Vacuum Chamber Infusion for Fiber-Reinforced Composites
<p>VAP infusion setup and principle.</p> "> Figure 2
<p>Modified Vacuum chamber machine for resin infusion, modifications are highlighted.</p> "> Figure 3
<p>Scheme of the vacuum chamber infusion process. 1–4: Infusion with the inner bag. 5 and 6: Consolidation of the impregnated preform with an outer bag and 2 consolidation plates.</p> "> Figure 4
<p>The geometry of sample plates. A, B, and C: areas for void content and fiber volume fraction. Grey area: area for tensile and bending specimens.</p> "> Figure 5
<p>Representative cross-sections of the unidirectional configurations. Magnification: 250×, (<b>a</b>) VCI_UD_1 sample area B, (<b>b</b>) VCI_UD_2 sample area A, (<b>c</b>) VCI_UD_3 sample area A, (<b>d</b>) VAP_UD_1 sample area C, (<b>e</b>) VAP_UD_2 sample area B, (<b>f</b>) VAP_UD_2 sample area B.</p> "> Figure 5 Cont.
<p>Representative cross-sections of the unidirectional configurations. Magnification: 250×, (<b>a</b>) VCI_UD_1 sample area B, (<b>b</b>) VCI_UD_2 sample area A, (<b>c</b>) VCI_UD_3 sample area A, (<b>d</b>) VAP_UD_1 sample area C, (<b>e</b>) VAP_UD_2 sample area B, (<b>f</b>) VAP_UD_2 sample area B.</p> "> Figure 6
<p>Representative cross-section with voids of the unidirectional configuration VCI. Magnification: 500×.</p> "> Figure 7
<p>Representative cross-sections of the 0/90° configuration magnification 250×, (<b>a</b>) VCI_0_90_1 sample area A, (<b>b</b>) VCI_0_90_2 sample area B, (<b>c</b>) VCI_0_90_3 sample area A, (<b>d</b>) VAP_0_90_1 sample area A, (<b>e</b>) VAP_0_90_2 sample area C, (<b>f</b>) VAP_0_90_3 sample area B.</p> "> Figure 7 Cont.
<p>Representative cross-sections of the 0/90° configuration magnification 250×, (<b>a</b>) VCI_0_90_1 sample area A, (<b>b</b>) VCI_0_90_2 sample area B, (<b>c</b>) VCI_0_90_3 sample area A, (<b>d</b>) VAP_0_90_1 sample area A, (<b>e</b>) VAP_0_90_2 sample area C, (<b>f</b>) VAP_0_90_3 sample area B.</p> ">
Abstract
:1. Introduction
1.1. Vacuum Assisted Process (VAP)—Infusion Processes for Composites
1.2. The Vacuum Packaging Process
- A product is placed into a flexible and impermeable, plastic bag or container.
- The atmosphere in the package is removed by evacuation.
- The plastic bag or container is hermetically sealed to prevent transmission of moisture or gases into the sealed package.
1.3. Scope
2. Materials and Methods
2.1. Vacuum Chamber Infusion
- Setup of the inner bag for infusion
- The resin is divided into three parts and poured into the bag separately
- Four fixed bars beneath the bag prevent the three resin parts from distributing randomly
- The preform is placed into the bag; it is carried by the bars and is not touching the resin
- A cup with 20 g resin is placed additionally into the chamber as a reference for density measurement
- The chamber lid is closed and evacuated, and pressure is set to 20 mbar
- Evacuation
- The pressure of 20 mbar is held for 3 min
- The gas bellow valve is closed, and the pressure is decreasing
- Sealing
- When 4 mbar is reached, the bag is sealed
- The ventilation is turned on and is slightly increasing the pressure inside
- The impregnation by the resin flow immediately starts
- Opening
- The lid opens automatically when surrounding pressure () is reached
- The closed bag is taken out
- Setup of the outer bag for consolidation
- The inner bag, containing the impregnated preform, is straightened to remove folds, if there are any, placed between two stiff aluminum compression plates, and placed into the second outer bag
- This setup is evacuated to 20 mbar and immediately sealed
- Ventilation
- The chamber is ventilated with maximum ventilation speed (the choke valve for soft ventilation is off)
- The lid opens automatically when surrounding pressure () is reached and the closed infusion and consolidation setup is taken out of the machine
2.2. Materials
2.3. Preforming: Tape Production and Dry Fiber Placement
2.4. Manufacturing of Plates, Sampling, Testing, and Analysis—VCI and VAP
3. Results
3.1. Fiber Volume Fraction, Void Content, and Density
3.2. Mechanical Properties
3.3. Consumables and Process Time Infusion
4. Discussion
5. Conclusions and Prospect
- The DFP laminates produced using the VCI process exhibit comparable mechanical properties to those produced using the VAP process when normalized to a similar fiber volume content. The absolute values are in a relevant range for industry applications. The normalized values for the tensile strength and modulus of 0/90° configurations are 772 MPa and 52 GPa for VCI and 975 MPa and 54 GPa for VAP. For the bending strength and stiffness, the size ratio of the values is reversed, with higher values for VCI with 646 MPa and 50 GPa and 851 MPa and 43 GPa for VAP.
