Novel Treatment of 3D-Printed Short-Carbon-Fiber-Reinforced Polyamide (3D-SCFRPA66) Using Homogeneous Low-Potential Electron Beam Irradiation (HLEBI) and Ductility Enhancement
<p>Rational formulae of (<b>a</b>) thermoplastic polyamide 66 and (<b>b</b>) indicating bond-dissociation energies (BDEs) [<a href="#B6-polymers-16-03408" class="html-bibr">6</a>,<a href="#B7-polymers-16-03408" class="html-bibr">7</a>,<a href="#B8-polymers-16-03408" class="html-bibr">8</a>,<a href="#B9-polymers-16-03408" class="html-bibr">9</a>]. Carbon, nitrogen, oxygen, and hydrogen symbols are depicted in black, green, blue, and black (smaller letters). For the (-N-H) bond, accurate data have not been found [<a href="#B9-polymers-16-03408" class="html-bibr">9</a>].</p> "> Figure 2
<p>Schematic of 3D-printing process (not to scale).</p> "> Figure 3
<p>Schematic of (<b>a</b>) dog-bone specimen dimensions; and (<b>b</b>) printer cross angle head movement of 45 deg angle with respect to specimen length.</p> "> Figure 4
<p>Tensile stress–strain curves of 3D-SCFRAP66 with each dose of 210 kV-HLEBI.</p> "> Figure 5
<p>Photograph of fractured 3D-SCFRPA66 samples untreated and treated by 210 kV-HLEBI.</p> "> Figure 6
<p>Plots of (<b>a</b>) change in tensile parameters: elongation ε<sub>ts</sub>, ε<sub>f</sub>, and (Δε<sub>ppd</sub> = ε<sub>f</sub> − ε<sub>ts</sub>); along with (<b>b</b>) the toughness E<sub>hd</sub> (MPa·m) of 3D-SCFRPA66 against HLEBI dose.</p> "> Figure 7
<p>ESR signals for 200 kGy HLEBI-treated and untreated Nylon 6 samples. Adapted from Nishi et al. (2008) [<a href="#B51-polymers-16-03408" class="html-bibr">51</a>].</p> "> Figure 8
<p>SEM micrographs of 3D-SCFRPA66: (<b>a</b>) untreated; and (<b>b</b>) treated with 43 kGy-HLEBI.</p> "> Figure 9
<p>Changes in (<b>a</b>) tensile strength and (<b>b</b>) initial elasticity (Young’s Modulus), [dσ/dε]<sub>i:</sub> (GPa) in 3D-SCFRPA66 against HLEBI dose.</p> ">
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Preparation of 3D-SCFRPAA66
2.2. Tensile Tests
2.3. Homogeneous Low Voltage Electron Beam Irradiation (HLEBI)
3. Results
3.1. Influence of Short CF Addition and 3D Printing: Comparing 3D-SCFRPA66 with PA66 Resin
3.2. Effect of HLEBI on Ductility of 3D-SCFRPA66
4. Discussion
4.1. Effect of HLEBI Increasing Tensile Parameters,εts, εf, and Δεppd and Toughness, Epd of 3D-SCFRPA66
4.2. Influence of HLEBI on Tensile Strength and Young’s Modulus of 3D-SCFRPA66
4.3. Effects of Higher HLEBI Doses of 86, 129, and 215 kGy
4.4. Future Scope
5. Conclusions
- Applying HLEBI at doses of either 43, 86, 129, or 215 kGy to both sides of the 3D-SCFRPA66 samples significantly increases ductility (εts, εf, and Δεppd) over untreated samples. Notably, the toughness parameter Ehd (MPa·m) is also substantially increased. Particularly, the 43 kGy HLEBI dose appears to be the optimum out of the doses tested, increasing εts, εf, Δεppd, and Ehd by 771%, 829%, 1433%, and 404%, respectively, from 0.031, 0.034, 0.003, and 1.20 MPa·m (untreated) to 0.270, 0.316, 0.046, and 6.05 MPa·m (43 kGy).
