Revealing Long-Range Order in Brush-like Graft Copolymers Through In Situ Measurements of X-Ray Scattering During Deformation
"> Figure 1
<p>(<b>a</b>) Representative 2D scattering patterns obtained during uniaxial stretching of sample PDMS-PMMA_3. The extension direction is parallel to the z-axis. (<b>b</b>) Corresponding 1D diffraction profiles extracted from the patterns in (<b>a</b>), along the directions parallel and perpendicular to the stretching axis. The characteristic distances, including interdomain spacing (d<sub>3</sub>), form factor of the <b>A</b>-block domains (d<sub>2</sub>), and bottlebrush peak (d<sub>1</sub>), are indicated. The λ values are specified for each profile. (<b>c</b>) Stress–elongation curve for the same sample.</p> "> Figure 2
<p>(<b>a</b>) Representative 2D scattering patterns obtained during uniaxial stretching of sample PIB_PS_2. The extension direction is oriented at a 45° angle relative to the horizontal axis. (<b>b</b>) Corresponding 1D diffraction profiles extracted from the patterns in (<b>a</b>), along the directions parallel and perpendicular to the stretching axis. The λ values are specified for each profile. (<b>c</b>) Stress–elongation curve for the same sample.</p> "> Figure 3
<p>(<b>a</b>–<b>c</b>) Variation of the normalized values of d<sub>1</sub>, d<sub>2,</sub> and d<sub>3</sub>, respectively, as a function of λ during the stretching of sample PDMS-PMMA_3. The values of d<sub>3,‖</sub> are not measurable above λ of 1.75. The solid lines in (<b>a</b>) represent fits based on Equation (14).</p> "> Figure 4
<p>(<b>a</b>,<b>b</b>) Variation of the normalized values of d<sub>3</sub> and d<sub>2</sub>, respectively, as a function of λ during the stretching of sample PIB_PS_2. The solid lines in (<b>a</b>) represent fits based on Equation (14).</p> "> Figure 5
<p>Detailed view of the small-angle region: the distinctive four-spot pattern characteristic of the deformed brush copolymers. The azimuthal angle (φ) is defined as the angle between the direction of the SAXS maxima and the axis of stretching.</p> "> Figure 6
<p>Variation of the azimuthal angle (φ) as a function of the drawing ratio (λ) for the analyzed comb- and brush-like copolymers. The dashed line represents the analytical prediction based on Equation (15), illustrating the angle between the [111] direction and the normal to the (110) planes of a bcc lattice under the assumption of affine deformation.</p> "> Figure 7
<p>Schematic representation of the affine stretching of a <span class="html-italic">bcc</span> lattice along the [111] direction, illustrating the rotation of (110) planes induced by the applied deformation.</p> "> Figure 8
<p>(<b>a</b>) Snapshot of the system at <span class="html-italic">λ</span> = 1, suggesting a structural arrangement closely resembling a <span class="html-italic">bcc</span> lattice. The backbone and side chain beads are shown in 90% transparent colors. (<b>b</b>) The structure factor for various components within the bottlebrush melt, as well as the scattering intensity from the hydrophobic beads along a single direction, derived from simulation experiments.</p> "> Figure 9
