Effect of Promising Sustainable Nano-Reinforcements on Polysulfone/Polyvinylpyrrolidone-Based Membranes: Enhancing Mechanical Properties and Water Filtration Performance
<p>The main production steps of PSf/PVP-based membranes.</p> "> Figure 2
<p>Test machine for tensile testing of membranes.</p> "> Figure 3
<p>The viscosity of casting solutions prepared for the production of PSf/PVP-based membranes.</p> "> Figure 4
<p>SEM surface images of PSf/PVP-based membranes: (<b>a</b>) PSf/PVP, (<b>b</b>) PSf/PVP/CNC-0.5, (<b>c</b>) PSf/PVP/CNC-1, (<b>d</b>) PSf/PVP/CNF-0.5, (<b>e</b>) PSf/PVP/CNF-1, and (<b>f</b>) PSf/PVP/CNC-CNF.</p> "> Figure 5
<p>(1) Two-dimensional and (2) three-dimensional AFM images of PSf/PVP-based membranes: (<b>a<sub>1</sub></b>,<b>a<sub>2</sub></b>) PSf/PVP, (<b>b<sub>1</sub></b>,<b>b<sub>2</sub></b>) PSf/PVP/CNC-0.5, (<b>c<sub>1</sub></b>,<b>c<sub>2</sub></b>) PSf/PVP/CNC-1, (<b>d<sub>1</sub></b>,<b>d<sub>2</sub></b>) PSf/PVP/CNF-0.5, (<b>e<sub>1</sub></b>,<b>e<sub>2</sub></b>) PSf/PVP/CNF-1, and (<b>f<sub>1</sub></b>,<b>f<sub>2</sub></b>) PSf/PVP/CNC-CNF.</p> "> Figure 5 Cont.
<p>(1) Two-dimensional and (2) three-dimensional AFM images of PSf/PVP-based membranes: (<b>a<sub>1</sub></b>,<b>a<sub>2</sub></b>) PSf/PVP, (<b>b<sub>1</sub></b>,<b>b<sub>2</sub></b>) PSf/PVP/CNC-0.5, (<b>c<sub>1</sub></b>,<b>c<sub>2</sub></b>) PSf/PVP/CNC-1, (<b>d<sub>1</sub></b>,<b>d<sub>2</sub></b>) PSf/PVP/CNF-0.5, (<b>e<sub>1</sub></b>,<b>e<sub>2</sub></b>) PSf/PVP/CNF-1, and (<b>f<sub>1</sub></b>,<b>f<sub>2</sub></b>) PSf/PVP/CNC-CNF.</p> "> Figure 5 Cont.
<p>(1) Two-dimensional and (2) three-dimensional AFM images of PSf/PVP-based membranes: (<b>a<sub>1</sub></b>,<b>a<sub>2</sub></b>) PSf/PVP, (<b>b<sub>1</sub></b>,<b>b<sub>2</sub></b>) PSf/PVP/CNC-0.5, (<b>c<sub>1</sub></b>,<b>c<sub>2</sub></b>) PSf/PVP/CNC-1, (<b>d<sub>1</sub></b>,<b>d<sub>2</sub></b>) PSf/PVP/CNF-0.5, (<b>e<sub>1</sub></b>,<b>e<sub>2</sub></b>) PSf/PVP/CNF-1, and (<b>f<sub>1</sub></b>,<b>f<sub>2</sub></b>) PSf/PVP/CNC-CNF.</p> "> Figure 6
<p>XRD patterns of PSf/PVP-based membranes: (<b>a</b>) PSf/PVP, (<b>b</b>) PSf/PVP/CNC-1, (<b>c</b>) PSf/PVP/CNF-1, and (<b>d</b>) PSf/PVP/CNC-CNF.</p> "> Figure 7
<p>Porosity and average pore size of PSf/PVP-based membranes.</p> "> Figure 8
<p>Average stress–strain curves of PSf/PVP-based membranes.</p> "> Figure 9
<p>Elasticity modulus and tensile strength of PSf/PVP-based membranes.</p> "> Figure 10
<p>Elongation at break values of PSf/PVP-based membranes.</p> "> Figure 11
<p>Equivalent von Mises stress distribution in RVE of PSf/PVP/CNC-CNF membrane: (<b>a</b>) whole RVE, (<b>b</b>) cross-section of the RVE, (<b>c</b>) whole RVE with mesh structure, and (<b>d</b>) cross-section of the RVE with mesh structure.</p> "> Figure 11 Cont.
<p>Equivalent von Mises stress distribution in RVE of PSf/PVP/CNC-CNF membrane: (<b>a</b>) whole RVE, (<b>b</b>) cross-section of the RVE, (<b>c</b>) whole RVE with mesh structure, and (<b>d</b>) cross-section of the RVE with mesh structure.</p> "> Figure 11 Cont.
