Optimization of the Mechanical Recycling of Phenolic Resins for Household Appliances
<p>Example of injection moulding sprue used as recyclate in the mechanical recycling process.</p> "> Figure 2
<p>Production scheme for the samples tested at lab scale.</p> "> Figure 3
<p>Pictures of the prepared samples (NOV30) using recycled material: (<b>a</b>) after compression moulding, and (<b>b</b>) after CNC milling.</p> "> Figure 4
<p>Production scheme for the industrial production trials.</p> "> Figure 5
<p>SEM micrographs of the cryofractured surface of (<b>a</b>) NOV, (<b>b</b>) NOV30CR, (<b>c</b>) RES, and (<b>d</b>) RES30 samples. Recycled particles are highlighted by arrows.</p> "> Figure 6
<p>TGA curves of (<b>a</b>) novolac and (<b>b</b>) resol samples containing different amounts of recycled material.</p> "> Figure 7
<p>DSC curves (first heating scan) of novolac (<b>a</b>) and resol (<b>b</b>) samples.</p> "> Figure 8
<p>Representative flexural stress–strain curves of (<b>a</b>) novolac and (<b>b</b>) resol-based samples containing different amounts of recycled material.</p> "> Figure 9
<p>Flexural stress–strain curves of novolac samples produced using recycled material subjected to multiple reprocessing cycles.</p> "> Figure 10
<p>Representative images of knobs produced upon industrial production trials based on (<b>a</b>) NOV and NOV15 samples, and (<b>b</b>) RES and RES15 samples.</p> "> Figure 11
<p>Group analysis on the life cycle impact assessment results of the industrial production of a knob based on (<b>a</b>) NOV and (<b>b</b>) RES samples.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Samples Preparation
2.3. Methods
2.3.1. Lab Scale Characterization
2.3.2. Industrial Production Trials
2.3.3. Life Cycle Assessment (LCA)
3. Results and Discussion
3.1. Lab Scale Characterization
3.2. Industrial Production Trials
3.3. Life Cycle Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Guo, L.; Zhang, H.; Zhai, H.; Ren, H. Research status, industrial application demand and prospects of phenolic resin. RSC Adv. 2019, 9, 28924–28935. [Google Scholar] [CrossRef] [PubMed]
- Mallick, R.; Vairakannu, P. CO2 plasma gasification of bakelite-based electrical switch waste feedstock. J. Clean. Prod. 2023, 423, 138813. [Google Scholar] [CrossRef]
- Hirano, K.; Asami, M. Phenolic resins—100 years of progress and their future. React. Funct. Polym. 2013, 73, 256–269. [Google Scholar] [CrossRef]
- Mougel, C.; Garnier, T.; Cassagnau, P.; Sintes-Zydowicz, N. Phenolic foams: A review of mechanical properties, fire resistance and new trends in phenol substitution. Polymer 2019, 164, 86–117. [Google Scholar] [CrossRef]
- Pilato, L. Phenolic Resins: A Century of Progress; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Park, B.-D.; Riedl, B.; Yoon Soo, K.; So, W.T. Effect of synthesis parameters on thermal behavior of phenol–formaldehyde resol resin. J. Appl. Polym. Sci. 2002, 83, 1415–1424. [Google Scholar] [CrossRef]
- Hu, X.-M.; Zhao, Y.-Y.; Cheng, W.-M. Effect of formaldehyde/phenol ratio (F/P) on the properties of phenolic resins and foams synthesized at room temperature. Polym. Compos. 2015, 36, 1531–1540. [Google Scholar] [CrossRef]
- Astarloa Aierbe, G.; Echeverría, J.M.; Martin, M.D.; Etxeberria, A.M.; Mondragon, I. Influence of the initial formaldehyde to phenol molar ratio (F/P) on the formation of a phenolic resol resin catalyzed with amine. Polymer 2000, 41, 6797–6802. [Google Scholar] [CrossRef]
- Grenier-Loustalot, M.-F.; Larroque, S.; Grande, D.; Grenier, P.; Bedel, D. Phenolic resins: 2. Influence of catalyst type on reaction mechanisms and kinetics. Polymer 1996, 37, 1363–1369. [Google Scholar] [CrossRef]