<p>(<b>a</b>) The true stress dependence on <span class="html-italic">λ</span> = <span class="html-italic">L</span>/<span class="html-italic">L</span>_0. The black line corresponds to simulation results, and the red line corresponds to fits with Equation (9). (<b>b</b>) Scattering intensity profiles calculated for the hydrophobic beads along the stretching direction and perpendicular to it, with corresponding 2D SAXS patterns shown as insets. (<b>c</b>) Snapshots of the system at different drawing ratios <span class="html-italic">λ</span>.</p> "> Scheme 1
<p>(<b>a</b>) Chemical structures of the synthesized <b>A</b>-g-<b>B</b> graft copolymers where <b>A</b> stands for poly(methyl methacrylate) or polystyrene and <b>B</b> denotes poly(dimethylsiloxane) or poly(isobutylene). (<b>b</b>) Self-assembly of the <b>A</b>-g-<b>B</b> graft copolymers in a physical network composed of nanometer-sized domains of <b>A</b> connected by the bottlebrush blocks. The variable structural parameters include the length of the bottlebrush backbone n<sub>BB</sub>, length of side chains n<sub>sc</sub>, length of the graft block n<sub>A</sub>, and distance between the grafted blocks n<sub>x</sub>. Upon self-assembly, the system forms domains of block <b>A</b> with a diameter d<sub>2</sub> separated by a distance d<sub>3</sub> and a diameter of the <b>B</b>-block equal d<sub>1</sub>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. X-Ray Scattering
2.2. Computer Simulations
2.2.1. DPD Model
2.2.2. Mechanical Response
2.2.3. Calculation of Scattering
3. Results
3.1. Sample Structure in the Initial Undeformed State
3.2. Evolution of the Sample Structure in the Course of Uniaxial Deformation
3.3. Analysis of the Structural Evolution Using Analogy with Cubic Lattices
3.4. Modeling of the Sample Structure in the Undeformed State and During Uniaxial Deformation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffith, L.G.; Naughton, G. Tissue Engineering-Current Challenges and Expanding Opportunities. Science 2002, 295, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Dudek, D.M.; Cao, Y.; Balamurali, M.M.; Gosline, J.; Li, H. Designed Biomaterials to Mimic the Mechanical Properties of Muscles. Nature 2010, 465, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Verduzco, R.; Li, X.; Pesek, S.L.; Stein, G.E. Structure, Function, Self-Assembly, and Applications of Bottlebrush Copolymers. Chem. Soc. Rev. 2015, 44, 2405–2420. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Choudhury, C.K.; Luzinov, I.; Kuksenok, O. Recent advances towards applications of molecular bottlebrushes and their Conjugates”. Curr. Opin. Solid State Mater. Sci. 2019, 23, 50. [Google Scholar] [CrossRef]
- Lapkriengkri, I.; Albanese, K.R.; Rhode, A.; Cunniff, A.; Pitenis, A.A.; Chabinyc, M.L.; Bates, C.M. Design and Synthesis of Highly Stretchable Thermoplastics via Block Copolymer Bottlebrushes. Annu. Rev. Mater. Res. 2024, 54, 27. [Google Scholar] [CrossRef]
- Karavolias, M.G.; Mahanthappa, M.K. Self-Assembly and Morphological Transformations of Fluorinated Bottlebrush Block Copolymers. Phys. Rev. Mater. 2024, 8, 015603. [Google Scholar] [CrossRef]
- Maw, M.; Morgan, B.J.; Dashtimoghadam, E.; Tian, Y.; Bersenev, E.A.; Maryasevskaya, A.V.; Ivanov, D.A.; Matyjaszewski, K.; Dobrynin, A.V.; Sheiko, S.S. Brush Architecture and Network Elasticity: Path to the Design of Mechanically Diverse Elastomers. Macromolecules 2022, 55, 2940–2951. [Google Scholar] [CrossRef]