- Applying a 43 kGy dose results in the substantial strain enhancements of εts, εf, and Δεppd, which are in turn decreased sharply at 86 kGy, and then are increased gradually again from 129 to 215 kGy. Electron spin resonance (ESR) data in the literature show HLEBI creates dangling bonds in Nylon 6 as evidenced by sharp peak generation. Thus, since PA66 and Nylon 6 are constructed of C, N, and O and have a similar molecular structure, HLEBI apparently severs the (-C-N-) bonds in the backbone of PA66 (see Figure 1), which are at the lowest bond-dissociation energy (BDE) in the PA66 chain at ~326–335 kJmol−1. This shortens the chains and increases ductility. Thus, by applying HLEBI at a 43 kGy dose, a state of matter can be achieved for the highest strain and toughness properties.
- However, caution is advised since there is a tradeoff that increasing ductility and toughness decrease the tensile strength and Young’s modulus in the 3D-SCFRPA66 for all doses tested: 43, 86, 129, and 215 kGy. The 43 kGy-HLEBI dose largely decreases the σts to 21.5 MPa, 50% lower than that of the untreated samples, while decreasing [dσ/dε]i 77% from 4.94 to 0.96 GPa. This tradeoff can possibly allow the HLEBI dose to be adjusted for desired ductility and strength, while minimizing energy consumption.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohd Radzuan, N.A.; Khalid, N.N.; Foudzi, F.M.; Rajendran Royan, N.R.; Sulong, A.B. Mechanical Analysis of 3D Printed Polyamide Composites under Different Filler Loadings. Polymers 2023, 15, 1846. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liang, T.; Zhang, C.; Chen, J. The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite. Phys. Fluids 2023, 35, 32002. [Google Scholar] [CrossRef]
- Chauhan, V.; Kärki, T.; Varis, J. Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J. Thermoplast. Compos. Mater. 2019, 35, 1169–1209. [Google Scholar] [CrossRef]
- Coeck, R.; De Vos, D.E. Effective and sustainable depolymerization of Nylon 66—A transamidation for the complete recycling of polyamides. Chem. Commun. 2024, 60, 1444–1447. [Google Scholar] [CrossRef]
- Konopa, S.L.; Mulholland, J.A.; Realff, M.J.; Lemieux, P.M. Emissions from Carpet Combustion in a Pilot-Scale Rotary Kiln: Comparison with Coal and Particle-Board Combustion. J. Air Waste Manage. Assoc. 2008, 58, 1070–1076. [Google Scholar] [CrossRef]
- James, A.; Lord, M. Macmillan’s Chemical and Physical Data; The Macmillan Press, Ltd.: London, UK; Basingstoke, UK, 1992; pp. 398–399, 484–485. ISBN 0-333-51167-0. [Google Scholar]
- Gordon, A.; Ford, R. The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References; Wiley Interscience Publication: New York, NY, USA, 1972; pp. 112–113. ISBN 978-0-471-31590-2. [Google Scholar]
- The Chemical Society of Japan. Kagaku Binran-Kisohen (Chemical Handbook, Primary); ver. 5; Marzen: Tokyo, Japan, 2003; pp. 315–317. [Google Scholar]
- Demaison, J.; Margules, L.; Boggs, J.E. The Equilibrium N−H Bond Length. Chem. Phys. 2000, 260, 65–81. [Google Scholar] [CrossRef]