- Grenier-Loustalot, M.-F.; Larroque, S.; Grenier, P. Phenolic resins: 5. Solid-state physicochemical study of resoles with variable FP ratios. Polymer 1996, 37, 639–650. [Google Scholar] [CrossRef]
- Manfredi, L.B.; de la Osa, O.; Galego Fernández, N.; Vázquez, A. Structure–properties relationship for resols with different formaldehyde/phenol molar ratio. Polymer 1999, 40, 3867–3875. [Google Scholar] [CrossRef]
- So, S.; Rudin, A. Analysis of the formation and curing reactions of resole phenolics. J. Appl. Polym. Sci. 1990, 41, 205–232. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Xing, X.; Zhang, G.; Jing, X. Fully recyclable and high performance phenolic resin based on dynamic urethane bonds and its application in self-repairable composites. Polymer 2021, 229, 124022. [Google Scholar] [CrossRef]
- Rigotti, D.; Dorigato, A.; Valentini, f.; Pegoretti, A. Devulcanization parameters and mechanical properties of EPDM/ground tire rubber compounds. Rubber Chem. Technol. 2023, 96, 114–129. [Google Scholar] [CrossRef]
- Valentini, F.; Pegoretti, A.A. End-of-life options of tyres. A review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203–213. [Google Scholar] [CrossRef]
- Mohan, R.; Chakrawarthi, V.; Nagaraju, T.V.; Avudaiappan, S.; Awolusi, T.F.; Roco-Videla, Á.; Azab, M.; Kozlov, P. Performance of recycled Bakelite plastic waste as eco-friendly aggregate in the concrete beams. Case Stud. Constr. Mater. 2023, 18, e02200. [Google Scholar] [CrossRef]
- Zhu, B.; Jiang, X.; Li, S.; Zhu, M. An Overview of Recycling Phenolic Resin. Polymers 2024, 16, 1255. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.M.; Conley, R.T. High temperature oxidative degradation of phenol–formaldehyde polycondensates. J. Appl. Polym. Sci. 1964, 8, 2163–2193. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Goracy, K. The use of recycled fibre composites as reinforcement for thermosets. Mech. Compos. Mater. 1994, 29, 352–356. [Google Scholar] [CrossRef]
- Palmer, J.; Ghita, O.R.; Savage, L.; Evans, K.E. Successful closed-loop recycling of thermoset composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 490–498. [Google Scholar] [CrossRef]
- Liu, Z.F.; Shi, L.; Wu, Z.W.; Zhao, K. Experimental Study on the Recycling Technology of Waste Thermosetting Phenolic Resin Based on Mechanical and Physical Method. Adv. Mater. Res. 2012, 482–484, 2445–2449. [Google Scholar] [CrossRef]
- Hu, J.; Dong, H.; Song, S. Research on Recovery Mechanism and Process of Waste Thermosetting Phenolic Resins Based on Mechanochemical Method. Adv. Mater. Sci. Eng. 2020, 2020, 1384194. [Google Scholar] [CrossRef]
- Gröning, M.; Eriksson, H.; Hakkarainen, M.; Albertsson, A.-C. Phenolic prepreg waste as functional filler with antioxidant effect in polypropylene and polyamide-6. Polym. Degrad. Stab. 2006, 91, 1815–1823. [Google Scholar] [CrossRef]
- Bernardeau, F.; Perrin, D.; Caro, A.-S.; Benezet, J.-C.; Ienny, P. Valorization of waste thermoset material as a filler in thermoplastic: Mechanical properties of phenolic molding compound waste-filled PP composites. J. Appl. Polym. Sci. 2018, 135, 45849. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, S.; Chen, Z. Influence of particle size and addition of recycling phenolic foam on mechanical and flame retardant properties of wood-phenolic composites. Constr. Build. Mater. 2018, 168, 1–10. [Google Scholar] [CrossRef]
- ASTM D1525-17e1; Standard Test Method for Vicat Softening Temperature of Plastics. ASTM: West Conshohocken, PA, USA, 2017.
- ASTM D2240-15; Standard Test Method for Rubber Property—Durometer Hardness. ASTM: West Conshohocken, PA, USA, 2021.
- ISO 1209-2:2007; Rigid Cellular Plastics—Determination of Flexural Properties. Part 2: Determination of Flexural Strength and Apparent Flexural Modulus of Elasticity. ISO: Geneva, Switzerland, 2007.