- Nikitina, E.A.; Dashtimoghadam, E.; Sheiko, S.S.; Ivanov, D.A. Bottlebrush Elastomers with Crystallizable Side Chains: Monolayer-Like Structure of the Backbones Segregated in Intercrystalline Regions. Polymers 2024, 16, 296. [Google Scholar] [CrossRef]
- Sheiko, S.S.; Sumerlin, B.S.; Matyjaszewski, K. Polymer Brushes: Solutions and Applications. Prog. Polym. Sci. 2008, 33, 759–785. [Google Scholar] [CrossRef]
- Yuan, J.; Müller, A.H.E.; Matyjaszewski, K.; Sheiko, S.S. Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1, pp. 199–264. [Google Scholar]
- Lee, H.; Pietrasik, J.; Sheiko, S.S.; Matyjaszewski, K. Stimuli-Responsive Molecular Brushes for Drug Delivery. Prog. Polym. Sci. 2010, 35, 24–44. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Sommer, G.; Gasser, C.T.; Regitnig, P. Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries with Nonatherosclerotic Intimal Thickening. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2048–H2058. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Xu, F.; Chen, C.Q.; Lu, T.J. Biomechanics of Hard Tissues: Modeling and Experimental Characterization. Philos. Trans. R. Soc. A 2010, 368, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Muiznieks, L.D.; Keeley, F.W. Biochemistry and Cell Biology of Elastin and the Elastin Fibers. Biochim. Biophys. Acta 2013, 1832, 866–875. [Google Scholar] [CrossRef] [PubMed]
- Silver, F.H.; Snowhill, P.B.; Foran, D.J. Mechanical Behavior of Vessel Wall: A Comparative Study of Aorta, Vena Cava, and Carotid Artery. Ann. Biomed. Eng. 2003, 31, 793–803. [Google Scholar] [CrossRef]
- Joodaki, H.; Panzer, M.B. Mechanical Properties of Biomaterials: A Comprehensive Review. Proc. Inst. Mech. Eng. Part H 2018, 232, 323. [Google Scholar] [CrossRef] [PubMed]
- Vatankhah-Varnosfaderani, M.; Keith, A.N.; Cong, Y.; Liang, H.; Rosenthal, M.; Sztucki, M.; Clair, C.; Magonov, S.; Ivanov, D.A.; Dobrynin, A.V.; et al. Adaptive Elastomers with Strain-Adaptive Stiffening and Self-Healing Properties. Science 2018, 359, 1509. [Google Scholar] [CrossRef]
- Drury, J.L.; Mooney, D.J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar] [CrossRef]
- Cooper, B.G.; Stewart, R.C.; Burstein, D.; Snyder, B.D.; Grinstaff, M.W. A Tissue-Penetrating Double Network Restores the Mechanical Properties of Degenerated Articular Cartilage. Angew. Chem. Int. Ed. Engl. 2016, 55, 4226–4230. [Google Scholar] [CrossRef]
- Giammanco, G.E.; Carrion, B.; Coleman, R.M.; Ostrowski, A.D. Photoresponsive Polysaccharide-Based Hydrogels with Tunable Mechanical Properties for Cartilage Tissue Engineering. ACS Appl. Mater. Interfaces 2016, 8, 14423–14429. [Google Scholar] [CrossRef]
- Ghodbane, S.A.; Dunn, M.G. Physical and Mechanical Properties of Cross-Linked Type I Collagen Scaffolds Derived from Bovine, Porcine, and Ovine Tendons. J. Biomed. Mater. Res. Part A 2016, 104, 2685–2692. [Google Scholar] [CrossRef]
