Methodological Impact on Curing Kinetics of Bone Cement Based on Poly (Styrene-co-Methyl Methacrylate)–2D Nanofiller Nanocomposites
<p>Preparation of P(S-MMA)–2D nanofiller nanocomposites.</p> "> Figure 2
<p>Room-temperature activation of BPO initiator with DMPT [<a href="#B64-polymers-17-00116" class="html-bibr">64</a>].</p> "> Figure 3
<p>Curing kinetics of bone cement. I is the initiator; A is the activator; M is the monomer; RM<sup>•</sup> is formed monomer radical by reacting with the initiator radical; k<sub>d</sub>, k<sub>i</sub>, k<sub>p</sub>, and k<sub>t</sub> are the respective rate constants of initiator decomposition, initiation, propagation, and termination reactions [<a href="#B64-polymers-17-00116" class="html-bibr">64</a>].</p> "> Figure 4
<p>SEM images of bone cement prepared by suspension polymerization. (<b>a</b>) P(S-MMA), (<b>b</b>) P(S-MMA)/CG, (<b>c</b>) P(S-MMA)/BN, and (<b>d</b>) P(S-MMA)/CG:BN.</p> "> Figure 5
<p>SEM images of bone cement prepared by bulk polymerization. (<b>a</b>) P(S-MMA), (<b>b</b>) P(S-MMA)/CG, (<b>c</b>) P(S-MMA)/BN, and (<b>d</b>) P(S-MMA)/CG:BN.</p> "> Figure 6
<p>FT−IR spectra of P(S-MMA)–2D nanofiller nanocomposite bone cement samples prepared using bulk and suspension polymerization methods.</p> "> Figure 7
<p>DSC curves of P(S-MMA)–2D nanofiller nanocomposite bone cement samples prepared using bulk and suspension polymerization methods.</p> "> Figure 8
<p>Nanomechanical of P(S-MMA) and P(S-MMA)–2D nanofiller nanocomposites that are prepared using (<b>a</b>) bulk and (<b>b</b>) suspension polymerization methods.</p> "> Figure 9
<p>Curing and dough times of bone cement samples using different methods. (<b>a</b>) Suspension polymerization and (<b>b</b>) bulk polymerization.</p> ">
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Preparation of Poly (Styrene-co-Methylmethacrylate)–2D Nanofiller Nanocomposites
2.2.1. Bulk Polymerization
2.2.2. Suspension Polymerization
2.2.3. Preparation of the Bone Cement
2.2.4. Method of Mixing
2.3. Characterizations
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Fourier Transform Infrared Spectroscopy (FT-IR)
2.3.3. Differential Scanning Calorimetry
2.3.4. Nanoindentation Tests
3. Results and Discussion
3.1. Preparation of P(S-MMA)–2D Nanofiller Nanocomposites by Bulk and Suspension Polymerization
3.2. Preparation of Bone Cement Using P(S-MMA)–2D Nanofiller Nanocomposites
3.2.1. Room-Temperature Activation of BPO by DMPT
3.2.2. Curing Kinetics of Bone Cement
3.3. FE-SEM
3.4. FT-IR
3.5. Thermal Properties
3.6. Nanomechanical Properties
3.7. Curing Kinetics of Bone Cement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bistolfi, A.; Ferracini, R.; Albanese, C.; Vernè, E.; Miola, M. PMMA-Based Bone Cements and the Problem of Joint Arthroplasty Infections: Status and New Perspectives. Materials 2019, 12, 4002. [Google Scholar] [CrossRef] [PubMed]