<p>Equivalent von Mises stress distribution in RVE of PSf/PVP/CNC-CNF membrane: (<b>a</b>) whole RVE, (<b>b</b>) cross-section of the RVE, (<b>c</b>) whole RVE with mesh structure, and (<b>d</b>) cross-section of the RVE with mesh structure.</p> "> Figure 12
<p>Water fluxes of PSf/PVP-based membranes at 3 bar.</p> "> Figure 13
<p>UV254 and TOC removal efficiency of PSf/PVP-based membranes.</p> "> Figure 14
<p>SEM surface images of fouled–cleaned PSf/PVP-based membranes: (<b>a</b>) PSf/PVP, (<b>b</b>) PSf/PVP/CNC-0.5, (<b>c</b>) PSf/PVP/CNC-1, (<b>d</b>) PSf/PVP/CNF-0.5, (<b>e</b>) PSf/PVP/CNF-1, and (<b>f</b>) PSf/PVP/CNC-CNF.</p> "> Figure 15
<p>FRR values and fouling parameters of PSf/PVP-based membranes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of PSf/PVP-Based Flat Sheet Membranes
2.3. Membrane Characterisation
2.4. Water Flux and Rejection Performance of Membranes
2.5. Antifouling Performance of Membranes
2.6. Estimation of Mechanical Properties of Nanocomposite Membranes with Models
3. Results and Discussion
3.1. Viscosity of Membrane Casting Solutions
3.2. Membrane Surface Morphology
3.3. AFM Images and Roughness of Membranes
3.4. XRD Patterns of Membranes
3.5. Porosity and Average Pore Size of Membranes
3.6. Mechanical Properties of Membranes
3.7. Comparison of Experimental Mechanical Properties of Membrane with Model Results
3.8. Water Flux Performance of Membranes
3.9. UV254 and TOC Removal Performance of Membranes
3.10. Antifouling Ability of Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, C.D.; Rantissi, T.; Gitis, V.; Hankins, N.P. Retention of Natural Organic Matter by Ultrafiltration and the Mitigation of Membrane Fouling through Pre-Treatment, Membrane Enhancement, and Cleaning–A Review. J. Water Process Eng. 2021, 44, 102374. [Google Scholar] [CrossRef]
- Madhura, L.; Kanchi, S.; Sabela, M.I.; Singh, S.; Bisetty, K. Inamuddin Membrane Technology for Water Purification. Environ. Chem. Lett. 2018, 16, 343–365. [Google Scholar] [CrossRef]
- Malkoske, T.A.; Bérubé, P.R.; Andrews, R.C. Coagulation/Flocculation Prior to Low Pressure Membranes in Drinking Water Treatment: A Review. Environ. Sci. 2020, 6, 2993–3023. [Google Scholar] [CrossRef]
- Hart, O.O.; Squires, R. The Role of Membrane Technology in Industrial Water and Wastewater Management. Desalination 1985, 56, 69–87. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Ratnaweera, H.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Asakura, H. Treatment of Landfill Leachate with Different Techniques: An Overview. J. Water Reuse Desalin. 2021, 11, 66–96. [Google Scholar] [CrossRef]
- Ladeia Ramos, R.; Rodrigues dos Santos, C.; Pinheiro Drumond, G.; Valéria de Souza Santos, L.; Cristina Santos Amaral, M. Critical Review of Microplastic in Membrane Treatment Plant: Removal Efficiency, Environmental Risk Assessment, Membrane Fouling, and MP Release. Chem. Eng. J. 2024, 480, 148052. [Google Scholar] [CrossRef]
- Acarer Arat, S. Microplastics in Landfill Leachate: Sources, Abundance, Characteristics, Remediation Approaches and Future Perspective. Desalin. Water Treat. 2024, 319, 100445. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A.; et al. A Review of Polymeric Membranes and Processes for Potable Water Reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Habibu, S.; Abdullahi, S.S.; Mohammad, R.E.A.; Hussaini, A.; Magaji, H.; Al-dhawi, B.N.S.; Noor, A.; Jagaba, A.H. Membrane Technologies for Heavy Metals Removal from Water and Wastewater: A Mini Review. Case Stud. Chem. Environ. Eng. 2024, 9, 100538. [Google Scholar] [CrossRef]