- UNI EN 15804:2021; Sostenibilità delle Costruzioni—Dichiarazioni Ambientali di Prodotto—Regole Quadro di Sviluppo per Categoria di Prodotto. UNI: Milan, Italy, 2021.
- Plastic Europe. Plastics—The Facts 2022; Plastic Europe: Brussels, Belgium, 2022. [Google Scholar]
- Confederation of European Pulp Industries. Key Statistics 2022 European Pulp & Paper Industry; Confederation of European Pulp Industries: Brussels, Belgium, 2020. [Google Scholar]
- Solyman, W.S.E.; Nagiub, H.M.; Alian, N.A.; Shaker, N.O.; Kandil, U.F. Synthesis and characterization of phenol/formaldehyde nanocomposites: Studying the effect of incorporating reactive rubber nanoparticles or Cloisite-30B nanoclay on the mechanical properties, morphology and thermal stability. J. Radiat. Res. Appl. Sci. 2017, 10, 72–79. [Google Scholar] [CrossRef]
- Lochte, H.W.; Strauss, E.L.; Conley, R.T. The thermo-oxidative degradation of phenol–formaldehyde polycondensates: Thermogravimetric and elemental composition studies of char formation. J. Appl. Polym. Sci. 1965, 9, 2799–2810. [Google Scholar] [CrossRef]
- Heron, G.F. Polymers, Pyrolysis of a Phenol-Formaldehyde Polycondensate. In High Temperature Resistance and Thermal Degradation of Polymers; Society of Chemical Industry: London, UK, 1961; pp. 21–23. [Google Scholar]
- Puglia, D.; Manfredi, L.B.; Vazquez, A.; Kenny, J.M. Thermal degradation and fire resistance of epoxy–amine–phenolic blends. Polym. Degrad. Stab. 2001, 73, 521–527. [Google Scholar] [CrossRef]
- Kmita, A.; Benko, A.; Roczniak, A.; Frączek-Szczypta, A.; Holtzer, M. Pyrolysis of organic ester cured alkaline phenolic resin: Identification of products. J. Anal. Appl. Pyrolysis 2018, 129, 6–12. [Google Scholar] [CrossRef]
- Dante, R.C.; Santamaria, D.A.; Gil, J.M. Crosslinking and thermal stability of thermosets based on novolak and melamine. J. Appl. Polym. Sci. 2009, 114, 4059–4065. [Google Scholar] [CrossRef]
- Shaghaghi, S.; Beheshty, M.H.; Rahimi, H. Preparation and Rheological Characterization of Phenolic/Glass Prepregs. Iran. Polym. J. 2011, 20, 969–977. [Google Scholar]
Sample | Virgin [wt%] | Recycled [wt%] |
---|---|---|
NOV | 100 | 0 |
NOV20 | 80 | 20 |
NOV30 | 70 | 30 |
NOV30CR * | 70 | 30 |
NOV40 | 60 | 40 |
RES | 100 | 0 |
RES20 | 80 | 20 |
RES30 | 70 | 30 |
RES40 | 60 | 40 |
NOV | NOV15 | RES | RES15 | |
---|---|---|---|---|
Final mass [g] | 15.31 | 51.8 | ||
Recycled content [wt%] | 0 | 15 | 0 | 15 |
Electricity consumption (total) [MJ] | 0.39 | 0.39 | 1.87 | 1.87 |
Transports (supply) 1 [kg × km] | 17.60 | 17.60 | 52.10 | 52.10 |
Transports (distribution) 2 [kg × km] | 11.50 | 11.50 | 12.60 | 12.60 |
Surface treatment 3 | Cromium coating 1.34 g | Acrylic paint 0.20 g | ||