- Deb, S. Orthopedic Bone Cement. In Wiley Encyclopedia of Biomedical Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- DiMaio, F.R. The Science of Bone Cement: A Historical Review. Orthopedics 2002, 25, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, K.-D.; Ege, W.; Gopp, U. Acrylic Bone Cements: Composition and Properties. Orthop. Clin. 2005, 36, 17–28. [Google Scholar] [CrossRef]
- Kühn, K.-D. What Is Bone Cement? In The Well-Cemented Total Hip Arthroplasty; Springer: Berlin/Heidelberg, Germany, 2005; pp. 52–59. [Google Scholar]
- Vaishya, R.; Chauhan, M.; Vaish, A. Bone Cement. J. Clin. Orthop. Trauma 2013, 4, 157–163. [Google Scholar] [CrossRef]
- Huang, G.J.; Zhong, S.; Susarla, S.M.; Swanson, E.W.; Huang, J.; Gordon, C.R. Craniofacial Reconstruction with Poly (Methyl Methacrylate) Customized Cranial Implants. J. Craniofacial Surg. 2015, 26, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Pike, F.S.; Kumar, M.; Boudrieau, R.J. Reduction and Fixation of Cranial Cervical Fracture/Luxations Using Screws and Polymethylmethacrylate (PMMA) Cement: A Distraction Technique Applied to the Base of the Skull in Thirteen Dogs. Vet. Surg. 2012, 41, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Bhola, R.; Bhola, S.M.; Liang, H.; Mishra, B. Biocompatible Denture Polymers-a Review. Trends Biomater. Artif. Organs 2010, 23, 129–136. [Google Scholar]
- Gad, M.M.; Fouda, S.M.; Al-Harbi, F.A.; Näpänkangas, R.; Raustia, A. PMMA Denture Base Material Enhancement: A Review of Fiber, Filler, and Nanofiller Addition. Int. J. Nanomed. 2017, 12, 3801. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G. Properties of Acrylic Bone Cement: State of the Art Review. J. Biomed. Mater. Res. 1997, 38, 155–182. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.R.S.; Emami, M.; Lahiji, F.; Shahi, A.S.; Masoudi, A.; Emami, S. The Acrylic Bone Cement in Arthroplasty. In Arthroplasty—Update; InTech: Rijeka, Croatia, 2013; pp. 101–130. [Google Scholar]
- Jaeblon, T. Polymethylmethacrylate: Properties and Contemporary Uses in Orthopaedics. JAAOS J. Am. Acad. Orthop. Surg. 2010, 18, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Kindt-Larsen, T.; Smith, D.B.; Jensen, J.S. Innovations in Acrylic Bone Cement and Application Equipment. J. Appl. Biomater. 1995, 6, 75–83. [Google Scholar] [CrossRef]
- Magnan, B.; Bondi, M.; Maluta, T.; Samaila, E.; Schirru, L.; Dall’Oca, C. Acrylic Bone Cement: Current Concept Review. Musculoskelet. Surg. 2013, 97, 93–100. [Google Scholar] [CrossRef]
- Sayeed, Z.; Padela, M.; El-Othmani, M.; Saleh, K. Acrylic Bone Cements for Joint Replacement. In Biomedical Composites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 199–214. [Google Scholar]
- Erdoğdu, M.; Demirel, M.G.; Mohammadi, R.; Güntekin, N.; Ghanbarzadeh Chaleshtori, M. Influence of Framework Material and Abutment Configuration on Fatigue Performance in Dental Implant Systems: A Finite Element Analysis. Medicina 2024, 60, 1463. [Google Scholar] [CrossRef]
