15 57.07

SV24 15 73.13

SF24 15 25.13

TM24 15 70.1

TC24 15 60.2

TD24 15 58.83

72 h

R72 15 23.67

37.5521 0.0000 *

SO72 15 56.03

SV72 15 72.17

SF72 15 27.17

TM72 15 68.83

TC72 15 63.13

TD72 15 60.00

168 h

R168 15 20.20

39.1352 0.0000 *

SO168 15 58.77

SV168 15 65.53

SF168 15 28.80

TM168 15 71.77

TC168 15 63.67

TD168 15 62.27

Abbreviations: R = standard (control group); S = scannable CAD BRM; SO = scannable Occlufast CAD; SV = scannable
Virtual CADBite; SF = scannable Flexitime CAD Bite; TM = transparent Maxill Bite; TC = transparent Charmflex Bite;
TD = transparent Defend ClearBite; p = probability value; MRS = mean rank score; H = difference between two or
more groups of an independent variable on a continuous dependent variable. Interpretation of Groups: S = scannable
CAD bite registration material; T = transparent bite registration material. Time intervals: 1 h, 24 h, 72 h, 168 h [38,39,41].
Statistical Interpretation: test employed, one-way ANOVA on ranks (Kruskal–Wallis H test); level of the degree of
significance was determined based on the value of p < 0.05; * = significant.
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Table 4. Post hoc test results for multiple group comparison showing mean rank differences (MRDs)
and their levels of significance when compared with the control and between various subgroups.

Subgroup Compared
Against

1 h 24 h (1 day) 72 h (3 days) 168 h (7 days)

MRD p-Value MRD p-Value MRD p-Value MRD p-Value

R1

SO1 −16.4667 0.137 −25.5667 0.0201 −32.3667 0.0034 −38.5667 * 0.0005 *
SV1 −33.8333 * 0.0022 * −41.6333 * 0.0001 * −48.5 * 0.0000 −45.3333 * 0.0000 *
SF1 11.7333 0.2893 6.3667 0.5627 −3.5 0.7522 −8.6 0.4378
TM1 −32.2333 0.0036 −38.6 * 0.0004 * −45.1667 * 0.0000 * −51.5667 * 0.0000 *
TC1 −17.5 0.114 −28.7 0.0090 −39.4667 * 0.0003 * −43.4667 * 0.0000 *
TD1 −20.9 0.0590 −27.3333 0.0129 −36.3333 * 0.0010 * −42.0667 * 0.0001 *

SO1

SV1 −17.3667 0.1168 −16.0667 0.1506 −16.1333 0.1455 −6.7667 0.5415
SF1 28.2 0.0108 31.9333 0.0042 28.8667 0.0092 29.9667 0.0068
TM1 −15.7667 0.1545 −13.0333 0.2436 −12.8 0.2482 −13 0.2408
TC1 −1.0333 0.9256 −3.1333 0.7792 −7.1 0.5218 −4.9 0.6584
TD1 −4.4333 0.6889 −1.7667 0.8744 −3.9667 0.7204 −3.5 0.7522

SV1

SF1 45.5667 * 0.0000 * 48 * 0.0000 * 45 * 0.0000 * 36.7333 * 0.0009 *
TM1 1.6 0.8851 3.0333 0.7861 3.3333 0.7636 −6.2333 0.5738
TC1 16.3333 0.1402 12.9333 0.2472 9.0333 0.4151 1.8667 0.8663
TD1 12.9333 0.2428 14.3 0.2007 12.1667 0.2723 3.2667 0.7682

SF1
TM1 −43.9667 * 0.0000 * −44.9667 * 0.0000 * −41.6667 * 0.0001 * −42.9667 * 0.0001 *
TC1 −29.2333 0.0082 −35.0667 * 0.0017 * −35.9667 * 0.0011 * −34.8667 * 0.0016 *
TD1 −32.6333 0.0032 −33.7 0.0025 −32.8333 0.0030 −33.4667 0.0025