- Al-Ani, F.H.; Alsalhy, Q.F.; Raheem, R.S.; Rashid, K.T.; Figoli, A. Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater. Membranes 2020, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Kheirieh, S.; Asghari, M.; Afsari, M. Application and Modification of Polysulfone Membranes. Rev. Chem. Eng. 2018, 34, 657–693. [Google Scholar] [CrossRef]
- Acarer, S. A Review of Microplastic Removal from Water and Wastewater by Membrane Technologies. Water Sci. Technol. 2023, 88, 199–219. [Google Scholar] [CrossRef] [PubMed]
- Bărdacă Urducea, C.; Nechifor, A.C.; Dimulescu, I.A.; Oprea, O.; Nechifor, G.; Totu, E.E.; Isildak, I.; Albu, P.C.; Bungău, S.G. Control of Nanostructured Polysulfone Membrane Preparation by Phase Inversion Method. Nanomaterials 2020, 10, 2349. [Google Scholar] [CrossRef] [PubMed]
- Serbanescu, O.S.; Voicu, S.I.; Thakur, V.K. Polysulfone Functionalized Membranes: Properties and Challenges. Mater. Today Chem. 2020, 17, 100302. [Google Scholar] [CrossRef]
- Ohya, H.; Shiki, S.; Kawakami, H. Fabrication Study of Polysulfone Hollow-Fiber Microfiltration Membranes: Optimal Dope Viscosity for Nucleation and Growth. J. Memb. Sci. 2009, 326, 293–302. [Google Scholar] [CrossRef]
- Ravishankar, H.; Roddick, F.; Navaratna, D.; Jegatheesan, V. Preparation, Characterisation and Critical Flux Determination of Graphene Oxide Blended Polysulfone (PSf) Membranes in an MBR System. J. Environ. Manag. 2018, 213, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Wang, Z.; Sun, N.; Wang, J.; Wang, S. Performance Improvement of Polysulfone Ultrafiltration Membrane by Blending with Polyaniline Nanofibers. J. Memb. Sci. 2008, 320, 363–371. [Google Scholar] [CrossRef]
- Phelane, L.; Muya, F.N.; Richards, H.L.; Baker, P.G.L.; Iwuoha, E.I. Polysulfone Nanocomposite Membranes with Improved Hydrophilicity. Electrochim. Acta 2014, 128, 326–335. [Google Scholar] [CrossRef]
- Kamal, N.; Ahzi, S.; Kochkodan, V. Polysulfone/Halloysite Composite Membranes with Low Fouling Properties and Enhanced Compaction Resistance. Appl. Clay Sci. 2020, 199, 105873. [Google Scholar] [CrossRef]
- Rezaee, R.; Nasseri, S.; Mahvi, A.H.; Nabizadeh, R.; Mousavi, S.A.; Rashidi, A.; Jafari, A.; Nazmara, S. Fabrication and Characterization of a Polysulfone-Graphene Oxide Nanocomposite Membrane for Arsenate Rejection from Water. J. Environ. Health Sci. Eng. 2015, 13, 61. [Google Scholar] [CrossRef]
- Chung, Y.T.; Ba-Abbad, M.M.; Mohammad, A.W.; Benamor, A. Functionalization of Zinc Oxide (ZnO) Nanoparticles and Its Effects on Polysulfone-ZnO Membranes. Desalin. Water Treat. 2016, 57, 7801–7811. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Majid, M.A.; Ooi, B.S. Functionalized PSf/SiO2 Nanocomposite Membrane for Oil-in-Water Emulsion Separation. Desalination 2011, 268, 266–269. [Google Scholar] [CrossRef]
- Salimi, M.; Pirouzfar, V. Preparation and Characterization of a Novel MMMs by Comprising of PSF–HNT/TiO2 Nanotubes to Reduce Organic Sediments. Polym. Bull. 2018, 75, 2285–2299. [Google Scholar] [CrossRef]
- Daramola, M.; Hlanyane, P.; Sadare, O.; Oluwasina, O.; Iyuke, S. Performance of Carbon Nanotube/Polysulfone (CNT/Psf) Composite Membranes during Oil–Water Mixture Separation: Effect of CNT Dispersion Method. Membranes 2017, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Abdalla, A.A.; Khaleel, M.A.; Hilal, N.; Khraisheh, M.K. Mechanical Properties of Water Desalination and Wastewater Treatment Membranes. Desalination 2017, 401, 190–205. [Google Scholar] [CrossRef]