Plastic packaging [g] | 0.15 | 0.15 | 0.20 | 0.20 |
Paper packaging [g] | 5.50 | 5.50 | 3.50 | 3.60 |
Sample | T5% [°C] | Tpeak1 [°C] | Tpeak2 [°C] | Tpeak3 [°C] | m800 [wt%] |
---|---|---|---|---|---|
NOV | 351.3 | 375.5 | 473.7 | 604.0 | 20.7 |
NOV20 | 353.8 | 370.8 | 479.8 | 619.8 | 14.9 |
NOV30 | 353.5 | 373.3 | 477.3 | 592.2 | 22.1 |
NOV30CR | 356.7 | 370.5 | 466.2 | 587.3 | 31.4 |
NOV40 | 354.2 | 361.2 | 484.4 | 572.2 | 15.3 |
RES | 303.7 | 358.0 | 437.0 | 562.8 | 11.4 |
RES20 | 309.3 | 355.7 | 441.3 | 565.0 | 12.6 |
RES30 | 306.2 | 354.8 | 430.3 | 539.0 | 12.6 |
RES40 | 294.2 | 360.6 | 449.2 | 568.2 | 11.5 |
Sample | Tg [°C] | Tcrl [°C] |
---|---|---|
uncured NOV | 57.2 | 158.8 |
uncured RES | 63.2 | 165.9 |
Sample | Vicat Softening Temperature (VST) [°C] | Penetration at 280 °C [mm] | Shore D |
---|---|---|---|
NOV | >280 | 0.10 ± 0.17 | 91 ± 1 |
NOV20 | >280 | 0.15 ± 0.07 | 91 ± 1 |
NOV30 | >280 | 0.18 ± 0.03 | 91 ± 1 |
NOV30CR | >280 | 0.33 ± 0.07 | 91 ± 1 |
NOV40 | >280 | 0.13 ± 0.11 | 91 ± 1 |
RES | >280 | 0.82 ± 0.04 | 90 ± 2 |
RES20 | >280 | 0.72 ± 0.14 | 91 ± 1 |
RES30 | >280 | 0.79 ± 0.02 | 91 ± 1 |
RES40 | 280 | 1.00 ± 0.01 | 90 ± 1 |
Sample | Flexural Modulus [GPa] | Flexural Strength [MPa] | Flexural Strain [%] |
---|---|---|---|
NOV | 8.9 ± 0.1 | 74.1 ± 3.6 | 0.89 ± 0.05 |
NOV20 | 8.5 ± 0.1 | 61.8 ± 3.0 | 0.76 ± 0.04 |
NOV30 | 8.5 ± 0.1 | 64.5 ± 8.5 | 0.79 ± 0.11 |
NOV30CR | 8.5 ± 0.1 | 54.1 ± 5.4 | 0.65 ± 0.07 |
NOV40 | 8.3 ± 0.2 | 59.3 ± 3.8 | 0.74 ± 0.08 |
RES | 7.3 ± 0.2 | 76.2 ± 4.7 | 1.15 ± 0.10 |
RES20 | 7.5 ± 0.2 | 74.7 ± 11.5 | 1.08 ± 0.19 |
RES30 | 7.5 ± 0.2 | 81.4 ± 5.6 | 1.19 ± 0.12 |
RES40 | 7.5 ± 0.2 | 77.0 ± 0.9 | 1.11 ± 0.03 |
Sample | Flexural Modulus [GPa] | Flexural Strength [MPa] | Flexural Strain [%] |
---|---|---|---|
NOV | 8.9 ± 0.1 | 74.1 ± 3.6 | 0.89 ± 0.05 |
NOV30 | 8.5 ± 0.1 | 64.5 ± 8.5 | 0.79 ± 0.11 |
NOV30_5° | 8.5 ± 0.1 | 49.8 ± 1.8 | 0.61 ± 0.02 |
NOV30_10° | 8.1 ± 0.5 | 43.2 ± 3.3 | 0.58 ± 0.06 |
Impact Category | Unit | NOV | NOV15 | Δ [%] |
---|---|---|---|---|
Acidification | mol H+ eq | 1.58 × 10 × 10−3 | 1.55 × 10−3 | −2.4 |
Climate change | kg CO2 eq | 3.63 × 10−1 | 3.49 × 10−1 | −3.8 |
Ecotoxicity, freshwater | CTUe | 2.38 × 100 | 2.17 × 100 | −8.8 |
Particulate matter | disease inc. | 1.69 × 10−8 | 1.64 × 10−8 | −2.5 |
Eutrophication, marine | kg N eq | 3.42 × 10−4 | 3.33 × 10−4 | −2.6 |
Eutrophication, freshwater | kg P eq | 1.12 × 10−4 | 1.10 × 10−4 | −2.1 |
Eutrophication, terrestrial | mol N eq | 3.40 × 10−3 | 3.32 × 10−3 | −2.3 |
Human toxicity, cancer | CTUh | 2.51 × 10−9 | 2.29 × 10−9 | −8.7 |
Human toxicity, non-cancer | CTUh | 2.94 × 10−9 | 2.83 × 10−9 | −3.6 |
Ionizing radiation | kBq U-235 eq | 3.43 × 10−2 | 3.37 × 10−2 | −1.9 |