- Xue, R.; Yuan, P.; Zhao, B.; Jing, F.; Kou, X.; Yue, W.; Hu, D. DLP printing of BT/HA nanocomposite ceramic scaffolds using low refractive index BT crystals. J. Mater. 2024, 10, 1036–1048. [Google Scholar] [CrossRef]
- Kuclourya, T.; Monroy, R.; Castillo, M.; Baca, D.; Ahmad, R. Design of a hybrid high-throughput fused deposition modeling system for circular economy applications. Clean Technol. Recycl. 2022, 2, 170–198. [Google Scholar] [CrossRef]
- Kong, X.; Sun, G.; Luo, Q.; Brykin, V.; Qian, J. Experimental and theoretical studies on 3D printed short and continuous carbon fiber hybrid reinforced composites. Thin-Walled Struct. 2024, 205, 112406. [Google Scholar] [CrossRef]
- Katalagarianakis, A.; Polyzos, E.; Van Hemelrijck, D.; Pyl, L. Mode I, mode II and mixed mode I-II delamination of carbon fibre-reinforced polyamide composites 3D-printed by material extrusion. Composites A 2023, 173, 107655. [Google Scholar] [CrossRef]
- Zhang, W.; Kang, S.; Liu, X.; Lin, B.; Huang, Y. Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate. J. Bldg. Engr. 2023, 71, 106522. [Google Scholar] [CrossRef]
- He, J.; Yang, J.; McCutcheon, J.R.; Li, Y. Molecular insights into the structure-property relationships of 3D printed polyamide reverse-osmosis membrane for desalination. J. Membr. Sci. 2022, 658, 120731. [Google Scholar] [CrossRef]
- Mehdipour, F.; Gebhardt, U.; Kästner, M. Anisotropic and rate-dependent mechanical properties of 3D printed polyamide 12—A comparison between selective laser sintering and multijet fusion. Results Mater. 2021, 11, 100213. [Google Scholar] [CrossRef]
- Abdallah, S.; Ali, S.; Pervaiz, S. Performance optimization of 3D printed polyamide 12 via Multi Jet Fusion: A Taguchi grey relational analysis (TGRA). Intl. J. Lightweight Mater. Manuf. 2023, 6, 72–81. [Google Scholar] [CrossRef]
- Lakshman Sri, S.V.; Karthick, A.; Dinesh, C. Evaluation of mechanical properties of 3D printed PETG and Polyamide (6) polymers. Chem. Phys. Impact 2024, 8, 100491. [Google Scholar]
- Pejkowski, L.; Seyda, J.; Nowicki, K.; Mrozik, D. Mechanical performance of non-reinforced, carbon fiber reinforced and glass bubbles reinforced 3D printed PA12 polyamide. Polym. Test. 2023, 118, 107891. [Google Scholar] [CrossRef]
- Hriberšek, M.; Kulovec, S.; Ikram, A.; Kern, M.; Kastelic, L.; Pušavec, F. Technological optimization and fatigue evaluation of carbon reinforced polyamide 3D printed gears. Heliyon 2024, 10, e34037. [Google Scholar] [CrossRef]
- Hou, Y.; Panesar, A. The moisture absorption of additively manufactured short carbon fibre reinforced polyamide. Composites A 2025, 188, 108528. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, Y.; Li, S.; Wang, K.; Yao, S.; Liu, Z.; Garmestani, H. Tailorable rigidity and energy-absorption capability of 3D printed continuous carbon fiber reinforced polyamide composites. Compos. Sci. Technol. 2020, 199, 108337. [Google Scholar] [CrossRef]