- Celiz, A.D.; Smith, J.G.W.; Langer, R.; Anderson, D.G.; Winkler, D.A.; Barrett, D.A.; Davies, M.C.; Young, L.E.; Denning, C.; Alexander, M.R. Materials for Stem Cell Factories of the Future. Nat. Mater. 2014, 13, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Vatankhah-Varnosfaderani, M.; Daniel, W.F.M.; Erhart, M.H.; Pandya, A.A.; Liang, H.; Matyjaszewski, K.; Dobrynin, A.V.; Sheiko, S.S. Mimicking Biological Stress–Strain Behavior with Synthetic Elastomers. Nature 2017, 549, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Keith, A.N.; Clair, C.; Lallam, A.; Bersenev, E.A.; Ivanov, D.A.; Tian, Y.; Dobrynin, A.V.; Sheiko, S.S. Independently Tuning Elastomer Softness and Firmness by Incorporating Side Chain Mixtures into Bottlebrush Network Strands. Macromolecules 2020, 53, 9306–9312. [Google Scholar] [CrossRef]
- Dashtimoghadam, E.; Fahimipour, F.; Keith, A.N.; Vashahi, F.; Popryadukhin, P.; Vatankhah-Varnosfaderani, M.; Sheiko, S.S. Injectable Non-Leaching Tissue-Mimetic Bottlebrush Elastomers as an Advanced Platform for Reconstructive Surgery. Nat Commun 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Albalak, R.J.; Thomas, E.L.; Capel, M.S. Molecular Ordering in Block Copolymers: Morphological Transitions in the Microdomain Structure of Polystyrene-Polybutadiene. Polymer 1997, 38, 3819. [Google Scholar] [CrossRef]
- Dashtimoghadam, E.; Maw, M.; Keith, A.N.; Vashahi, F.; Gordievskaya, Y.D.; Kramarenko, E.Y.; Lallam, A.; Bersenev, E.A.; Ivanov, D.A.; Tian, Y.; et al. Super-soft, Firm, and Strong Elastomers toward Replication of Tissue Viscoelastic Response. Mater. Horiz. 2022, 9, 3022–3030. [Google Scholar] [CrossRef]
- Umarov, A.Z.; Collins, J.; Nikitina, E.A.; Moutsios, I.; Rosenthal, M.; Dobrynin, A.V.; Sheiko, S.S.; Ivanov, D.A. Enhancing the Biomimetic Mechanics of Bottlebrush Graft-Copolymers through Selective Solvent Annealing. Macromol. Rapid Commun. 2024. published online. [Google Scholar] [CrossRef]
- Jeong, J.W.; Park, W.I.; Kim, M.-J.; Ross, C.A.; Jung, Y.S. Highly Tunable Self-Assembled Nanostructures from a Poly(2-vinylpyridine-b-dimethylsiloxane) Block Copolymer. Nano Lett. 2011, 11, 4095–4101. [Google Scholar] [CrossRef]
- Park, W.I.; Kim, J.M.; Jeong, J.W.; Jung, Y.S. Deep-Nanoscale Pattern Engineering by Immersion-Induced Self-Assembly. ACS Nano 2014, 8, 10009. [Google Scholar] [CrossRef]
- Ye, C.; Singh, G.; Wadley, M.L.; Karim, A.; Cavicchi, K.A.; Vogt, B.D. Anisotropic Mechanical Properties of Aligned Polystyrene-block-polydimethylsiloxane Thin Films. Macromolecules 2013, 46, 8608–8615. [Google Scholar] [CrossRef]
- Artopoiadis, K.; Miskaki, C.; Manesi, G.-M.; Ivanov, D.A.; Avgeropoulos, A. Thermal and Bulk Properties of Triblock Terpolymers and Modified Derivatives towards Novel Polymer Brushes. Polymers 2023, 15, 848. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.; Sakamoto, N.; Saijo, K.; Suehiro, S.; Hashimoto, T.; Ito, K.; Amemiya, Y. Time-Resolved SAXS Studies of a Sphere-Forming Block Copolymer under Large Oscillatory Shear Deformation. Macromolecules 2000, 33, 9002–9014. [Google Scholar] [CrossRef]
- Tomita, S.; Shimizu, N.; Igarashi, N. Coalescence of Non-Equilibrium Spheres Through Thermal Annealing in a Polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene Triblock Copolymer Film under a Uniaxially Stretched State. Polym. J. 2017, 49, 519–526. [Google Scholar] [CrossRef]