TM1
TC1 14.7333 0.1833 9.9 0.3757 5.7 0.6071 8.1 0.4649
TD1 11.3333 0.3060 11.2667 0.3134 8.8333 0.4255 9.5 0.3914

TC1 TD1 −3.4 0.7588 1.3667 0.9027 3.1333 0.7774 1.4 0.8995

Abbreviations: R = standard (control group); S = scannable CAD BRM; SO = scannable Occlufast CAD;
SV = scannable Virtual CADBite; SF = scannable Flexitime CAD Bite; TM = transparent Maxill Bite;
TC = transparent Charmflex Bite; TD = transparent Defend ClearBite; p = probability value; MRD = mean
rank difference; Interpretation of Groups: S = scannable CAD bite registration material; T = transparent bite
registration material. Statistical Interpretation: test employed, one-way ANOVA on ranks (Kruskal–Wallis H test);
post hoc test, multiple comparison (Dunn test) after Bonferroni’s correction (p value/n). All significant values
denoted as * are significant at the p value of ≤ 0.0023. (Corrected α = α/m = 0.05/21 = 0.002381, where α is the p
value and m is the number of total subgroups).

3.3. Transparent BRMs (Maxill Bite, Charmflex Bite, Defend ClearBite)

All three transparent BRMs showed fewer linear changes than the regular BRM at
all time intervals, with the highest linear changes at 168 h (Gp TC and Gp TD Mdn 24.91
(0.05)) being less than the changes seen in the regular BRM at the 1 h interval (24.91 (0.09)).
This indicates that when compared with the regular BRM, they tend to be more accurate
at all time intervals (Table 2). Maxill bite showed no change between 72 and 168 h, while
Charmflex bite showed no changes between 1 h and 24 h. The differences at various time
intervals were considered to be statistically significant when compared with the control
(Table 3). The mean rank scores across all time intervals for transparent BRMs ranged from
58.3 (TD1) to 71.77 (Gp TM128), with overall ranks being less than those obtained by the
scannable BRMs. The post hoc Dunn test results shown in Table 5 indicate that at 1 h, all
transparent BRMs, despite having fewer linear changes than the regular BRM, do not show
these differences to be significant, which means that they are equally accurate at the 1 h
interval. However, Maxill bite was more significantly accurate at 24 h than the regular,
with the other two being equal to the regular. At 72 and 168 h, all three materials show
significant accuracy differences from the control, indicating that a BRR to be used at later
time should be made of transparent BRM. There were no significant differences between
the three transparent materials, which indicates that all three are equally accurate.
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Table 5. Dimensional variations (millimetres, percentage) between the original die measurements
and studied bite registration materials (regular, scannable, transparent).

Materials
IOR Types Subgroup

Codes
N Median

Dimensional Change

Against Die Against Regular BRM
(1 h)

(Y) mm Percent Status mm Percent Status

Die OD (X) 3 25.00 25.00 0% ↔ 0.0 0.0 ↔

Regular BRM
(Code R)
(n = 60)

Occlufast Rock

R1(X,Y) 15 24.89 −0.11 −0.44 ↓ 0.0 0.0 ↔

R24 (Y) 15 24.87 −0.13 −0.52 ↓ 0.0 0.0 ↔

R72 (Y) 15 24.86 −0.14 −0.56 ↓ 0.0 0.0 ↔

R168 (Y) 15 24.83 −0.17 −0.68 ↓ 0.0 0.0 ↔

Scannable
BRM

(Code S)
(n = 180)

Occlufast CAD
(Gp CO)

SO1(X,Y) 15 24.93 −0.07 −0.28 ↓ +0.04 +0.16 ↑

SO24 15 24.92 −0.08 −0.32 ↓ +0.05 +0.20 ↑

SO72 15 24.91 −0.09 −0.36 ↓ +0.05 +0.20 ↑

SO168 15 24.90 −0.10 −0.4 ↓ +0.07 +0.28 ↑

Virtual CADBite
(Gp CV)

SV1(X,Y) 15 24.94 −0.06 −0.24 ↓ +0.05 +0.20 ↑

SV24 15 24.94 −0.06 −0.24 ↓ +0.07 +0.28 ↑

SV72 15 24.93 −0.07 −0.28 ↓ +0.07 +0.28 ↑

SV168 15 24.91 −0.09 −0.36 ↓ +0.08 +0.32 ↑

Flexitime Bite
(Gp CF)

SF1(X,Y) 15 24.89 −0.11 −0.44 ↓ 0.0 0.0 ↔

SF24 15 24.88 −0.12 −0.48 ↓ +0.01 +0.04 ↑

SF72 15 24.87 −0.13 −0.52 ↓ +0.01 +0.04 ↑

SF168 15 24.86 −0.14 −0.56 ↓ +0.03 +0.12 ↑

Transparent
BRM

(Code T)
(n = 180)