- Hurtado-García, V.; Pinto, J.; Barroso-Solares, S. Mechanical Properties on Electrospun Polymeric Membranes: AFM Measurement Methods. In Recent Advances and Emerging Challenges in STEM; Torres, Y., Beltran, A.M., Felix, M., Peralta, E., Larios, D.F., Eds.; Springer: Cham, Switzerland, 2024; Volume 50. [Google Scholar]
- Kanani, D.M.; Fissell, W.H.; Roy, S.; Dubnisheva, A.; Fleischman, A.; Zydney, A.L. Permeability–Selectivity Analysis for Ultrafiltration: Effect of Pore Geometry. J. Memb. Sci. 2010, 349, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Kosutic, K.; Kaštelan-Kunst, L.; Kunst, B. Porosity of Some Commercial Reverse Osmosis and Nanofiltration Polyamide Thin-Film Composite Membranes. J. Memb. Sci. 2000, 168, 101–108. [Google Scholar] [CrossRef]
- Hami, S.S.B.M.; Affandi, N.D.N.; Indrie, L.; Tripa, S.; Harun, A.M.; Ahmad, M.R. Enhancing Mechanical Properties and Flux of Nanofibre Membranes for Water Filtration. Polymer 2023, 15, 3281. [Google Scholar] [CrossRef]
- Alasfar, R.H.; Koç, M.; Kochkodan, V.; Ahzi, S.; Barth, N. Optimization of the Elastic Modulus for Polymeric Nanocomposite Membranes. J. Appl. Polym. Sci. 2024, 141, e54883. [Google Scholar] [CrossRef]
- Randhawa, A.; Dutta, S.D.; Ganguly, K.; Patil, T.V.; Patel, D.K.; Lim, K.-T. A Review of Properties of Nanocellulose, Its Synthesis, and Potential in Biomedical Applications. Appl. Sci. 2022, 12, 7090. [Google Scholar] [CrossRef]
- Sofiah, A.G.N.; Pasupuleti, J.; Samykano, M.; Kadirgama, K.; Koh, S.P.; Tiong, S.K.; Pandey, A.K.; Yaw, C.T.; Natarajan, S.K. Harnessing Nature’s Ingenuity: A Comprehensive Exploration of Nanocellulose from Production to Cutting-Edge Applications in Engineering and Sciences. Polymer 2023, 15, 3044. [Google Scholar] [CrossRef] [PubMed]
- Perdoch, W.; Cao, Z.; Florczak, P.; Markiewicz, R.; Jarek, M.; Olejnik, K.; Mazela, B. Influence of Nanocellulose Structure on Paper Reinforcement. Molecules 2022, 27, 4696. [Google Scholar] [CrossRef]
- Asmawi, N.; Ilyas, R.A.; Mohd Roslim, M.H.; Rajeshkumar, L.; Abotbina, W.; Syafri, E.; Jumaidin, R.; Syafiq, R.; Rafiqah, S.A.; Ridwan, R.; et al. Cassava Starch Nanocomposite Films Reinforced with Nanocellulose. Phys. Sci. Rev. 2024, 9, 2683–2709. [Google Scholar] [CrossRef]
- Ngo, A.T.; Mori, Y.; Bui, L.T. Effects of Cellulose Nanofibers on Soil Water Retention and Aggregate Stability. Environ. Technol. Innov. 2024, 35, 103650. [Google Scholar] [CrossRef]
- Boruah, P.; Gupta, R.; Katiyar, V. Fabrication of Cellulose Nanocrystal (CNC) from Waste Paper for Developing Antifouling and High-Performance Polyvinylidene Fluoride (PVDF) Membrane for Water Purification. Carbohydr. Polym. Technol. Appl. 2023, 5, 100309. [Google Scholar] [CrossRef]
- Nitodas, S.S.; Skehan, M.; Liu, H.; Shah, R. Current and Potential Applications of Green Membranes with Nanocellulose. Membranes 2023, 13, 694. [Google Scholar] [CrossRef]
- Dahlem Júnior, M.A.; Borsoi, C.; Hansen, B.; Catto, A.L. Evaluation of Different Methods for Extraction of Nanocellulose from Yerba Mate Residues. Carbohydr. Polym. 2019, 218, 78–86. [Google Scholar] [CrossRef]
- Norizan, M.N.; Shazleen, S.S.; Alias, A.H.; Sabaruddin, F.A.; Asyraf, M.R.M.; Zainudin, E.S.; Abdullah, N.; Samsudin, M.S.; Kamarudin, S.H.; Norrrahim, M.N.F. Nanocellulose-Based Nanocomposites for Sustainable Applications: A Review. Nanomaterials 2022, 12, 3483. [Google Scholar] [CrossRef] [PubMed]
- Balcik-Canbolat, C.; Van der Bruggen, B. Efficient Removal of Dyes from Aqueous Solution: The Potential of Cellulose Nanocrystals to Enhance PES Nanocomposite Membranes. Cellulose 2020, 27, 5255–5266. [Google Scholar] [CrossRef]