- The fiber volume fraction for VCI with 39.0% is about six percentage points below the value of VAP. Process optimization has not been performed yet, allowing room for improvement, especially with non-bindered preforms like non-crimped fabrics.
- It is shown that the laminate quality of the infusion process of a one-time evacuated and then sealed system (closed system) in terms of void content is equal to an infusion process of a permanently evacuated setup (open system). The void content is below 2% for both the VCI and VAP processes. This result makes it suitable for industrial use [26]. The low void contents for VAP have been confirmed.
- The number of different consumable materials required for VAP can be significantly reduced with VCI, resulting in a drastic 4× timesaving in the preparation of the infusion process compared to the VAP method.
- The final contoured preform is only impregnated using the VCI process. The infusion structure can then be molded and cured in a consolidation tool. It is also possible to remove the impregnated preform from the bag and then place it in a consolidation mold, like using a standard prepreg material.
- The VCI process can also be carried out in a sufficiently rigid thin-walled mold. This mold can, e.g., be produced by injection molding or thermoforming from a thermoplastic material. Thin metal sheets are also conceivable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strong, A.B. Fundamentals of Composites Manufacturing. Materials, Methods and Applications, 2nd ed.; Society of Manufacturing Engineers: Southfield, MI, USA, 2008. [Google Scholar]
- Hall, W.; Javanbakht, Z. Design and Manufacture of Fibre-Reinforced Composites; Springer International Publishing: Cham, Switzerland, 2021; Volume 158. [Google Scholar] [CrossRef]
- Roux, M.; Eguémann, N.; Dransfeld, C.; Thiébaud, F.; Perreux, D. Thermoplastic carbon fibre-reinforced polymer recycling with electrodynamical fragmentation. J. Thermoplast. Compos. Mater. 2017, 30, 381–403. [Google Scholar] [CrossRef]
- Andrew George Optimization of Resin Infusion Processing for Composite Materials: Simulation and Characterization Strategies, 2011, S. 46. Available online: https://elib.uni-stuttgart.de/bitstream/11682/3874/1/GEORGE_PRINT.pdf (accessed on 12 September 2024).
- MacLean-Blevins, M.T. (Ed.) Material selection—Which plastic to use? In Designing Successful Products with Plastics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 19–50. [Google Scholar]
- Reinhold Franz Johann Meier Über das Fließverhalten von Epoxidharzsystemen und Vibrationsunterstützte Harzinfiltrationsprozesse. 2016. Available online: https://mediatum.ub.tum.de/doc/1329069/document.pdf (accessed on 12 September 2024).
- Askeland, D.R.; Fulay, P.P. Essentials of Materials Science and Engineering, 2nd ed.; Cengage Learning: Southbank, VIC, Australia, 2009; p. 499. [Google Scholar]
- Almeida, J.H.S., Jr.; Bittrich, L.; Spickenheuer, A. Fiber Path Optimization of a Composite Break Booster Manufactured via Tailored Fiber Placement. 2017. Available online: https://www.researchgate.net/publication/327745561_Fiber_path_optimization_of_a_composite_break_booster_manufactured_via_tailored_fiber_placement (accessed on 11 September 2024).
