Screening of MMP-13 Inhibitors Using a GelMA-Alginate Interpenetrating Network Hydrogel-Based Model Mimicking Cytokine-Induced Key Features of Osteoarthritis In Vitro
<p>Synthesis of GelMA-alginate IPN hydrogels. (<b>a</b>) Schematic diagram of the synthesis of a GelMA-alginate IPN hydrogel. GelMA polymer chains, sodium alginate, Na<sup>+</sup>, and Ca<sup>2+</sup> are represented by green, red, yellow, and blue colors, respectively. (<b>b</b>) Increasing opacity of GelMA-alginate IPN hydrogels corresponds to incremental increases in sodium alginate concentration.</p> "> Figure 2
<p>Characteristics of GelMA-alginate hydrogels with variation in sodium alginate content. (<b>a</b>) Microstructure of GelMA-alginate hydrogels. The scale bar is 100 μm. (<b>b</b>) Compressive modulus of GelMA-alginate hydrogels. (<b>c</b>) Swelling degree of GelMA-alginate hydrogels. Data are presented as mean ± SD with statistical significance indicated as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 3
<p>Evaluation of cell viability of TC28a2 chondrocytes in GelMA-alginate hydrogels on days 1 and 7. (<b>a</b>) Live/dead staining of chondrocytes. Green fluorescence indicates viable cells whereas red fluorescence indicates dead cells. The scale bar is 100 μm. (<b>b</b>) Metabolic activity of chondrocytes assessed by alamarBlue™ assay. Data are presented as mean ± SD, with statistical significance indicated as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 4
<p>Evaluation of different chondrogenic differentiation media. (<b>a</b>) Staining of Alcian blue (upper row) and Sirius red (lower row) on days 7, 14, and 21. The culture medium in each group from left to right is CCM + AA2P + DXM, CCM + AA2P + DXM + TGF-β1, CCM + AA2P + DXM + TGF-β1 + ITS Premix, and CCM only (control). (<b>b</b>) Quantification of Alcian blue staining and Sirius red staining. Data are presented as mean ± SD with statistical significance indicated as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 5
<p>Confirmation of chondrogenesis in GelMA-alginate hydrogel. (<b>a</b>) qRT-PCR analysis of gene expression of chondrogenic markers. Gene expression is normalized to GAPDH and expressed relative to the control group (Day 0). Data are presented as mean ± SD with statistical significance indicated as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01. (<b>b</b>) Immunofluorescence staining of type II collagen (green) in cryosections. The scale bar is 100 μm. (<b>c</b>) Alcian blue/nuclear fast red staining of sulfated glycosaminoglycans (sGAGs) in paraffin sections. Nuclei, cytoplasm, and sGAGs are stained dark pink to red, pale pink, and blue, respectively. The scale bar is 100 μm.</p> "> Figure 6
<p>Evaluation of cytokines for MMP-13 induction in monolayer TC28a2 chondrocytes. (<b>a</b>) Cell viability using MTT assay 24 h post-treatment with inflammatory cytokines. (<b>b</b>) Measurement of MMP-13 concentration by ELISA in cell supernatant 2 d post-cytokine induction. (<b>c</b>) Immunofluorescence staining of MMP-13 2 d post-cytokine induction. The scale bar is 100 μm. Data are presented as mean ± SD with statistical significance indicated as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 7
<p>Evaluation of MMP-13 inhibitors. (<b>a</b>) Cell viability of TC28a2 chondrocytes using MTT assay 24 h post-treatment with MMP-13 inhibitors. (<b>b</b>) Comparison of inhibitory effects of inhibitors using a fluorogenic substrate assay. Data are presented as mean ± SD with statistical significance indicated as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 8