- Kreider, P.B.; Cardew-Hall, A.; Sommacal, S.; Chadwick, A.; Hümbert, S.; Nowotny, S.; Nisbet, D.; Tricoli, A.; Compston, P. The effect of a superhydrophobic coating on moisture absorption and tensile strength of 3D-printed carbon-fibre/polyamide. Composites A 2021, 145, 106380. [Google Scholar] [CrossRef]
- Gong, P.; Hao, L.; Li, Y.; Li, Z.; Xiong, W. 3D-printed carbon fiber/polyamide-based flexible honeycomb structural absorber for multifunctional broadband microwave absorption. Carbon 2021, 185, 272–281. [Google Scholar] [CrossRef]
- Morales, U.; Esnaola, A.; Iragi, M.; Aretxabaleta, L.; Aurrekoetxea, J. The effect of cross-section geometry on crushing behaviour of 3D printed continuous carbon fibre reinforced polyamide profiles. Compos. Struct. 2021, 274, 114337. [Google Scholar] [CrossRef]
- He, Q.; Ye, L.; Kinloch, A.J. The essential work of fracture method for the characterisation of fusion bonding in 3D printed short carbon-fibre reinforced polyamide 6 thin films. Compos. Sci. Technol. 2022, 230, 109361. [Google Scholar] [CrossRef]
- Pizzorni, M.; Prato, M. Effects of hygrothermal aging on the tensile and bonding performance of consolidated 3D printed polyamide-6 composites reinforced with short and multidirectional continuous carbon fibers. Composites A 2023, 165, 107334. [Google Scholar] [CrossRef]
- Sukia, I.; Esnaola, A.; Erice, B.; Aurrekoetxea, J. Impact behaviour of bio-inspired sandwich panels integrally manufactured from 3D printed continuous carbon fibre reinforced polyamide. Compos. Sci. Technol. 2024, 250, 110515. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, B.; Zhao, W.; Wang, G. Enhancing flame retardancy in 3D printed polyamide composites using directionally arranged recycled carbon fiber. Composites B 2024, 287, 111854. [Google Scholar] [CrossRef]
- Ateeq, M.; Akbar, A.; Shafique, M. Advancing Circular Economy: Comparative Analysis of Recycled and Virgin Carbon Fiber 3D Printed Composites on Performance and Eco-Efficiency. Polymer 2024, 127865, in press. [Google Scholar] [CrossRef]
- Ghabezi, P.; Sam-Daliri, O.; Flanagan, T.; Walls, M.; Harrison, N.M. Circular economy innovation: A deep investigation on 3D printing of industrial waste polypropylene and carbon fibre composites. Resour. Conserv. Recycl. 2024, 206, 107667. [Google Scholar] [CrossRef]
- Chen, Y.; Klingler, A.; Fu, K.; Ye, L. 3D printing and modelling of continuous carbon fibre reinforced composite grids with enhanced shear modulus. Engr. Struct. 2023, 286, 116165. [Google Scholar] [CrossRef]
- Khalid, N.N.; Awang Adi, F.Z.; Mohd Radzuan, N.A.; Sulong, A.B. Shear Test Characterization of 3D Printed Polyamide Reinforced Carbon Fiber Composites. J. Kejuruter. 2023, 35, 431–436. [Google Scholar] [CrossRef]
- Khalid, N.N.; Radzuan, N.A.; Sulong, A.B.; Mohd Foudzi, F.; Hasran, A. Rheological Test of Flowability and Diffusion Behavior of Carbon Fibre Reinforced. J. Kejuruter. 2023, 15, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Panesar, A. Effect of Manufacture-Induced Interfaces on the Tensile Properties of 3D Printed Polyamide and Short Carbon Fibre-Reinforced Polyamide Composites. Polymers 2023, 15, 773. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, G.; Di, Y.; Wang, H.; Wang, P.; Dong, L.; Huang, Y.; Jin, G. Fast reversion of hydrophility-superhydrophobicity on textured metal surface by electron beam irradiation. Appl. Surf. Sci. 2024, 669, 160455. [Google Scholar] [CrossRef]