- Erdoğdu, M.; Demirel, M.G.; Mohammadi, R.; Güntekin, N. Assessment of the Impact of Bone Quality and Abutment Configuration on the Fatigue Performance of Dental Implant Systems Using Finite Element Analysis (FEA). J. Pers. Med. 2024, 14, 1040. [Google Scholar] [CrossRef] [PubMed]
- Saleh, K.J.; El Othmani, M.M.; Tzeng, T.H.; Mihalko, W.M.; Chambers, M.C.; Grupp, T.M. Acrylic Bone Cement in Total Joint Arthroplasty: A Review. J. Orthop. Res. 2016, 34, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Lv, Y.; Yuan, L.; Ren, H.; Wu, T.; Liu, B.; Zhang, Y.; Zhou, R.; Li, A.; Zhou, F. Improved Bone Ingrowth of Tricalcium Phosphate Filled Poly (Methyl Methacrylate)(PMMA) Bone Cements in Vivo. Polym. Test. 2019, 76, 513–521. [Google Scholar] [CrossRef]
- Kang, I.-G.; Park, C.-I.; Lee, H.; Kim, H.-E.; Lee, S.-M. Hydroxyapatite Microspheres as an Additive to Enhance Radiopacity, Biocompatibility, and Osteoconductivity of Poly (Methyl Methacrylate) Bone Cement. Materials 2018, 11, 258. [Google Scholar] [CrossRef]
- Lagos, S.I.Z.; Salas, J.M.; Zapata, M.E.V.; Hernandez, J.H.M.; Valencia, C.H.; Rojo, L.; Tovar, C.D.G. Influence of the Chitosan Morphology on the Properties of Acrylic Cements and Their Biocompatibility. RSC Adv. 2020, 10, 31156–31164. [Google Scholar] [CrossRef]
- Nottrott, M. Acrylic Bone Cements: Influence of Time and Environment on Physical Properties. Acta Orthop. 2010, 81, 1–27. [Google Scholar]
- Pahlevanzadeh, F.; Bakhsheshi-Rad, H.; Kharaziha, M.; Kasiri-Asgarani, M.; Omidi, M.; Razzaghi, M.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. CNT and rGO Reinforced PMMA Based Bone Cement for Fixation of Load Bearing Implants: Mechanical Property and Biological Response. J. Mech. Behav. Biomed. Mater. 2021, 116, 104320. [Google Scholar] [CrossRef] [PubMed]
- Paz, E.; Ballesteros, Y.; Abenojar, J.; Dunne, N.; Del Real, J.C. Advanced G-MPS-PMMA Bone Cements: Influence of Graphene Silanisation on Fatigue Performance, Thermal Properties and Biocompatibility. Nanomaterials 2021, 11, 139. [Google Scholar] [CrossRef]
- Wang, C.; Yu, B.; Fan, Y.; Ormsby, R.W.; McCarthy, H.O.; Dunne, N.; Li, X. Incorporation of Multi-Walled Carbon Nanotubes to PMMA Bone Cement Improves Cytocompatibility and Osseointegration. Mater. Sci. Eng. C 2019, 103, 109823. [Google Scholar] [CrossRef]
- Wekwejt, M.; Chen, S.; Kaczmarek-Szczepańska, B.; Nadolska, M.; Łukowicz, K.; Pałubicka, A.; Michno, A.; Osyczka, A.M.; Michálek, M.; Zieliński, A. Nanosilver-Loaded PMMA Bone Cement Doped with Different Bioactive Glasses–Evaluation of Cytocompatibility, Antibacterial Activity, and Mechanical Properties. Biomater. Sci. 2021, 9, 3112–3126. [Google Scholar] [CrossRef] [PubMed]
- Wixson, R.L.; Lautenschalager, E.P.; Novak, M.A. Vacuum Mixing of Acrylic Bone Cement. J. Arthroplast. 1987, 2, 141–149. [Google Scholar] [CrossRef]
- Wright, Z.M.; Pandit, A.M.; Karpinsky, M.M.; Holt, B.D.; Zovinka, E.P.; Sydlik, S.A. Bioactive, Ion-Releasing PMMA Bone Cement Filled with Functional Graphenic Materials. Adv. Healthc. Mater. 2021, 10, 2001189. [Google Scholar] [CrossRef] [PubMed]