- Bai, L.; Bossa, N.; Qu, F.; Winglee, J.; Li, G.; Sun, K.; Liang, H.; Wiesner, M.R. Comparison of Hydrophilicity and Mechanical Properties of Nanocomposite Membranes with Cellulose Nanocrystals and Carbon Nanotubes. Environ. Sci. Technol. 2017, 51, 253–262. [Google Scholar] [CrossRef]
- Battirola, L.C.; Andrade, P.F.; Marson, G.V.; Hubinger, M.D.; Gonçalves, M.d.C. Cellulose Acetate/Cellulose Nanofiber Membranes for Whey and Fruit Juice Microfiltration. Cellulose 2017, 24, 5593–5604. [Google Scholar] [CrossRef]
- Bastida, G.A.; Aguado, R.J.; Galván, M.V.; Zanuttini, M.Á.; Delgado-Aguilar, M.; Tarrés, Q. Impact of Cellulose Nanofibers on Cellulose Acetate Membrane Performance. Cellulose 2024, 31, 2221–2238. [Google Scholar] [CrossRef]
- Acarer, S.; Pir, İ.; Tüfekci, M.; Erkoç, T.; Öztekin, V.; Güneş Durak, S.; Özçoban, M.Ş.; Türkoğlu Demirkol, G.; Alhammod, M.; Çavuş, S.; et al. Characterisation and Modelling the Mechanics of Cellulose Nanofibril Added Polyethersulfone Ultrafiltration Membranes. Heliyon 2023, 9, e13086. [Google Scholar] [CrossRef]
- Alasfar, R.H.; Kochkodan, V.; Ahzi, S.; Barth, N.; Koç, M. Preparation and Characterization of Polysulfone Membranes Reinforced with Cellulose Nanofibers. Polymer 2022, 14, 3317. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, H.S.; Abouzeid, R.; El-sadek, M.S.A.; Abdel-Jaber, G.T.; Ali, W.Y.; Mousa, H.M. Fabrication of Polysulfone Membranes by Blending with Polyaniline and Cellulose Nanocrystals: Towards the Effective Separation of Oil-in-Water Emulsions. Cellulose 2023, 30, 5871–5893. [Google Scholar] [CrossRef]
- Rasid, S.N.N.A.; Mahmud, N.A.C.; Saufi, S.M.; Takriff, M.S.; Ang, W.L. Hybrid Cellulose Nanocrystals and Graphene Oxide Polysulfone Membranes for Copper Removal. Desalin. Water Treat. 2022, 274, 39–48. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, X.; Liu, Y.; Zhang, L. Enhancing the Compatibility, Hydrophilicity and Mechanical Properties of Polysulfone Ultrafiltration Membranes with Lignocellulose Nanofibrils. Polymer 2016, 8, 349. [Google Scholar] [CrossRef] [PubMed]
- Acarer, S. Effect of Different Solvents, Pore-Forming Agent and Solubility Parameter Differences on the Properties of PES Ultrafiltration Membrane. Sak. Univ. J. Sci. 2022, 26, 1196–1208. [Google Scholar] [CrossRef]
- Hołda, A.K.; Vankelecom, I.F.J. Understanding and Guiding the Phase Inversion Process for Synthesis of Solvent Resistant Nanofiltration Membranes. J. Appl. Polym. Sci. 2015, 132, 42130. [Google Scholar] [CrossRef]
- Celik Madenli, E.; Ilkay Ciftci, Z. Effects of the Carbon Nanotube and Polymer Amounts on Ultrafiltration Membranes. Environ. Eng. Res. 2022, 27, 210626. [Google Scholar] [CrossRef]
- Liu, Z.; Xiang, J.; Hu, X.; Cheng, P.; Zhang, L.; Du, W.; Wang, S.; Tang, N. Effects of Coagulation-Bath Conditions on Polyphenylsulfone Ultrafiltration Membranes. Chin. J. Chem. Eng. 2021, 34, 332–340. [Google Scholar] [CrossRef]
- Acarer-Arat, S.; Tüfekci, M.; Pir, İ.; Tüfekci, N. Nanocellulose in Polyvinylidene Fluoride (PVDF) Membranes: Assessing Reinforcement Impact and Modelling Techniques. J. Environ. Chem. Eng. 2024, 12, 114749. [Google Scholar] [CrossRef]
- Acarer, S.; Pir, İ.; Tüfekci, M.; Türkoğlu Demirkol, G.; Tüfekci, N. Manufacturing and Characterisation of Polymeric Membranes for Water Treatment and Numerical Investigation of Mechanics of Nanocomposite Membranes. Polymer 2021, 13, 1661. [Google Scholar] [CrossRef] [PubMed]