- Nishi, Y.; Tsuyuki, N.; Uchida, H.T.; Faudree, M.C.; Sagawa, K.; Kanda, M.; Matsumura, Y.; Salvia, M.; Kimura, H. Increasing Bending Strength of Polycarbonate Reinforced by Carbon Fiber Irradiated by Electron Beam. Polymers 2023, 15, 4350. [Google Scholar] [CrossRef]
- Faudree, M.C.; Nishi, Y.; Gruskiewicz, M. Effects of electron beam irradiation on Charpy impact value of short solidification texture angles from zero to 90 degrees. Mater. Trans. 2012, 53, 1412–1419. [Google Scholar] [CrossRef]
- Nishi, Y.; Mizutani, A.; Kimura, A.; Toriyama, T.; Oguri, K.; Tonegawa, A. Effects of sheet electron beam irradiation on aircraft design stress of carbon fiber. J. Mater. Sci. 2003, 38, 89–92. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Oguri, K.; Tonegawa, A.; Nishi, Y. Brittleness control of silica glass surface irradiated by sheet electron beam. J. Jpn. Inst. Met. 2004, 68, 198–201. [Google Scholar] [CrossRef]
- Sato, H.; Inoue, Y.; Iwata, K.; Tonegawa, A.; Nishi, Y. Influence of Electron Beam Irradiation on Impact Value of Acryl Resin. J. Jpn. Inst. Met. 2008, 72, 520–525. [Google Scholar] [CrossRef]
- Takei, H.; Salvia, M.; Vautrin, A.; Tonegawa, A.; Nishi, Y. Effects of electron beam irradiation on elasticity of CFRTP (CF/PEEK). Mater. Trans. 2011, 52, 734–739. [Google Scholar] [CrossRef]
- Rybnikar, F.; Geil, P.H. Interactions at the PA-6/PA-66 interface. J. Appl. Polym. Sci. 1992, 46, 797–803. [Google Scholar] [CrossRef]
- Sami, S. Mechanical Performance of Polyamid 66 and Influence of Glass Fiber Content on Moisture Absorption. Mater. Test. 2014, 56, 325–330. [Google Scholar] [CrossRef]
- JIS K 7161-2; Plastics-Determination of Tensile Properties-Part 2: Test Conditions for Moulding and Extrusion Plastics. Japanese Industrial Standards (Japanese Standards Association): Tokyo, Japan, 2012.
- Miura, E.; Uchida, H.T.; Okazaki, T.; Sagawa, K.; Satoh, F.; Irie, H.; Faudree, M.C.; Salvia, M.; Kimura, H.; Nishi, Y. Electron beam irradiation induced Superplasticity of Brittle 3D-printing Shaped Short Carbon Fibers Reinforced Polyamide66 (3D-SCFRPA66)). in submitting, private communication.
- Christenhusz, R.; Reimer, L. Schichtdickenabhangigkeit der warmerzeugungdurch elektronenbestrahlung im energiebereichzwischen 9 und 100 keV. Z. Angew. Phys. 1967, 23, 396–404. [Google Scholar]
- Sagawa, K.; Kimura, H.; Ishiwata, T.; Faudree, M.C.; Uchida, H.T.; Nishi, Y. Effects of Irradiation Dose of Sheet-Like ElectronBeam and its Cathode Voltage on Impact Strength of Carbon Fiber Reinforced Thermoplastic Polyamide just before Shipping. Mater. Sci. Forum 2023, 1094, 25–33. [Google Scholar] [CrossRef]
- Mitsubishi Chemical Group. Available online: https://www.mcam.com/mam/53138/GEP-Ertalon%C2%AE%2066%20SA%20PA66_en_US.pdf (accessed on 24 November 2024).