- Zapata, M.E.V.; Ruiz Rojas, L.M.; Mina Hernández, J.H.; Delgado-Ospina, J.; Tovar, C.D.G. Acrylic Bone Cements Modified with Graphene Oxide: Mechanical, Physical, and Antibacterial Properties. Polymers 2020, 12, 1773. [Google Scholar] [CrossRef] [PubMed]
- Marrs, B.; Andrews, R.; Rantell, T.; Pienkowski, D. Augmentation of Acrylic Bone Cement with Multiwall Carbon Nanotubes. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2006, 77, 269–276. [Google Scholar] [CrossRef]
- Nien, Y.-H.; Huang, C. The Mechanical Study of Acrylic Bone Cement Reinforced with Carbon Nanotube. Mater. Sci. Eng. B 2010, 169, 134–137. [Google Scholar] [CrossRef]
- Paz, E.; Forriol, F.; Del Real, J.; Dunne, N. Graphene Oxide versus Graphene for Optimisation of PMMA Bone Cement for Orthopaedic Applications. Mater. Sci. Eng. C 2017, 77, 1003–1011. [Google Scholar] [CrossRef]
- Tavakoli, M.; Bakhtiari, S.S.E.; Karbasi, S. Incorporation of Chitosan/Graphene Oxide Nanocomposite in to the PMMA Bone Cement: Physical, Mechanical and Biological Evaluation. Int. J. Biol. Macromol. 2020, 149, 783–793. [Google Scholar] [CrossRef]
- Juan Carlos, F.-A.; Rene, G.-C.; Germán, V.-S.; Laura Susana, A.-T. Antimicrobial Poly (Methyl Methacrylate) with Silver Nanoparticles for Dentistry: A Systematic Review. Appl. Sci. 2020, 10, 4007. [Google Scholar] [CrossRef]
- Prokopovich, P.; Köbrick, M.; Brousseau, E.; Perni, S. Potent Antimicrobial Activity of Bone Cement Encapsulating Silver Nanoparticles Capped with Oleic Acid. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Slane, J.; Vivanco, J.; Rose, W.; Ploeg, H.-L.; Squire, M. Mechanical, Material, and Antimicrobial Properties of Acrylic Bone Cement Impregnated with Silver Nanoparticles. Mater. Sci. Eng. C 2015, 48, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Aldosari, M.A.; Alsaud, K.B.B.; Othman, A.; Al-Hindawi, M.; Faisal, N.H.; Ahmed, R.; Michael, F.M.; Krishnan, M.R.; Asharaeh, E. Microwave Irradiation Synthesis and Characterization of Reduced- (Graphene Oxide-(Polystyrene-Polymethyl Methacrylate))/Silver Nanoparticle Nanocomposites and Their Anti-Microbial Activity. Polymers 2020, 12, 1155. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, M.R.; Alsoughayer, S.; Michael, F.M.; Alsharaeh, E.H. Poly (Styrene-Co-Methyl Methacrylate)-Silver/Reduced Graphene Oxide-Nano Hydroxyapatite Nanocomposites for Bone Cement Applications. Int. J. Polym. Mater. Polym. Biomater. 2024, 1–12. [Google Scholar] [CrossRef]
- Castaldini, A.; Cavallini, A. Setting Properties of Bone Cement with Added Synthetic Hydroxyapatite. Biomaterials 1985, 6, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.; Oshida, Y.; Hancock, E.; Kowolik, M.; Barco, T.; Zunt, S. Hydroxyapatite/PMMA Composites as Bone Cements. Bio-Med. Mater. Eng. 2004, 14, 87–105. [Google Scholar]