Maxill Bite
(Gp TM)

TM1(X,Y) 15 24.94 −0.06 −0.24 ↓ +0.05 +0.20 ↑

TM24 15 24.93 −0.07 −0.28 ↓ +0.06 +0.24 ↑

TM72 15 24.92 −0.08 −0.32 ↓ +0.06 +0.24 ↑

TM168 15 24.92 −0.08 −0.32 ↓ +0.09 +0.36 ↑

Charmflex Bite
(Gp TC)

TC1(X,Y) 15 24.93 −0.07 −0.28 ↓ +0.04 +0.16 ↑

TC24 15 24.93 −0.07 −0.28 ↓ +0.06 +0.24 ↑

TC72 15 24.92 −0.08 −0.32 ↓ +0.06 +0.24 ↑

TC168 15 24.91 −0.09 −0.36 ↓ +0.08 +0.32 ↑

Defend ClearBite
(Gp TD)

TD1(X,Y) 15 24.94 −0.06 −0.24 ↓ +0.05 +0.20 ↑

TD24 15 24.93 −0.07 −0.28 ↓ +0.06 +0.24 ↑

TD72 15 24.92 −0.08 −0.32 ↓ +0.06 +0.24 ↑

TD168 15 24.91 −0.09 −0.36 ↓ +0.08 +0.32 ↑

Abbreviations: R = standard (control group); S = scannable CAD BRM; SO = scannable Occlufast CAD;
SV = scannable Virtual CADBite; SF = scannable Flexitime CAD Bite; TM = transparent Maxill Bite;
TC = transparent Charmflex Bite; TD = transparent Defend ClearBite; p = probability value; MRS = mean
rank score; H = difference between two or more groups of an independent variable on a continuous dependent
variable. Interpretation of Groups: S = scannable CAD bite registration material; T = transparent bite registration
material; dimensional change D (%) = (X − Y)/X × 100, where X is the original standard measurement in the
die and Y is the observed average measurements of the samples in a particular group; dimensional change
D (mms) = X − Y. Symbols (↔ = Same; ↑ = increase; ↓ = decrease).

3.4. Comparison Between Scannable and Transparent

Table 5 presents the comparative results between the various subgroups of scannable
and transparent BRMs. Flexitime bite (scannable) was the only material that showed
significant linear accuracy differences against Maxill Bite (transparent) at all time intervals
and against Charmflex Bite (transparent) at 24, 72, and 168 h. These results indicate that
between the scannable and transparent materials, Flexitime Bite had significantly lower
accuracy than Maxill Bite and Charmflex bite.

3.5. Influence of Time

At 1 h, all materials were equally accurate when compared with the regular material,
barring Virtual CADBite, which was significantly more accurate than the regular. At
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1 h, Virtual CADBite and Maxill Bite were significantly more accurate than Flexitime Bite.
At 24, 72, and 168 h, Virtual CADBite and Maxill Bite were significantly more accurate
than the regular, while one scannable (Virtual CADBite) and two transparent (Maxill Bite
and Charmflex Bite) were significantly more accurate than Flexitime Bite (scannable). At
72 h, except Occlufast CAD and Flexitime Bite, all other materials were significantly more
accurate than regular. At 168 h, all materials except Flexitime bite were significantly more
accurate than regular. Charmflex bite (transparent) continued to remain significantly more
accurate than Flexitime bite (scannable) at 72 and 168 h.

3.6. Dimensional Changes (Millimetres, Percentage) (Table 5)

Table 5 presents a comprehensive tabulation of the changes in dimensions of each
subgroup when compared against the regular material and against the original values
on the die. When compared against the original values of the die, all material groups
and their respective subgroups showed a decrease in the linear dimensions with the least
overall decrease ranging at different time intervals. SV1, SV24, TM1, and TD1 were the
subgroups that showed the least dimensional changes (0.06 mm) while the subgroup of
regular material (R168) showed the highest decrease in linear dimensions (0.17 mm). The
clinical threshold of linear changes either in the form of expansion (+) or contraction (−) is
0.11 mm (0.44%) for centric relation changes, which was not fulfilled by Gps R24, R72, R168,
SF24, SF72, SF168. Results of dimensional changes when compared against the regular
(Occlufast rock) show all subgroups had an increase (expansion) in linear dimensions
against their respective control values. The overall interpretation indicates that with each
time interval, the differences between the regular BRM and others increase, with the highest
differences observed in Gp TM168 (+0.09 mm, +0.36%).