- Shackelford, J.F. Introduction to Materials Science for Engineers, 5th ed.; Prentice Hall International: London, UK, 2000; p. 273. [Google Scholar]
- Nishi, Y.; Suenaga, R.; Vautrin, A. Influence of Rapid Homogeneous Irradiation of Electron Beam with Low Energy (RHIEBL) on Water Absorption into Nylon 6. Mater Trans. 2008, 49, 2692–2697. [Google Scholar] [CrossRef]
- Faudree, M.C.; Uchida, H.T.; Kimura, H.; Kaneko, S.; Salvia, M.; Nishi, Y. Advances in Titanium/Polymer Hybrid Joints by Carbon Fiber Plug Insert: Current Status and Review. Materials 2022, 15, 3220. [Google Scholar] [CrossRef]
- Kimura, H.; Takeda, K.; Uchida, H.T.; Faudree, M.C.; Sagawa, K.; Kaneko, S.; Salvia, M.; Nishi, Y. Strengthening Process by Electron Beam to Carbon Fiber for Impact Strength Enhancement of Interlayered Thermoplastic-Polypropylene Carbon Fiber Composite. Materials 2022, 15, 7620. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, L.; Yan, J.; Wu, Z. Room-to-low temperature thermo-mechanical behavior and corresponding constitutive model of liquid oxygen compatible epoxy composites. Compos. Sci. Technol. 2024, 245, 110357. [Google Scholar] [CrossRef]
Treatment | εts | εf | Δεppd | Ehd (MPa·m) | σts (MPa) | [dσ/dε]i (GPa) |
---|---|---|---|---|---|---|
Untreated | 0.031 | 0.034 | 0.003 | 1.20 | 43.0 | 4.24 |
43 kGy | 0.270 | 0.316 | 0.046 | 6.05 | 21.5 | 0.96 |
86 kGy | 0.085 | 0.120 | 0.035 | 4.30 | 39.0 | 4.04 |
129 kGy | 0.147 | 0.176 | 0.029 | 4.30 | 26.0 | 2.56 |
215 kGy | 0.160 | 0.194 | 0.034 | 4.67 | 25.0 | 2.23 |
Treatment | εts | εf | Δεppd | Ehd (MPa·m) | σts (MPa) | [dσ/dε]i (GPa) |
---|---|---|---|---|---|---|
Untreated | - | - | - | - | - | - |
43 kGy | 771% | 829% | 1433% | 404% | −50% | −77% |
86 kGy | 174% | 253% | 1067% | 258% | −9% | −5% |
129 kGy | 374% | 418% | 867% | 258% | −40% | −40% |
215 kGy | 416% | 471% | 1033% | 289% | −42% | −47% |
XPS Peak Intensity | O | N | C |
---|---|---|---|
Unt’d ==> HLEBI | decreased and increased | decreased | increased |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miura, E.; Uchida, H.T.; Okazaki, T.; Sagawa, K.; Faudree, M.C.; Salvia, M.; Kimura, H.; Nishi, Y. Novel Treatment of 3D-Printed Short-Carbon-Fiber-Reinforced Polyamide (3D-SCFRPA66) Using Homogeneous Low-Potential Electron Beam Irradiation (HLEBI) and Ductility Enhancement. Polymers 2024, 16, 3408. https://doi.org/10.3390/polym16233408
Miura E, Uchida HT, Okazaki T, Sagawa K, Faudree MC, Salvia M, Kimura H, Nishi Y. Novel Treatment of 3D-Printed Short-Carbon-Fiber-Reinforced Polyamide (3D-SCFRPA66) Using Homogeneous Low-Potential Electron Beam Irradiation (HLEBI) and Ductility Enhancement. Polymers. 2024; 16(23):3408. https://doi.org/10.3390/polym16233408
Chicago/Turabian StyleMiura, Eiichi, Helmut Takahiro Uchida, Taisuke Okazaki, Kohei Sagawa, Michael C. Faudree, Michelle Salvia, Hideki Kimura, and Yoshitake Nishi. 2024. "Novel Treatment of 3D-Printed Short-Carbon-Fiber-Reinforced Polyamide (3D-SCFRPA66) Using Homogeneous Low-Potential Electron Beam Irradiation (HLEBI) and Ductility Enhancement" Polymers 16, no. 23: 3408. https://doi.org/10.3390/polym16233408
APA StyleMiura, E., Uchida, H. T., Okazaki, T., Sagawa, K., Faudree, M. C., Salvia, M., Kimura, H., & Nishi, Y. (2024). Novel Treatment of 3D-Printed Short-Carbon-Fiber-Reinforced Polyamide (3D-SCFRPA66) Using Homogeneous Low-Potential Electron Beam Irradiation (HLEBI) and Ductility Enhancement. Polymers, 16(23), 3408. https://doi.org/10.3390/polym16233408