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef] [PubMed]
- Barbero, E.J. Introduction to Composite Materials Design, 3rd ed.; Composite materials; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ashrith, H.S.; Jeevan, T.P.; Xu, J. A Review on the Fabrication and Mechanical Characterization of Fibrous Composites for Engineering Applications. J. Compos. Sci. 2023, 7, 252. [Google Scholar] [CrossRef]
- van Oosterom, S.; Allen, T.; Battley, M.; Bickerton, S. An objective comparison of common vacuum assisted resin infusion processes. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105528. [Google Scholar] [CrossRef]
- Centea, T.; Grunenfelder, L.; Nutt, S. A review of out-of-autoclave prepregs—Material properties, process phenomena, and manufacturing considerations. Compos. Part A Appl. Sci. Manuf. 2015, 70, 132–154. [Google Scholar] [CrossRef]
- Airbus, Airbus Global Market Forecast 2024. Available online: https://www.airbus.com/sites/g/files/jlcbta136/files/2024-07/GMF%202024-2043%20Presentation_4DTS.pdf (accessed on 1 August 2024).
- Shevtsov, S.; Zhilyaev, I.; Chang, S.-H.; Wu, J.-K.; Huang, J.-P.; Snezhina, N. Experimental and Numerical Study of Vacuum Resin Infusion for Thin-Walled Composite Parts. Appl. Sci. 2020, 10, 1485. [Google Scholar] [CrossRef]
- Li, W.; Krehl, J.; Gillespie, J.W.; Heider, D.; Endrulat, M.; Hochrein, K.; Dunham, M.G.; Dubois, C.J. Process and Performance Evaluation of the Vacuum-Assisted Process. J. Compos. Mater. 2004, 38, 1803–1814. [Google Scholar] [CrossRef]
- Dutta, G.S.; Bauer, J.; Oehl, G.; Carosella, S. A novel way to optimize zero-waste prepreg production through the integration of AFP and online-prepreg technologies. In Proceedings of the 21st European Conference on Composite Materials (Volume 5-Manufacturing), Nantes, France, 2–5 July 2024; pp. 270–277. [Google Scholar]
- Rimmel, O.; Becker, D.; Mitschang, P. Maximizing the out-of-plane-permeability of preforms manufactured by dry fiber placement. Adv. Manuf. Polym. Compos. Sci. 2016, 2, 93–102. [Google Scholar] [CrossRef]
- Grisin, B.; Carosella, S.; Middendorf, P. Dry Fibre Placement: The Influence of Process Parameters on Mechanical Laminate Properties and Infusion Behaviour. Polymers 2021, 13, 3853. [Google Scholar] [CrossRef] [PubMed]
- Uwe, T.; Helge, H. VAP Infusion-Moulded Carbon Fibre Spar Caps. N°132 January–February Hg. v. jec Composites Magazine. 2020. Available online: https://digital-magazine.jeccomposites.com/jec-composites-magazine/jec-composites-magazine/n132-2020 (accessed on 12 September 2024).
- Wang, T.; Huang, K.; Guo, L.; Zheng, T.; Zeng, F. An automated vacuum infusion process for manufacturing high-quality fiber-reinforced composites. Compos. Struct. 2023, 309, 116717. [Google Scholar] [CrossRef]
- Taormina, P.J.; Hardin, M.D. Food Safety and Quality-Based Shelf Life of Perishable Foods; Springer Nature: Dordrecht, The Netherlands, 2021; p. 116. [Google Scholar] [CrossRef]
- Walker, T.W.; Frelka, N.; Shen, Z.; Chew, A.K.; Banick, J.; Grey, S.; Kim, M.S.; Dumesic, J.A.; Van Lehn, R.C.; Huber, G.W. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 2020, 6, eaba7599. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe AISBL the Circular Economy for Plastics—A European Overview. 2022. Available online: www.plasticseurope.org (accessed on 2 September 2024).
- Europäische Norm: DIN EN 2564 Luft- und Raumfahrt Kohlenstoffaser-Laminate Bestimmung der Faser-, Harz- und Porenanteile. 1998. Available online: https://www.din.de (accessed on 2 September 2024).