4. Discussion
This study aimed to evaluate the linear accuracy of scannable and transparent BRMs

against a standard BRM (Occlufast rock) and to estimate the influence of various clinically
recommended mounting times (1, 3, and 7 days) on the dimensions. The study also aimed
to estimate whether these linear changes are within the clinically acceptable threshold for
errors in mounting.

Although we did not specifically test other chemically dissimilar BRMs, our results
corroborate those of previous studies that have demonstrated improved dimensional
accuracy compared with resin-based [57], zinc oxide eugenol-based [28,38,41], impression
plaster-based [27], wax/modified wax [27,30,33,35,36], and polyether-based IORs [28–31].
The reason for such interpretation is that while most of these studies have also used
the similar ADA-specified die, the values for various BRMs when compared with those
obtained in our study indicate that the VPS-based scannable and transparent BRMs used in
this study have more linear accuracy than non-VPS-based BRMs. Also, when compared
with commercial BRMs based on VPS, some researchers have shown that polyether provides
more accurate dimensions [37–40]. On the other hand, research comparing polyether and
VPS-based BRMs have also found that the latter maintain better dimensional accuracy
over longer durations. In one of these studies, the author used a rectangular die with an
increased length [37] and reported 1.5 to 2.4 mm changes in four different conventional
VPS-based BRMs compared with 0.80 mm for polyether at 1 h, which further increased after
24 h (PVS 3.4 to 4.0, polyether 2.20) with the differences between VPSs being significant
at these times. At 48 and 72 h, however, the differences between the VPS brands were
not significant. Another study [38] used an ADA-specified die similar to our study and
reported fewer linear changes in polyether at 1 h (0.011%), 24 h (0.012%), and 48 h (0.0127%)
when compared with VPS BRMs (1 h (0.012%), 24 h (0.014%), 48 h (0.015%), 72 h (0.016%)).
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Our study shows that the linear dimensional changes for all scannable VPS BRMs were in
the range of 0.24% to 0.56% when compared against the die dimensions. The differences
may be attributed to the differences in arithmetic formula used by those authors. Almost
identical to the results shown by Lozano F et al. [32] for reduced linear changes at various
time intervals are our own results; they found a linear change of 0.12 at 1 h, 1 day, and
7 days, which dropped to 0.072 at the 22nd day. No change in VPS-based IOR was reported
by him throughout the first week. According to our study results, all brands of scannable
and transparent BRMs did not show any significant changes in accuracy when compared
with each other (Table 4), thus indicating that all materials showed consistent accuracy
irrespective of types and commercial brands. Out of all the studies that used the ADA-
specified die to determine linear changes, only two looked at the effects after seven days or
longer [41,42]. The values found for both scannable and transparent at 1 h are lower than
those in previous research [22,33,37,41], but they are in the same vicinity as those observed
in other studies [30,38,42]. When comparing the dimensional changes with the original
die at different time intervals, our values and interpretation (decrease in length) fall in
accordance with other, similar research [22,33,37,39,41,42].

The accuracy of VPS BRMs is attributed to multiple factors that include its ability
to compensate for dimensional changes within the matrix. The initial matrix expansion
is offset by subsequent shrinking. The H-radical creation rate and vinyl-polysiloxane
monomer consumption rate may explain why large-molecular-weight, monofunctional
monomers have a lower vinyl reaction capability than smaller or branching multifunc-
tional monomers. H-radicals may pair to form H2, which will expand initially [58]. Al-
ternatively, dimethacrylate-based BRMs generate early-phase setting exothermic heat,
which speeds up the setting reaction, despite certain groups (CC reactive) of unpolymer-
ized (smaller monomer molecular weight) material being more in dimethacrylates than
VPS [59]. Thus, the shrinkage conversion rate affects BRMs independent of the monomer
system or reinforcing particles [58]. Since dimensional stability is crucial to the clinical
performance of BRMs, and post-curing reactions can take days to reach equilibrium, a
material with a low percentage of maximum shrinkage value that is quickly reached and
stabilised after setting offers significant clinical benefits. Extended post-setting conversion
might compress materials, reducing their dimensional stability. Chun et al. [59] found
that dimethacrylate-based interocclusal recording materials shrank the most, followed by
polyether and polyvinylsiloxane.