- Harper, E.; Behiri, J.; Bonfield, W. Flexural and Fatigue Properties of a Bone Cement Based upon Polyethylmethacrylate and Hydroxyapatite. J. Mater. Sci. Mater. Med. 1995, 6, 799–803. [Google Scholar] [CrossRef]
- Phakatkar, A.H.; Shirdar, M.R.; Qi, M.; Taheri, M.M.; Narayanan, S.; Foroozan, T.; Sharifi-Asl, S.; Huang, Z.; Agrawal, M.; Lu, Y.; et al. Novel PMMA Bone Cement Nanocomposites Containing Magnesium Phosphate Nanosheets and Hydroxyapatite Nanofibers. Mater. Sci. Eng. C 2020, 109, 110497. [Google Scholar] [CrossRef]
- Serbetci, K.; Korkusuz, F.; Hasirci, N. Thermal and Mechanical Properties of Hydroxyapatite Impregnated Acrylic Bone Cements. Polym. Test. 2004, 23, 145–155. [Google Scholar] [CrossRef]
- Vallo, C.I.; Montemartini, P.E.; Fanovich, M.A.; López, J.M.P.; Cuadrado, T.R. Polymethylmethacrylate-based Bone Cement Modified with Hydroxyapatite. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. 1999, 48, 150–158. [Google Scholar] [CrossRef]
- Mousa, W.F.; Kobayashi, M.; Shinzato, S.; Kamimura, M.; Neo, M.; Yoshihara, S.; Nakamura, T. Biological and Mechanical Properties of PMMA-Based Bioactive Bone Cements. Biomaterials 2000, 21, 2137–2146. [Google Scholar] [CrossRef] [PubMed]
- Shridhar, P.; Chen, Y.; Khalil, R.; Plakseychuk, A.; Cho, S.K.; Tillman, B.; Kumta, P.N.; Chun, Y. A Review of PMMA Bone Cement and Intra-Cardiac Embolism. Materials 2016, 9, 821. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Mcconaghie, G.; Webb, J.; Laing, G.; Roach, R.; Banerjee, R. An Overview of Bone Cement: Perioperative Considerations, Complications, Outcomes and Future Implications. J. Perioper. Pract. 2023, 34, 106–111. [Google Scholar] [CrossRef]
- Oh, J.K.; Park, J.-H.; Kim, S.S.; Han, J.H.; Kwon, H.J.; Kim, J.H.; Lee, J.-H.; Choi, S.-W.; Jeong, J.-O.; Seong, I.-W. Thread-like Bone Cement in the Right-Side Heart and Pulmonary Arteries Causing Diffuse Pulmonary Embolism as a Late Complication. Heart Lung Circ. 2015, 24, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Stürup, J.; Madsen, J.; Tøndevold, E.; Jensen, J.S. Decreased Blood Perfusion in Canine Tibial Dia-Physis after Filling with Acrylic Bone Cement Compared with Inert Bone Wax. Acta Orthop. Scand. 1990, 61, 143–147. [Google Scholar] [CrossRef]
- Linder, L. Reaction of Bone to the Acute Chemical Trauma of Bone Cement. JBJS 1977, 59, 82–87. [Google Scholar] [CrossRef]
- Lasa, B.V. Poly (Methylmethacrylate) Bone Cement: Chemical Composition and Chemistry. In Orthopaedic Bone Cements; Elsevier: Amsterdam, The Netherlands, 2008; pp. 183–205. [Google Scholar]
- Lennon, A.; Prendergast, P. Residual Stress Due to Curing Can Initiate Damage in Porous Bone Cement: Experimental and Theoretical Evidence. J. Biomech. 2002, 35, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Li, A.; Zhou, F.; Pan, X.; Liang, F.; Qu, X.; Qiu, D.; Yang, Z. A Novel Composite PMMA-Based Bone Cement with Reduced Potential for Thermal Necrosis. ACS Appl. Mater. Interfaces 2015, 7, 11280–11285. [Google Scholar] [CrossRef]