- Park, C.H.; Woo, L. Modeling void formation and unsaturated flow in liquid composite molding processes: A survey and review. J. Reinf. Plast. Compos. 2011, 30, 957–977. [Google Scholar] [CrossRef]
- Ehsani, F.; Hoa, S.; Shadmehri, F. Effect of gaps on preform and laminate made by automated dry fiber placement and resin infusion. Compos. Part A Appl. Sci. Manuf. 2023, 173, 107629. [Google Scholar] [CrossRef]
- Bodaghi, M.; Costa, R.; Gomes, R.; Silva, J.; Correia, N.; Silva, F. Experimental comparative study of the variants of high-temperature vacuum-assisted resin transfer moulding. Compos. Part A Appl. Sci. Manuf. 2019, 129, 105708. [Google Scholar] [CrossRef]
- Schürmann, H. Konstruieren mit Faser-Kunststoff-Verbunden. 2, bearb. und erw. Aufl.; Springer: Berlin, Germany, 2007; pp. 189–191. [Google Scholar]
- Choo, Y.J.; Chang, M.C. Commonly Used Types and Recent Development of Ankle-Foot Orthosis: A Narrative Review. Healthcare 2021, 9, 1046. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cai, G.; Zhou, J. Large-scale Vacuum Vessel Design and Finite Element Analysis. Chin. J. Aeronaut. 2012, 25, 189–197. [Google Scholar] [CrossRef]
- Christian Bonten Kunststofftechnik. Einführung und Grundlagen. 2; aktualisierte Auflage: Carl Hanser Verlag, Germany, 2016; p. 348.
- Mahalik, N.P. Advances in Packaging Methods, Processes and Systems. Challenges 2014, 5, 374–389. [Google Scholar] [CrossRef]
Description | |
---|---|
Fiber | Mitsubishi 30 k GRAFIL TRH50 30 K 0.9%R 8.00KGS ML CP (Mitsubishi Chemical Europe GmbH, Düsseldorf, Germany) |
Binder | Hexion Epikote Resin TRAC 06720-3 (Hexion Inc., Columbus, OH, USA) |
Matrix | Hexion RIMR135/RIMH137 (Hexion Inc., Columbus, OH, USA) |
Degasser | BYK-A 530 (BYK-Chemie GmbH, Wesel, Germany) |
Substrate | Hexcel, HexForce 02116 1260 TF970, 105 g/m2, plain weave (Hexcel Corporation, Stamford, CT, USA) |
FixedTow | Unit | Value |
---|---|---|
Width | [mm] | 20 |
Binder, one-sided | [mass-%] | 8 |
Tex fiber | [tex] | 1677 |
Fiber Mitsubishi | Unit | Value |
---|---|---|
Strength | [GPa] | 5.51 |
Modulus | [GPa] | 260 |
Density | [g/cm3] | 1.82 |
Yield | [tex] | 1677 |
Size content | [mass-%] | 0.9 |
Configuration | Layers | Orientation |
---|---|---|
UD | 2 × 6 | [0°/0°/0°/0°/0°/0°] s |
0°/90° | 4 × 6 | [[0°/90°/0/90°/0°/90°] + [90°/0°/90°/0°/90°/0°]] s |
Configuration | Testing | |||
---|---|---|---|---|
Process | Fiber Orientation | Layer Amount | Plate Thickness | Standard * |
VAP | 0° | 12 | 1 mm | Tensile |
VCI | 0° | 12 | 1 mm | |
VAP | 0°/90° | 24 | 2 mm | Tensile |
VCI | 0°/90° | 24 | 2 mm | Bending |
Fiber Volume Fraction | Void Content * | Density | |
---|---|---|---|
[%] | [%] | [g/cm3] | |
VCI_UD_1 | 34.9 (±1.7) | −0.66 (±0.35) | 1.38 (±0.01) |
VCI_UD_2 | 38.7 (±1.4) | 0.02 (±0.61) | 1.40 (±0.01) |
VCI_UD_3 | 39.3 (±0.9) | −0.66 (±0.35) | 1.41 (±0.01) |
VCI_0_90_1 | 42.9 (±1.0) | 1.15 (±0.92) | 1.42 (±0.01) |
VCI_0_90_2 | 40.5 (±1.3) | −0.05 (±0.43) | 1.42 (±0.01) |