- Dechnarong, N.; Kamitani, K.; Cheng, C.H.; Masuda, S.; Nozaki, S.; Nagano, C.; Fujimoto, A.; Hamada, A.; Amamoto, Y.; Kojio, K.; et al. Microdomain structure change and macroscopic mechanical response of styrenic triblock copolymer under cyclic uniaxial and biaxial stretching modes. Polym. J. 2021, 53, 703–712. [Google Scholar] [CrossRef]
- Tomita, S.; Lei, L.; Urushihara, Y.; Kuwamoto, S.; Matsushita, T.; Sakamoto, N.; Sasaki, S.; Sakurai, S. Strain-Induced Deformation of Glassy Spherical Microdomains in Elastomeric Triblock Copolymer Films: Simultaneous Measurements of a Stress–Strain Curve with 2D-SAXS Patterns. Macromolecules 2017, 50, 677–686. [Google Scholar] [CrossRef]
- Le Diagon, Y.; Mallarino, S.; Fretigny, C. Particle Structuring under the Effect of Uniaxial Deformation in Soft/Hard Nanocomposites. Eur. Phys. J. E 2007, 22, 77–83. [Google Scholar] [CrossRef]
- Maw, M.; Dashtimoghadam, E.; Keith, A.N.; Morgan, B.J.; Tanas, A.K.; Nikitina, E.; Ivanov, D.A.; Vatankhah-Varnosfaderani, M.; Dobrynin, A.V.; Sheiko, S.S. Sticky Architecture: Encoding Pressure Sensitive Adhesion in Polymer Networks. ACS Cent. Sci. 2023, 9, 197–205. [Google Scholar] [CrossRef]
- Ashiotis, G.; Deschildre, A.; Nawaz, Z.; Wright, J.P.; Karkoulis, D.; Picca, F.E.; Kieffer, J. The Fast Azimuthal Integration Python Library: PyFAI. J. Appl. Crystallogr. 2015, 48, 510–519. [Google Scholar] [CrossRef]
- Hoogerbrugge, P.J.; Koelman, J.M.V.A. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhys. Lett. 1992, 19, 155–160. [Google Scholar] [CrossRef]
- Groot, R.D.; Warren, P.B. Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation. J. Chem. Phys. 1997, 107, 4423–4435. [Google Scholar] [CrossRef]
- Nikunen, P.; Vattulainen, I.; Karttunen, M. Reptational Dynamics in Dissipative Particle Dynamics Simulations of Polymer Melts. Phys. Rev. E 2007, 75, 036713. [Google Scholar] [CrossRef] [PubMed]
- Dobrynin, A.V.; Carrillo, J.-M.Y. Universality in Nonlinear Elasticity of Biological and Polymeric Networks and Gels. Macromolecules 2011, 44, 140–146. [Google Scholar] [CrossRef]
- Rymaruk, M.J.; O’Brien, C.T.; György, C.; Darmau, B.; Jennings, J.; Mykhaylyk, O.O.; Armes, S.P. Small-Angle X-Ray Scattering Studies of Block Copolymer Nano-Objects: Formation of Ordered Phases in Concentrated Solution During Polymerization-Induced Self-Assembly. Angew. Chem. Int. Ed. 2021, 133, 13065–13073. [Google Scholar] [CrossRef]
- Liberman, L.; Coughlin, M.L.; Weigand, S.; Bates, F.S.; Lodge, T.P. Phase Behavior of Linear-Bottlebrush Block Polymers. Macromolecules 2022, 55, 2821–2831. [Google Scholar] [CrossRef]
- Clair, C.; Lallam, A.; Rosenthal, M.; Sztucki, M.; Vatankhah-Varnosfaderani, M.; Keith, A.N.; Cong, Y.; Liang, H.; Dobrynin, A.V.; Sheiko, S.S.; et al. Strained Bottlebrushes in Super-Soft Physical Networks. ACS Macro Lett. 2019, 8, 530–534. [Google Scholar] [CrossRef]
- Vashahi, F.; Martinez, M.; Cong, Y.; Dashtimoghadam, E.; Fahimpour, F.; Keith, A.N.; Bersenev, E.A.; Ivanov, D.A.; Zhulina, E.B.; Matyjaszewski, K.; et al. Injectable Hydrogels with Tissue-Adaptive Gelation and Mechanical Properties. Sci. Adv. 2022, 8, 1–12. [Google Scholar] [CrossRef]
- Keith, A.N.; Vatankhah-Varnosfaderani, M.; Clair, C.; Fahimipour, F.; Dashtimoghadam, E.; Lallam, A.; Sztucki, M.; Ivanov, D.; Liang, H.; Dobrynin, A.; et al. Bottlebrush Bridge Between Soft Gels and Firm Tissues. ACS Cent. Sci. 2020, 6, 413–419. [Google Scholar] [CrossRef]