- Acarer-Arat, S.; Pir, İ.; Tüfekci, M.; Güneş-Durak, S.; Akman, A.; Tüfekci, N. Heavy Metal Rejection Performance and Mechanical Performance of Cellulose-Nanofibril-Reinforced Cellulose Acetate Membranes. ACS Omega 2024, 9, 42159–42171. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Bai, S.-L.; Li, X.-K.; Zhang, Z. Viscoelastic Properties of Nanosilica-Filled Epoxy Composites Investigated by Dynamic Nanoindentation. J. Polym. Sci. B Polym. Phys. 2009, 47, 1030–1038. [Google Scholar] [CrossRef]
- Tüfekci, M. Performance Evaluation Analysis of Ti-6Al-4V Foam Fan Blades in Aircraft Engines: A Numerical Study. Compos. Part. C Open Access 2023, 12, 100414. [Google Scholar] [CrossRef]
- Bisoi, A.; Tüfekci, M.; Öztekin, V.; Denimal Goy, E.; Salles, L. Experimental Investigation of Mechanical Properties of Additively Manufactured Fibre-Reinforced Composite Structures for Robotic Applications. Appl. Compos. Mater. 2023. [Google Scholar] [CrossRef]
- Kaw, A.K. Mechanics of Composite Materials; CRC Press: Boca Raton, FL, USA, 2005; ISBN 9780429125393. [Google Scholar]
- Chen, L.; Kim, D.; de Vos, W.M. Enhancing the Separation Performance of Cellulose Membranes Fabricated from 1-Ethyl-3-Methylimidazolium Acetate by Introducing Acetone as a Co-Solvent. Membranes 2024, 14, 202. [Google Scholar] [CrossRef]
- Febriasari, A.; Huriya; Ananto, A.H.; Suhartini, M.; Kartohardjono, S. Polysulfone–Polyvinyl Pyrrolidone Blend Polymer Composite Membranes for Batik Industrial Wastewater Treatment. Membranes 2021, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; An, Q.; Ji, Y.; Qian, J.; Gao, C. Effect of Zero Shear Viscosity of the Casting Solution on the Morphology and Permeability of Polysulfone Membrane Prepared via the Phase-Inversion Process. Desalination 2010, 260, 43–50. [Google Scholar] [CrossRef]
- Anokhina, T.; Raeva, A.; Makaev, S.; Borisov, I.; Vasilevsky, V.; Volkov, A. Express Method of Preparation of Hollow Fiber Membrane Samples for Spinning Solution Optimization: Polysulfone as Example. Membranes 2021, 11, 396. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Wu, S.; Hong, Z.; Wang, Q.; Xiong, Y.; Yi, R.; Xie, Q.; Xiao, Z. Preparation and Characterization of Asymmetric Polyethersulfone Nanofiltration Membranes: The Effects of Polyvinylpyrrolidone Molecular Weights and Concentrations. J. Appl. Polym. Sci. 2016, 133, 43769. [Google Scholar] [CrossRef]
- Matveev, D.; Borisov, I.; Vasilevsky, V.; Karpacheva, G.; Volkov, V. Spinning of Polysulfone Hollow Fiber Membranes Using Constant Dope Solution Composition: Viscosity Control via Temperature. Membranes 2022, 12, 1257. [Google Scholar] [CrossRef]
- Samyn, P.; Cosemans, P. Nanocellulose Grades with Different Morphologies and Surface Modification as Additives for Waterborne Epoxy Coatings. Polymer 2024, 16, 1095. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Izquierdo, L.; Malankowska, M.; Téllez, C.; Coronas, J. Phase Inversion Method for the Preparation of Pebax® 3533 Thin Film Membranes for CO2/N2 Separation. J. Environ. Chem. Eng. 2021, 9, 105624. [Google Scholar] [CrossRef]
- Idris, A.; Man, Z.; Maulud, A.; Khan, M. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes. Membranes 2017, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Geleta, T.A.; Maggay, I.V.; Chang, Y.; Venault, A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. Membranes 2023, 13, 58. [Google Scholar] [CrossRef]
- Amiri, M.; Jafarbeigi, E.; Salimi, F. Fabrication of Modified Nanofiltration Membranes by Functionalized Cellulose Nanocrystals with High Anti-Fouling Capability in Removing Dye from Water and Wastewater. Korean J. Chem. Eng. 2022, 39, 616–627. [Google Scholar] [CrossRef]
- Nasirian, D.; Salahshoori, I.; Sadeghi, M.; Rashidi, N.; Hassanzadeganroudsari, M. Investigation of the Gas Permeability Properties from Polysulfone/Polyethylene Glycol Composite Membrane. Polym. Bull. 2020, 77, 5529–5552. [Google Scholar] [CrossRef]