VCI_0_90_3 | 37.6 (±0.5) | −0.62 (±0.57) | 1.40 (±0.01) |
VAP_UD_1 | 42.7 (±1.0) | 2.89 (±0.56) | 1.39 (±0.01) |
VAP_UD_2 | 48.5 (±1.0) | 1.61 (±0.62) | 1.45 (±0.01) |
VAP_UD_3 | 48.5 (±0.8) | 0.94 (±0.45) | 1.45 (±0.01) |
VAP_0_90_1 | 39.5 (±2.2) | 0.20 (±0.30) | 1.40 (±0.01) |
VAP_0_90_2 | 44.0 (±1.0) | 1.06 (±0.45) | 1.43 (±0.01) |
VAP_0_90_3 | 47.8 (±1.5) | 1.79 (±1.71) | 1.44 (±0.01) |
Average VCI | 39.0 (±2.7) | −0.2 (±0.70) | 1.41 (±0.01) |
Average VAP | 45.2 (±3.7) | 1.41 (±0.92) | 1.43 (±0.02) |
Property | Unit | Absolute Value * | Normalized Value ** | ||
---|---|---|---|---|---|
VCI | VAP | VCI | VAP | ||
Tensile strength 0° | [MPa] | 1750 (±127) | 1871 (±68) | 1865 | 1609 |
Tensile modulus 0° | [GPa] | 101 (±6) | 105 (±4) | 108 | 91 |
Tensile elongation 0° | [%] | 1.55 (±0.06) | 1.67 (±0.06) | 1.65 | 1.43 |
Tensile strength 0/90° | [MPa] | 779 (±60) | 1058 (±58) | 772 | 975 |
Tensile modulus 0/90° | [GPa] | 52 (±2) | 59 (±2) | 52 | 54 |
Tensile Elongation 0/90° | [%] | 1.39 (±0.06) | 1.65 (±0.06) | 1.38 | 1.52 |
Bending strength 0/90° | [MPa] | 674 (±29) | 631 (±45) | 646 | 581 |
Bending modulus 0/90° | [GPa] | 52 (±2) | 47 (±3) | 50 | 43 |
Elongation edge fiber 0/90° | [%] | 1.42 (±0.06) | 1.48 (±0.06) | 1.37 | 1.35 |
VCI | VAP | ||
---|---|---|---|
Consumables | |||
Material | Dimensions | Material | Dimensions/Weight |
PA/PE bag 90 µm | 2 × 400 mm × 600 mm | Tacky Tape (Butyl) | 2.5 m |
Vacuum bag (PA) | 400 mm × 600 mm | ||
VAP Membrane | 380 mm × 580 mm | ||
Peel ply (PA6) | 2 × 300 mm × 300 mm | ||
Tube (PE) 8 mm | 1 m | ||
Flow mesh (PET) | 300 mm × 300 mm | ||
Adhesive tape (Acryl) | 10 mm × 20 cm | ||
Omega profile (Silicone) | 25 cm | ||
Release wax | 5 g | ||
The time needed to set up and perform the infusion of a 1–2 mm plate 320 mm × 330 mm | |||
Preparation | 7 min | 52 min | |
Infusion | 8 min | 8 min | |
Total | 15 min | 60 min |
Fiber | VCI | VAP | ||
---|---|---|---|---|
FVF | [%] | 100 | 39 | 45 |
Strength max | [MPa] | 5510 | 2149 | 2479 |
Strength measured | [MPa] | --- | 1750 | 1871 |
Difference | [%] | --- | 19 | 25 |
Stiffness max | [GPa] | 260 | 101 | 117 |
Stiffness measured | [GPa] | --- | 101 | 105 |
Difference | [%] | --- | 0 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grisin, B.; Carosella, S.; Middendorf, P. Vacuum Chamber Infusion for Fiber-Reinforced Composites. Polymers 2024, 16, 2763. https://doi.org/10.3390/polym16192763
Grisin B, Carosella S, Middendorf P. Vacuum Chamber Infusion for Fiber-Reinforced Composites. Polymers. 2024; 16(19):2763. https://doi.org/10.3390/polym16192763
Chicago/Turabian StyleGrisin, Benjamin, Stefan Carosella, and Peter Middendorf. 2024. "Vacuum Chamber Infusion for Fiber-Reinforced Composites" Polymers 16, no. 19: 2763. https://doi.org/10.3390/polym16192763
APA StyleGrisin, B., Carosella, S., & Middendorf, P. (2024). Vacuum Chamber Infusion for Fiber-Reinforced Composites. Polymers, 16(19), 2763. https://doi.org/10.3390/polym16192763