<p>Screening of MMP-13 inhibitors using GelMA-alginate cartilage constructs with OA-like conditions. (<b>a</b>) Evaluation of MMP-13 expression in TC28a2 chondrocytes using immunofluorescence staining 3 d post-treatment with IL-1β and TNF-α. The scale bar is 100 μm. (<b>b</b>) Fluorescence intensity of MMP-13 expression in TC28a2 chondrocytes analyzed by ImageJ (version 1.54 g). (<b>c</b>) Measurement of active MMP-13 concentration by ELISA in cell supernatant. (<b>d</b>) Measurement of C2C concentration for type II collagen cleavage by ELISA in cell supernatant. Data are presented as mean ± SD with statistical significance indicated as * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 9
<p>Histological analysis of human articular cartilage by staining of H&E, Safranin O, and Alcian blue, and IHC staining of type II collagen. The scale bar is 100 μm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization GelMA-Alginate IPN Hydrogel
2.1.1. Synthesis of GelMA-Alginate IPN Hydrogel
2.1.2. Microstructure of GelMA-Alginate IPN Hydrogel
2.1.3. Compressive Modulus of GelMA-Alginate IPN Hydrogel
2.1.4. Swelling Degree of GelMA-Alginate IPN Hydrogel
2.2. Cell Viability in GelMA-Alginate IPN Hydrogels
2.2.1. Cell Culture and Encapsulation
2.2.2. Live/Dead Staining
2.2.3. AlamarBlue™ Assay
2.3. Chondrogenic Differentiation
2.3.1. Optimization of Chondrogenic Differentiation Medium in 2D Culture
2.3.2. Induction of Chondrogenic Differentiation in GelMA-Alginate IPN Hydrogel
2.3.3. Real-Time Quantitative PCR (qRT-PCR)
2.3.4. Immunofluorescence Staining of Type II Collagen
2.3.5. Alcian Blue/Nuclear Fast Red Staining of Sulphated Glycosaminoglycans (sGAGs)
2.4. Evaluation of Cytokines
2.4.1. Cytotoxicity of Cytokines by MTT
2.4.2. Induction of MMP-13 Expression in TC28a2 Chondrocytes by Cytokines
2.5. Evaluation of MMP-13 Inhibitors
2.5.1. Cytotoxicity of MMP-13 Inhibitors by MTT
2.5.2. Inhibition Rate of MMP-13 Inhibitors
2.6. Screening of MMP-13 Inhibitors Using GelMA-Alginate Cartilage Constructs with OA-like Conditions
2.7. Histological Analysis of Human Articular Cartilage
2.8. Statistical Analysis
3. Results
3.1. Synthesis and Characterization of GelMA-Alginate IPN Hydrogel
3.2. Cell Viability in GelMA-Alginate IPN Hydrogels
3.3. Chondrogenic Differentiation in GelMA-Alginate IPN Hydrogels
3.4. Evaluation of Cytokines for MMP-13 Induction
3.5. Evaluation of MMP-13 Inhibitors
3.6. Screening of MMP-13 Inhibitors Using GelMA-Alginate Cartilage Constructs with OA-like Conditions
3.7. Histological Analysis of Human Articular Cartilage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garner, M.; Alshameeri, Z.; Khanduja, V. Osteoarthritis: Genes, Nature-Nurture Interaction and the Role of Leptin. Int. Orthop. 2013, 37, 2499–2505. [Google Scholar] [CrossRef]
- Murphy, S.L.; Robinson-Lane, S.G.; Niemiec, S.L.S. Knee and Hip Osteoarthritis Management: A Review of Current and Emerging Non-Pharmacological Approaches. Curr. Treat. Options Rheumatol. 2016, 2, 296–311. [Google Scholar] [CrossRef]
- Song, Z.; Li, Y.; Shang, C.; Shang, G.; Kou, H.; Li, J.; Chen, S.; Liu, H. Sprifermin: Effects on Cartilage Homeostasis and Therapeutic Prospects in Cartilage-Related Diseases. Front. Cell Dev. Biol. 2021, 9, 786546. [Google Scholar] [CrossRef]
- Rodrigues, T.A.; Freire, A.O.; Bonfim, B.F.; Cartágenes, M.S.S.; Garcia, J.B.S. Strontium Ranelate as a Possible Disease-Modifying Osteoarthritis Drug: A Systematic Review. Braz. J. Med. Biol. Res. 2018, 51, e7440. [Google Scholar] [CrossRef] [PubMed]