- Alosaimi, A.M. Polysulfone Membranes Based Hybrid Nanocomposites for the Adsorptive Removal of Hg(II) Ions. Polymer 2021, 13, 2792. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.F.; de Faria, A.F.; Oliveira, S.R.; Arruda, M.A.Z.; Gonçalves, M.d.C. Improved Antibacterial Activity of Nanofiltration Polysulfone Membranes Modified with Silver Nanoparticles. Water Res. 2015, 81, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Kılınç, Ö.; Toplan, N. Amorphous Polymers. ALKU J. Sci. 2023, 5, 131–148. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Qiblawey, H. Novel Polysulfone Ultrafiltration Membranes Incorporating Polydopamine Functionalized Graphene Oxide with Enhanced Flux and Fouling Resistance. J. Memb. Sci. 2021, 620, 118900. [Google Scholar] [CrossRef]
- Elhamarnah, Y.; Alkhouzaam, A.; Qiblawey, H.; Nasser, M. Enhancing the Properties and Performance of Polysulfone Ultrafiltration Membranes Using Citric Acid Based Deep Eutectic Solvent Additives. J. Environ. Chem. Eng. 2024, 12, 112110. [Google Scholar] [CrossRef]
- Wang, B.; Wang, D.; Zhao, S.; Huang, X.; Zhang, J.; Lv, Y.; Liu, X.; Lv, G.; Ma, X. Evaluate the Ability of PVP to Inhibit Crystallization of Amorphous Solid Dispersions by Density Functional Theory and Experimental Verify. Eur. J. Pharm. Sci. 2017, 96, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, N.K.; Kochkodan, V.; Zekri, A.; Ahzi, S. Polysulfone Membranes Embedded with Halloysites Nanotubes: Preparation and Properties. Membranes 2020, 10, 2. [Google Scholar] [CrossRef]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Suzaimi, N.D.; Yogarathinam, L.T.; Raji, Y.O.; El-badawy, T.H. Recent Development in Modification of Polysulfone Membrane for Water Treatment Application. J. Water Process Eng. 2021, 40, 101835. [Google Scholar] [CrossRef]
- Selatile, M.K.; Ray, S.S.; Ojijo, V.; Sadiku, R. Recent Developments in Polymeric Electrospun Nanofibrous Membranes for Seawater Desalination. RSC Adv. 2018, 8, 37915–37938. [Google Scholar] [CrossRef] [PubMed]
- Lalia, B.S.; Guillen, E.; Arafat, H.A.; Hashaikeh, R. Nanocrystalline Cellulose Reinforced PVDF-HFP Membranes for Membrane Distillation Application. Desalination 2014, 332, 134–141. [Google Scholar] [CrossRef]
- Ophek, L.; Birnhack, L.; Nir, O.; Binshtein, E.; Lahav, O. Reducing the Specific Energy Consumption of 1st-Pass SWRO by Application of High-Flux Membranes Fed with High-PH, Decarbonated Seawater. Water Res. 2015, 85, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, S.; Liang, T.; Zhang, Q.; Fan, Z.; Yin, H.; Huang, K.-W.; Zhang, X.; Lai, Z.; Sheng, P. High-Flux Water Desalination with Interfacial Salt Sieving Effect in Nanoporous Carbon Composite Membranes. Nat. Nanotechnol. 2018, 13, 345–350. [Google Scholar] [CrossRef]
- Cohen-Tanugi, D.; McGovern, R.K.; Dave, S.H.; Lienhard, J.H.; Grossman, J.C. Quantifying the Potential of Ultra-Permeable Membranes for Water Desalination. Energy Environ. Sci. 2014, 7, 1134–1141. [Google Scholar] [CrossRef]
- Kuiper, S.; van Rijn, C.J.M.; Nijdam, W.; Elwenspoek, M.C. Development and Applications of Very High Flux Microfiltration Membranes. J. Memb. Sci. 1998, 150, 1–8. [Google Scholar] [CrossRef]
- Daria, M.; Fashandi, H.; Zarrebini, M.; Mohamadi, Z. Contribution of Polysulfone Membrane Preparation Parameters on Performance of Cellulose Nanomaterials. Mater. Res. Express 2018, 6, 015306. [Google Scholar] [CrossRef]