Land use | Pt | 2.05 × 100 | 2.00 × 100 | −2.1 |
Ozone depletion | kg CFC11 eq | 4.97 × 10−9 | 4.66 × 10−9 | −6.3 |
Photochemical ozone formation | kg NMVOC eq | 1.28 × 10−3 | 1.23 × 10−3 | −3.7 |
Resource use, fossils | MJ | 5.17 × 100 | 4.92 × 100 | −4.7 |
Resource use, minerals and metals | kg Sb eq | 2.24 × 10−6 | 2.14 × 10−6 | −4.2 |
Water use | m3 depriv. | 1.32 × 10−1 | 1.30 × 10−1 | −1.3 |
Impact Category | Unit | RES | RES15 | Δ [%] |
---|---|---|---|---|
Acidification | mol H+ eq | 1.63 × 10−3 | 1.52 × 10−3 | −6.2 |
Climate change | kg CO2 eq | 4.73 × 10−1 | 4.35 × 10−1 | −8.1 |
Ecotoxicity, freshwater | CTUe | 3.14 × 100 | 2.68 × 100 | −14.7 |
Particulate matter | disease inc. | 1.74 × 10−8 | 1.63 × 10−8 | −6.2 |
Eutrophication, marine | kg N eq | 4.43 × 10−4 | 4.17 × 10−4 | −5.9 |
Eutrophication, freshwater | kg P eq | 7.31 × 10−5 | 6.67 × 10−5 | −8.8 |
Eutrophication, terrestrial | mol N eq | 3.69 × 10−3 | 3.46 × 10−3 | −6.1 |
Human toxicity, cancer | CTUh | 4.54 × 10−9 | 3.75 × 10−9 | −17.3 |
Human toxicity, non-cancer | CTUh | 4.35 × 10−9 | 4.05 × 10−9 | −7.0 |
Ionizing radiation | kBq U-235 eq | 2.47 × 10−2 | 2.25 × 10−2 | −9.1 |
Land use | Pt | 3.50 × 100 | 3.35 × 100 | −4.1 |
Ozone depletion | kg CFC11 eq | 1.02 × 10−8 | 8.82 × 10−9 | −13.2 |
Photochemical ozone formation | kg NMVOC eq | 1.66 × 10−3 | 1.51 × 10−3 | −8.9 |
Resource use, fossils | MJ | 7.27 × 100 | 6.51 × 100 | −10.5 |
Resource use, minerals and metals | kg Sb eq | 3.93 × 10−6 | 3.65 × 10−6 | −7.1 |
Water use | m3 depriv. | 4.83 × 10−1 | 4.78 × 10−1 | −1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentini, F.; Rigotti, D.; Saletti, M.; Beccaro, A.; Pasquardini, L.; Pegoretti, A.; Dorigato, A. Optimization of the Mechanical Recycling of Phenolic Resins for Household Appliances. Polymers 2024, 16, 3378. https://doi.org/10.3390/polym16233378
Valentini F, Rigotti D, Saletti M, Beccaro A, Pasquardini L, Pegoretti A, Dorigato A. Optimization of the Mechanical Recycling of Phenolic Resins for Household Appliances. Polymers. 2024; 16(23):3378. https://doi.org/10.3390/polym16233378
Chicago/Turabian StyleValentini, Francesco, Daniele Rigotti, Matteo Saletti, Alberto Beccaro, Laura Pasquardini, Alessandro Pegoretti, and Andrea Dorigato. 2024. "Optimization of the Mechanical Recycling of Phenolic Resins for Household Appliances" Polymers 16, no. 23: 3378. https://doi.org/10.3390/polym16233378
APA StyleValentini, F., Rigotti, D., Saletti, M., Beccaro, A., Pasquardini, L., Pegoretti, A., & Dorigato, A. (2024). Optimization of the Mechanical Recycling of Phenolic Resins for Household Appliances. Polymers, 16(23), 3378. https://doi.org/10.3390/polym16233378