- Ginnetti, A.T.; Paone, D.V.; Nanda, K.K.; Li, J.; Busuek, M.; Johnson, S.A.; Lu, J.; Soisson, S.M.; Robinson, R.; Fisher, J.; et al. Lead Optimization of Cathepsin K Inhibitors for the Treatment of Osteoarthritis. Bioorg. Med. Chem. Lett. 2022, 74, 128927. [Google Scholar] [CrossRef]
- Mehana, E.S.E.; Khafaga, A.F.; El-Blehi, S.S. The Role of Matrix Metalloproteinases in Osteoarthritis Pathogenesis: An Updated Review. Life Sci. 2019, 234, 116786. [Google Scholar] [CrossRef]
- Hu, Q.; Ecker, M. Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 1742. [Google Scholar] [CrossRef] [PubMed]
- Baragi, V.M.; Becher, G.; Bendele, A.M.; Biesinger, R.; Bluhm, H.; Boer, J.; Deng, H.; Dodd, R.; Essers, M.; Feuerstein, T.; et al. A New Class of Potent Matrix Metalloproteinase 13 Inhibitors for Potential Treatment of Osteoarthritis: Evidence of Histologic and Clinical Efficacy without Musculoskeletal Toxicity in Rat Models. Arthritis Rheum. 2009, 60, 2008–2018. [Google Scholar] [CrossRef] [PubMed]
- Piecha, D.; Weik, J.; Kheil, H.; Becher, G.; Timmermann, A.; Jaworski, A.; Burger, M.; Hofmann, M.W. Novel Selective MMP-13 Inhibitors Reduce Collagen Degradation in Bovine Articular and Human Osteoarthritis Cartilage Explants. Inflamm. Res. 2009, 59, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Bupphathong, S.; Quiroz, C.; Huang, W.; Chung, P.F.; Tao, H.Y.; Lin, C.H. Gelatin Methacrylate Hydrogel for Tissue Engineering Applications—A Review on Material Modifications. Pharmaceuticals 2022, 15, 171. [Google Scholar] [CrossRef]
- Abasalizadeh, F.; Moghaddam, S.V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-Based Hydrogels as Drug Delivery Vehicles in Cancer Treatment and Their Applications in Wound Dressing and 3D Bioprinting. J. Biol. Eng. 2020, 14, 8. [Google Scholar]
- Ma, C.; Kim, Y.K.; Lee, M.H.; Jang, Y.S. Development of Gelatin Methacryloyl/Sodium Alginate Interpenetrating Polymer Network Hydrogels for Bone Regeneration by Activating the Wnt/β-Catenin Signaling Pathway via Lithium Release. Int. J. Mol. Sci. 2023, 24, 13613. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Zhang, B.; Nie, X.; Cheng, Y.; Hu, Z.; Liao, M.; Li, S. A Sodium Alginate-Based Sustained-Release IPN Hydrogel and Its Applications. RSC Adv. 2020, 10, 39722–39730. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Torres, M.A.; Pan, H.; Williams, S.L.; Ecker, M. Precision Engineering of Chondrocyte Microenvironments: Investigating the Optimal Reaction Conditions for Type B Gelatin Methacrylate Hydrogel Matrix for TC28a2 Cells. J. Funct. Biomater. 2024, 15, 77. [Google Scholar] [CrossRef] [PubMed]
- Saletti, M.; Paolino, M.; Ballerini, L.; Giuliani, G.; Leone, G.; Lamponi, S.; Andreassi, M.; Bonechi, C.; Donati, A.; Piovani, D.; et al. Click-Chemistry Cross-Linking of Hyaluronan Graft Copolymers. Pharmaceutics 2022, 14, 1041. [Google Scholar] [CrossRef] [PubMed]
- Hamid, A.A.; Idrus, R.B.H.; Bin Saim, A.; Sathappan, S.; Chua, K.H. Characterization of Human Adipose-Derived Stem Cells and Expression of Chondrogenic Genes during Induction of Cartilage Differentiation. Clinics 2012, 67, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Qian, L.; Hu, Y.; Shou, J.Z.; Wang, C.; Giffen, C.; Wang, Q.H.; Wang, Y.; Goldstein, A.M.; Emmert-Buck, M.; et al. Quantitative Real-Time RT-PCR Validation of Differential MRNA Expression of SPARC, FADD, Fascin, COL7A1, CK4, TGM3, ECMI, PPL and EVPL in Esophageal Squamous Cell Carcinoma. BMC Cancer 2006, 6, 33. [Google Scholar] [CrossRef]