- Doi, T.; Takagi, H.; Shimizu, N.; Igarashi, N.; Sakurai, S. Effects of drying temperature in solution coating process on the structural changes upon uniaxial stretching of sphere-forming block copolymer films. Polym. J. 2020, 52, 421–433. [Google Scholar] [CrossRef]
- Beranek, P.; Posocco, P.; Posel, Z. Phase behavior of gradient copolymer melts with different gradient strengths revealed by mesoscale simulations. Polymers 2020, 12, 2462. [Google Scholar] [CrossRef]
Sample Name | nsc 1 | nx 2 | nA 3 | ΦA 4 | nBB 5 | ng 6 | E0 7 (kPa) | max 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
poly[MMA-g-(PDMS/PMMA)] | |||||||||
PDMS-PMMA_1 | 14 | 149 | 53 | 0.029 | 210 | 1 | 16.9 | 1.92 | 0.42 |
PDMS-PMMA_2 | 14 | 149 | 63 | 0.034 | 607 | 1 | 26.6 | 2.14 | 0.42 |
PDMS-PMMA_3 | 14 | 149 | 62 | 0.034 | 1935 | 1 | 31.4 | 2.92 | 0.40 |
PDMS-PMMA_4 | 14 | 149 | 81 | 0.044 | 1935 | 1 | 53.1 | 2.26 | 0.46 |
poly[nBA-ran-MMA-g-(PIB/PS)] | |||||||||
PIB_PS_1 | 18 | 452 | 60 | 0.05 | 1265 | 8 | 59.9 | 3.85 | 0.16 |
PIB_PS_2 | 18 | 803 | 120 | 0.05 | N/A | 8 | 25.6 | 4.75 | 0.16 |
PIB_PS_3 | 18 | 360 | 60 | 0.05 | 1259 | 4 | 51.0 | 3.63 | 0.22 |
Sample Name | d3, nm 1 | d2, nm 2 | d1, nm 3 | Q 4 | Sin, nm 2,5 | S0, nm 2,6 |
---|---|---|---|---|---|---|
poly[nBA-ran-MMA-g-(PIB/PS)] | ||||||
PIB_PS_1 | 19.7 | 11.2 | N/A | 72 | 2.7 | N/A |
PIB_PS_2 | 27.3 | 16.8 | 6.7 | 121 | 3.7 | 51.8 |
PIB_PS_3 | 18.4 | 11.9 | N/A | 86 | 2.6 | N/A |
poly[MMA-g-(PDMS/PMMA)] | ||||||
PDMS-PMMA_1 | 28.5 | 11.6 | 3.4 | 107 | 2.0 | 13.3 |
PDMS-PMMA_2 | 31.1 | 14.5 | 3.4 | 175 | 1.9 | 13.3 |
PDMS-PMMA_3 | 32.0 | 14.9 | 3.4 | 193 | 1.8 | 13.3 |
PDMS-PMMA_4 | 27.6 | 13.6 | 3.4 | 125 | 2.5 | 13.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umarov, A.Z.; Nikitina, E.A.; Piryazev, A.A.; Moutsios, I.; Rosenthal, M.; Kurbatov, A.O.; Gordievskaya, Y.D.; Kramarenko, E.Y.; Dashtimoghadam, E.; Maw, M.R.; et al. Revealing Long-Range Order in Brush-like Graft Copolymers Through In Situ Measurements of X-Ray Scattering During Deformation. Polymers 2024, 16, 3309. https://doi.org/10.3390/polym16233309
Umarov AZ, Nikitina EA, Piryazev AA, Moutsios I, Rosenthal M, Kurbatov AO, Gordievskaya YD, Kramarenko EY, Dashtimoghadam E, Maw MR, et al. Revealing Long-Range Order in Brush-like Graft Copolymers Through In Situ Measurements of X-Ray Scattering During Deformation. Polymers. 2024; 16(23):3309. https://doi.org/10.3390/polym16233309
Chicago/Turabian StyleUmarov, Akmal Z., Evgeniia A. Nikitina, Alexey A. Piryazev, Ioannis Moutsios, Martin Rosenthal, Andrey O. Kurbatov, Yulia D. Gordievskaya, Elena Yu. Kramarenko, Erfan Dashtimoghadam, Mitchell R. Maw, and et al. 2024. "Revealing Long-Range Order in Brush-like Graft Copolymers Through In Situ Measurements of X-Ray Scattering During Deformation" Polymers 16, no. 23: 3309. https://doi.org/10.3390/polym16233309
APA StyleUmarov, A. Z., Nikitina, E. A., Piryazev, A. A., Moutsios, I., Rosenthal, M., Kurbatov, A. O., Gordievskaya, Y. D., Kramarenko, E. Y., Dashtimoghadam, E., Maw, M. R., Sheiko, S. S., & Ivanov, D. A. (2024). Revealing Long-Range Order in Brush-like Graft Copolymers Through In Situ Measurements of X-Ray Scattering During Deformation. Polymers, 16(23), 3309. https://doi.org/10.3390/polym16233309