- Dunne, N.; Orr, J. Curing Characteristics of Acrylic Bone Cement. J. Mater. Sci. Mater. Med. 2002, 13, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Kühn, K.-D. Bone Cements: Up-to-Date Comparison of Physical and Chemical Properties of Commercial Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 3-642-59762-9. [Google Scholar]
- Krishnan, M.R.; Alsharaeh, E. Potential Removal of Benzene-Toluene-Xylene Toxic Vapors by Nanoporous Poly (Styrene-r-Methylmethacrylate) Copolymer Composites. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100860. [Google Scholar] [CrossRef]
- Krishnan, M.R.; Alsharaeh, E.H. Facile Fabrication of Thermo-Mechanically Reinforced Polystyrene-Graphene Nanocomposite Aerogel for Produced Water Treatment. J. Porous Mater. 2024, 31, 1363–1373. [Google Scholar] [CrossRef]
- Krishnan, M.R.; Almohsin, A.; Alsharaeh, E.H. Syntheses and Fabrication of Mesoporous Styrene-Co-Methyl Methacrylate-Graphene Composites for Oil Removal. Diam. Relat. Mater. 2022, 130, 109494. [Google Scholar] [CrossRef]
- Krishnan, M.R.; Rajendran, V.; Alsharaeh, E. Anti-Reflective and High-Transmittance Optical Films Based on Nanoporous Silicon Dioxide Fabricated from Templated Synthesis. J. Non Cryst. Solids 2023, 606, 122198. [Google Scholar] [CrossRef]
- Krishnan, M.R.; Aldawsari, Y.F.; Alsharaeh, E.H. Three-Dimensionally Cross-Linked Styrene-Methyl Methacrylate-Divinyl Benzene Terpolymer Networks for Organic Solvents and Crude Oil Absorption. J. Appl. Polym. Sci. 2021, 138, 49942. [Google Scholar] [CrossRef]
- Krishnan, M.R.; Rajendran, V. Sulfonated Mesoporous Polystyrene-1D Multiwall Carbon Nanotube Nanocomposite as Potential Adsorbent for Efficient Removal of Xylene Isomers from Aqueous Solution. Charact. Appl. Nanomater. 2023, 6, 3516. [Google Scholar] [CrossRef]
- Krishnan, M.R.; Aldawsari, Y.F.; Alsharaeh, E.H. 3D-Poly (Styrene-Methyl Methacrylate)/Divinyl Benzene-2D-Nanosheet Composite Networks for Organic Solvents and Crude Oil Spill Cleanup. Polym. Bull. 2021, 79, 3779–3802. [Google Scholar] [CrossRef]
- Zoller, A.; Gigmes, D.; Guillaneuf, Y. Simulation of Radical Polymerization of Methyl Methacrylate at Room Temperature Using a Tertiary Amine/BPO Initiating System. Polym. Chem. 2015, 6, 5719–5727. [Google Scholar] [CrossRef]
- Krishnan, M.R.; Aldawsari, Y.; Michael, F.M.; Li, W.; Alsharaeh, E.H. 3D-Polystyrene-Polymethyl Methacrylate/Divinyl Benzene Networks-Epoxy-Graphene Nanocomposites Dual-Coated Sand as High Strength Proppants for Hydraulic Fracture Operations. J. Nat. Gas Sci. Eng. 2021, 88, 103790. [Google Scholar] [CrossRef]
- Krishnan, M.R.; Aldawsari, Y.; Michael, F.M.; Li, W.; Alsharaeh, E.H. Mechanically Reinforced Polystyrene-Polymethyl Methacrylate Copolymer-Graphene and Epoxy-Graphene Composites Dual-Coated Sand Proppants for Hydraulic Fracture Operations. J. Pet. Sci. Eng. 2021, 196, 107744. [Google Scholar] [CrossRef]