- Andersson, A.; Lavonen, E.; Harir, M.; Gonsior, M.; Hertkorn, N.; Schmitt-Kopplin, P.; Kylin, H.; Bastviken, D. Selective Removal of Natural Organic Matter during Drinking Water Production Changes the Composition of Disinfection By-Products. Environ. Sci. 2020, 6, 779–794. [Google Scholar] [CrossRef]
- Zhang, D.; Karkooti, A.; Liu, L.; Sadrzadeh, M.; Thundat, T.; Liu, Y.; Narain, R. Fabrication of Antifouling and Antibacterial Polyethersulfone (PES)/Cellulose Nanocrystals (CNC) Nanocomposite Membranes. J. Memb. Sci. 2018, 549, 350–356. [Google Scholar] [CrossRef]
- Palacios Hinestroza, H.; Urena-Saborio, H.; Zurita, F.; Guerrero de León, A.A.; Sundaram, G.; Sulbarán-Rangel, B. Nanocellulose and Polycaprolactone Nanospun Composite Membranes and Their Potential for the Removal of Pollutants from Water. Molecules 2020, 25, 683. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Liu, Y.; Ding, A.; Ren, N.; Li, G.; Liang, H. Surface Coating of UF Membranes to Improve Antifouling Properties: A Comparison Study between Cellulose Nanocrystals (CNCs) and Cellulose Nanofibrils (CNFs). Chemosphere 2019, 217, 76–84. [Google Scholar] [CrossRef]
PSf (% wt.) | PVP (% wt.) | DMF (% wt.) | CNC (% wt.) | CNF (% wt.) | |
---|---|---|---|---|---|
PSf/PVP | 20 | 5 | 75 | - | - |
PSf/PVP/CNC-0.5 | 20 | 5 | 74.5 | 0.5 | - |
PSf/PVP/CNC-1 | 20 | 5 | 74 | 1 | - |
PSf/PVP/CNF-0.5 | 20 | 5 | 74.5 | - | 0.5 |
PSf/PVP/CNF-1 | 20 | 5 | 74 | - | 1 |
PSf/PVP/CNC-CNF | 20 | 5 | 74.5 | 0.25 | 0.25 |
Ra (nm) | Rrms (nm) | Rz (nm) | |
---|---|---|---|
PSf/PVP | 5.94 | 7.80 | 31.24 |
PSf/PVP/CNC-0.5 | 1.82 | 2.38 | 10.44 |
PSf/PVP/CNC-1 | 2.18 | 2.97 | 13.08 |
PSf/PVP/CNF-0.5 | 1.42 | 1.99 | 8.15 |
PSf/PVP/CNF-1 | 2.59 | 3.34 | 13.27 |
PSf/PVP/CNC-CNF | 1.40 | 1.97 | 8.39 |
Membrane | Experimental Result | Mori–Tanaka | Finite Element | Self-Consistent Scheme | Halpin–Tsai (Eeff,long) | Halpin–Tsai (Eeff,trans) | ||
---|---|---|---|---|---|---|---|---|
PSf/PVP | 28.06 | - | - | - | - | - | - | - |
PSf/PVP/CNC-0.5 | 42.35 | 43.5 | 42.03 | 42.99 | 28.15 | 47.97 | 43.61 | 40.68 |
PSf/PVP/CNF-0.5 | 51.21 | 52.52 | 50.10 | 54.67 | 28.15 | 55.33 | 52.17 | 48.51 |
PSf/PVP/CNC-1 | 65.24 | 59.17 | 66.28 | 57.97 | 28.24 | 56.93 | 71.23 | 60.72 |
PSf/PVP/CNF-1 | 70.62 | 77.16 | 71.58 | 81.38 | 28.25 | 65.68 | 112.95 | 92.66 |
PSf/PVP/CNC-CNF | 54.05 | 48.04 | 57.37 | 48.36 | 28.15 | 51.89 | 48.36 | 44.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acarer Arat, S.; Pir, İ.; Tüfekci, M.; Öz, N.; Tüfekci, N. Effect of Promising Sustainable Nano-Reinforcements on Polysulfone/Polyvinylpyrrolidone-Based Membranes: Enhancing Mechanical Properties and Water Filtration Performance. Polymers 2024, 16, 3531. https://doi.org/10.3390/polym16243531
Acarer Arat S, Pir İ, Tüfekci M, Öz N, Tüfekci N. Effect of Promising Sustainable Nano-Reinforcements on Polysulfone/Polyvinylpyrrolidone-Based Membranes: Enhancing Mechanical Properties and Water Filtration Performance. Polymers. 2024; 16(24):3531. https://doi.org/10.3390/polym16243531
Chicago/Turabian StyleAcarer Arat, Seren, İnci Pir, Mertol Tüfekci, Nurtaç Öz, and Neşe Tüfekci. 2024. "Effect of Promising Sustainable Nano-Reinforcements on Polysulfone/Polyvinylpyrrolidone-Based Membranes: Enhancing Mechanical Properties and Water Filtration Performance" Polymers 16, no. 24: 3531. https://doi.org/10.3390/polym16243531
APA StyleAcarer Arat, S., Pir, İ., Tüfekci, M., Öz, N., & Tüfekci, N. (2024). Effect of Promising Sustainable Nano-Reinforcements on Polysulfone/Polyvinylpyrrolidone-Based Membranes: Enhancing Mechanical Properties and Water Filtration Performance. Polymers, 16(24), 3531. https://doi.org/10.3390/polym16243531