- Schmitz, N.; Laverty, S.; Kraus, V.B.; Aigner, T. Basic Methods in Histopathology of Joint Tissues. Osteoarthr. Cartil. 2010, 18, S113–S116. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (Resazurin) Fluorescent Dye for the Assessment of Mammalian Cell Cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Kumahashi, N.; Swärd, P.; Larsson, S.; Lohmander, L.S.; Frobell, R.; Struglics, A. Type II Collagen C2C Epitope in Human Synovial Fluid and Serum after Knee Injury—Associations with Molecular and Structural Markers of Injury. Osteoarthr. Cartil. 2015, 23, 1506–1512. [Google Scholar] [CrossRef]
- Hersel, U.; Dahmen, C.; Kessler, H. RGD Modified Polymers: Biomaterials for Stimulated Cell Adhesion and Beyond. Biomaterials 2003, 24, 4385–4415. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Sun, X.; Wang, Z.; Guo, S.; Yu, G.; Yang, H. Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue. Polymers 2018, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Karthiga Devi, G.; Senthil Kumar, P.; Sathish Kumar, K. Green Synthesis of Novel Silver Nanocomposite Hydrogel Based on Sodium Alginate as an Efficient Biosorbent for the Dye Wastewater Treatment: Prediction of Isotherm and Kinetic Parameters. Desalin. Water Treat. 2016, 57, 27686–27699. [Google Scholar] [CrossRef]
- El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel Scaffolds for Tissue Engineering: Progress and Challenges. Glob. Cardiol. Sci. Pract. 2013, 2013, 316–342. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B. Culture of Immortalized Chondrocytes and Their Use as Models of Chondrocyte Function. Methods Mol. Med. 2004, 100, 37–52. [Google Scholar] [CrossRef]
- Finger, F.; Schörle, C.; Zien, A.; Gebhard, P.; Goldring, M.B.; Aigner, T. Molecular Phenotyping of Human Chondrocyte Cell Lines T/C-28a2, T/C-28a4, and C-28/I2. Arthritis Rheum. 2003, 48, 3395–3403. [Google Scholar] [CrossRef]
Target Gene | Accession Number | Forward Primer (5′–3′) | Reverse Primer (3′–5′) |
---|---|---|---|
Col II | NM_001844 (https://www.ncbi.nlm.nih.gov/nuccore/NM_001844) | CTATCTGGACGAAGCAGCTGGCA | ATGGGTGCAATGTCAATGATGG |
Col X | NM_000493 (https://www.ncbi.nlm.nih.gov/nuccore/NM_000493) | GCTAAGGGTGAAAGGGGTTC | CTCCAGGATCACCTTTTGGA |
ACAN | NM_001135 (https://www.ncbi.nlm.nih.gov/nuccore/NM_001135) | CACTGTTACCGCCACTTCCC | ACCAGCGGAAGTCCCCTTCG |
SOX9 | NM_000346 (https://www.ncbi.nlm.nih.gov/nuccore/NM_000346) | GCGGAGGAAGTCGGTGAAGA | CCCTCTCGCTTCAGGTCAGC |
GAPDH | NM_002046 (https://www.ncbi.nlm.nih.gov/nuccore/NM_002046) | TCCCTGAGCTGAACGGGAAG | GGAGGAGTGGGTGTCGCTGT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Williams, S.L.; Palladino, A.; Ecker, M. Screening of MMP-13 Inhibitors Using a GelMA-Alginate Interpenetrating Network Hydrogel-Based Model Mimicking Cytokine-Induced Key Features of Osteoarthritis In Vitro. Polymers 2024, 16, 1572. https://doi.org/10.3390/polym16111572
Hu Q, Williams SL, Palladino A, Ecker M. Screening of MMP-13 Inhibitors Using a GelMA-Alginate Interpenetrating Network Hydrogel-Based Model Mimicking Cytokine-Induced Key Features of Osteoarthritis In Vitro. Polymers. 2024; 16(11):1572. https://doi.org/10.3390/polym16111572
Chicago/Turabian StyleHu, Qichan, Steven L. Williams, Alessandra Palladino, and Melanie Ecker. 2024. "Screening of MMP-13 Inhibitors Using a GelMA-Alginate Interpenetrating Network Hydrogel-Based Model Mimicking Cytokine-Induced Key Features of Osteoarthritis In Vitro" Polymers 16, no. 11: 1572. https://doi.org/10.3390/polym16111572
APA StyleHu, Q., Williams, S. L., Palladino, A., & Ecker, M. (2024). Screening of MMP-13 Inhibitors Using a GelMA-Alginate Interpenetrating Network Hydrogel-Based Model Mimicking Cytokine-Induced Key Features of Osteoarthritis In Vitro. Polymers, 16(11), 1572. https://doi.org/10.3390/polym16111572