- Krishnan, M.R.; Omar, H.; Aldawsari, Y.; Zien, B.A.S.; Kattash, T.; Li, W.; Alsharaeh, E.H. Insight into Thermo-Mechanical Enhancement of Polymer Nanocomposites Coated Microsand Proppants for Hydraulic Fracturing. Heliyon 2022, 8, e12282. [Google Scholar] [CrossRef] [PubMed]
- Michael, F.M.; Krishnan, M.R.; Fathima, A.; Busaleh, A.; Almohsin, A.; Alsharaeh, E.H. Zirconia/Graphene Nanocomposites Effect on the Enhancement of Thermo-Mechanical Stability of Polymer Hydrogels. Mater. Today Commun. 2019, 21, 100701. [Google Scholar] [CrossRef]
- Michael, F.M.; Krishnan, M.R.; AlSoughayer, S.; Busaleh, A.; Almohsin, A.; Alsharaeh, E.H. Thermo-Elastic and Self-Healing Polyacrylamide -2D Nanofiller Composite Hydrogels for Water Shutoff Treatment. J. Pet. Sci. Eng. 2020, 193, 107391. [Google Scholar] [CrossRef]
- Michael, F.M.; Krishnan, M.R.; Li, W.; Alsharaeh, E.H. A Review on Polymer-Nanofiller Composites in Developing Coated Sand Proppants for Hydraulic Fracturing. J. Nat. Gas Sci. Eng. 2020, 83, 103553. [Google Scholar] [CrossRef]
Name of the Sample | Method | Glass Transition Temperature (Tg; °C) |
---|---|---|
P(S-MMA) | Bulk | 105.4 |
Suspension | 89.2 | |
P(S-MMA)/CG | Bulk | 105.1 |
Suspension | 98.6 | |
P(S-MMA)/BN | Bulk | 105.9 |
Suspension | 99.3 | |
P(S-MMA)/CG:BN | Bulk | 106.4 |
Suspension | 100.0 |
Name of the Sample | Method | Elastic Modulus (GPa) | Hardness (GPa) |
---|---|---|---|
P(S-MMA) | Bulk | 6.82 | 0.196 |
Suspension | 6.52 | 0.191 | |
P(S-MMA)/CG | Bulk | 6.46 | 0.189 |
Suspension | 6.36 | 0.181 | |
P(S-MMA)/BN | Bulk | 7.23 | 0.205 |
Suspension | 7.12 | 0.197 | |
P(S-MMA)/CG:BN | Bulk | 7.89 | 0.219 |
Suspension | 7.54 | 0.209 |
Name of the Sample | Method | Dough Time (min) | Curing Time (min) |
---|---|---|---|
P(S-MMA) | Bulk | 120 | 180 |
Suspension | 2 | 10 | |
P(S-MMA)/CG | Bulk | 180 | 240 |
Suspension | 5 | 15 | |
P(S-MMA)/BN | Bulk | 180 | 240 |
Suspension | 5 | 15 | |
P(S-MMA)/CG:BN | Bulk | 180 | 240 |
Suspension | 5 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnan, M.R.; Alsharaeh, E.H. Methodological Impact on Curing Kinetics of Bone Cement Based on Poly (Styrene-co-Methyl Methacrylate)–2D Nanofiller Nanocomposites. Polymers 2025, 17, 116. https://doi.org/10.3390/polym17010116
Krishnan MR, Alsharaeh EH. Methodological Impact on Curing Kinetics of Bone Cement Based on Poly (Styrene-co-Methyl Methacrylate)–2D Nanofiller Nanocomposites. Polymers. 2025; 17(1):116. https://doi.org/10.3390/polym17010116
Chicago/Turabian StyleKrishnan, Mohan Raj, and Edreese Housni Alsharaeh. 2025. "Methodological Impact on Curing Kinetics of Bone Cement Based on Poly (Styrene-co-Methyl Methacrylate)–2D Nanofiller Nanocomposites" Polymers 17, no. 1: 116. https://doi.org/10.3390/polym17010116
APA StyleKrishnan, M. R., & Alsharaeh, E. H. (2025). Methodological Impact on Curing Kinetics of Bone Cement Based on Poly (Styrene-co-Methyl Methacrylate)–2D Nanofiller Nanocomposites. Polymers, 17(1), 116. https://doi.org/10.3390/polym17010116