Our results show all materials decreased in the linear dimensions, indicating shrinkage
of the BRMs. Elastomers set by continuous crosslinking polymerisation, which densifies
molecules and shrinks macroscopically [60]. Carbon double bonds shrink immediately,
replacing van der Waals inter-molecular space with intra-molecular covalent bonds [61],
changing polymerisation dimensions and density [62]. After 30 min, elastomeric materials
polymerise, negatively changing dimension after 24 h. After severe shrinkage, “rebound”
or viscoelastic stress release causes elastomers to grow [63]. Due to monomer size vari-
ations before polymerisation, polymerisation shrinkage strain should be smaller than
monomethacrylate [64]. Polyether and PVS-based BRMs exhibit low setting shrinkage
strain, making them ideal bite recording materials. Polymerisation shrinkage is also af-
fected by the viscosity of the elastomer; a low viscosity leads to a large shrinkage strain
after polymerisation [57,61]. The viscosity of the substance is contingent upon the length of
the siloxane chains, which subsequently determines the molecular weight. In terms of prop-
erties, elasticity and compression resistance vary between a VPS-based impression material
and a VPS-based BRM. Limiting cross-connecting between polymer chains reduces BRMs’
elasticity, notably under stress (occlusal pressures) [65]. VPS BRM has minimal flexibility,
to enable clinicians to remove it from teeth, but does not distort the occlusal record if the
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patient exerts severe occlusal stresses. PVS BRM has the highest compression resistance
(1000 g load) among other materials like polyether, impression paste (ZnOE), and wax [37].
Occlusal forces degrade elastic interocclusal records (PVS and polyether), although PVS
recovers 98–100% once the load is removed [66]. Clinically, low flexibility may reduce tooth
removal resistance. Limiting elasticity makes bite records harder to verify owing to the
higher initial resistance and brittleness [38]. Interocclusal recording materials may also
be distorted by compression during articulation. Mounting pressure should be minimal,
and deformation depends on material thickness and stiffness. The biting record should
be thin and not distorted when mounting castings to the articulator [67,68]. PVS-based
bite registration materials provide greater dimensional stability in variable thicknesses [69].
Disinfecting agents and storage media also influence the accuracy of most dental materials,
especially the resin-based [70].

Our study results on linear accuracy show that both scannable and transparent BRMs
showed significantly more accuracy than the conventional or regular BRM. These findings
substantiate the study results of Yazigi C et al. [26], who found significantly more vertical
accuracy in scannable BRMs than conventional BRMs. With both vertical and linear
accuracy more accurate than conventional, one may conclude that scannable BRMs are
accurate despite their compositional alterations to suit scanning. According to our study,
the transparent were more accurate than scanning or regular with less deviation from the
die dimensions. Therefore, they are a better alternative to regular BRMs for conventional
prosthodontic and restorative procedures.

Strength and Limitations

The majority of investigations compare chemically and physically distinct materials,
which puts a confusing influence into the study findings, and very few studies have
examined a single IOR material. This research looks at many varieties of VPS, a chemically
and physically comparable material with a track record of dimensional precision in IOR
applications. Due to its in vitro methodology, the research does not account for many of the
variables that could have an impact in a clinical setting. On the other hand, these factors
cloud the picture and do not ultimately dictate a material’s specific capabilities. Additional
caveats include the following: first, that the findings are specific to the experimental settings
and cannot be applied to other situations; second, that there are still other kinds of IOR
materials that need to be studied; and third, that vertical precision was not considered
in this work. Bias related to methodology include certain instructions not being correctly
interpreted and applied.

5. Conclusions
Based on the results of this in vitro study, one many conclude that all BRMs, includ-

ing the regular one, showed linear disparities at all time intervals, which grew through-
out time but decreased thereafter. Virtual CADBite, Maxill Bite, and Defend Clearbite
were less accurate than the standard and original die among scannable and transparent
BRMs. Storage time considerably affects linear accuracy as unfavourable for all studied
BRMs, with transparent BRMs having fewer adverse reactions than normal and scannable
BRMs. Flexitime bite had linear alterations below the clinical threshold that were within
acceptable limits among experimental scannable and transparent BRMs. The study recom-
mends further investigations to determine the influence of disinfectants, contamination,
and oral thermal fluctuations on scannable and transparent BRMs, preferably through
clinical studies.
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