Mechanical Aging Test and Sealing Performance of Thermoplastic Vulcanizate as Sealing Gasket in Automotive Fuel Cell Applications
<p>Comparison of tensile thermal oxidation aging results: (<b>a</b>) tensile strength changes of EPDM; (<b>b</b>) tensile strength changes of TPV.</p> "> Figure 2
<p>Comparison of CS thermal oxidation aging results: (<b>a</b>) CS changes of EPDM; (<b>b</b>) CS changes of TPV.</p> "> Figure 3
<p>The crosslinking properties of EPDM and TPV: (<b>a</b>) swelling ratio changes of EPDM and TPV in cyclohexane; (<b>b</b>) calculated crosslinking density values of EPDM and TPV.</p> "> Figure 4
<p>Comparison of FTIR spectra of pristine and thermal oxidized EPDM: (<b>a</b>) full-range scan results; (<b>b</b>,<b>c</b>) peaks assigned to CH<sub>2</sub> stretching and vibration; (<b>d</b>,<b>e</b>) peaks assigned to carbonyl stretching and vibration.</p> "> Figure 4 Cont.
<p>Comparison of FTIR spectra of pristine and thermal oxidized EPDM: (<b>a</b>) full-range scan results; (<b>b</b>,<b>c</b>) peaks assigned to CH<sub>2</sub> stretching and vibration; (<b>d</b>,<b>e</b>) peaks assigned to carbonyl stretching and vibration.</p> "> Figure 5
<p>Mechanical property changes under acid conditions: (<b>a</b>) surface hardness changes; (<b>b</b>) CS changes.</p> "> Figure 6
<p>Surface photomicrographs of pristine and aged materials under 90 °C acidic condition; (<b>a</b>) pristine EPDM, (<b>b</b>) aged EPDM, (<b>c</b>) pristine TPV, and (<b>d</b>) aged TPV.</p> "> Figure 7
<p>Experimental fixture for evaluation of leakage performance in gasket stack: (<b>a</b>) schematic diagram of overall fixture; (<b>b</b>) cross-section schematic diagram of fixture; (<b>c</b>) image of gasket and sealing plate; (<b>d</b>) image of assembled test fixture.</p> "> Figure 8
<p>Comparison of leakage rates of gasket materials prepared in this study with results from the literature.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Material
2.2. Mechanical Properties
2.3. Crosslinking Density
2.4. Hardness
2.5. Fourier-Transform Infrared (FTIR) Spectroscopy
2.6. Sealing Property
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, P.; Pei, P.; Li, Y.; Wu, Z.; Chen, D.; Huang, S. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog. Energy Combust. Sci. 2020, 80, 100859. [Google Scholar] [CrossRef]
- Meyer, Q.; Zeng, Y.; Zhao, C. In situ and operando characterization of proton exchange membrane fuel cells. Adv. Mater. 2019, 31, 1901900. [Google Scholar] [CrossRef] [PubMed]
- Hames, Y.; Kaya, K.; Baltacioglu, E.; Turksoy, A. Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. Int. J. Hydrogen Energy 2018, 43, 10810–10821. [Google Scholar] [CrossRef]
- Wang, J. System integration, durability and reliability of fuel cells: Challenges and solutions. Appl. Energy 2017, 189, 460–479. [Google Scholar] [CrossRef]
- Dutta, S. A review on production, storage of hydrogen and its utilization as an energy resource. J. Ind. Eng. Chem. 2014, 20, 1148–1156. [Google Scholar] [CrossRef]
- Qiu, D.; Peng, L.; Yi, P.; Lehnert, W.; Lai, X. Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design. Renew. Sustain. Energy Rev. 2021, 152, 111660. [Google Scholar] [CrossRef]
- Zihrul, P.; Weber, P.; Durst, J.; Gasteiger, H.A.; Hasché, F. Impact of hydrogen bleeding into the cathode feed of a PEM fuel cell. J. Electrochem. Soc. 2017, 164, F209. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.H.; Zhan, Z.G. A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells. J. Power Sources 2013, 231, 285–292. [Google Scholar] [CrossRef]
- Yuan, X.Z.; Nayoze-Coynel, C.; Shaigan, N.; Fisher, D.; Zhao, N.; Zamel, N.; Gazdzicki, P.; Ulsh, M.; Friedrich, K.A.; Girard, F.; et al. A review of functions, attributes, properties and measurements for the quality control of proton exchange membrane fuel cell components. J. Power Sources 2021, 491, 229540. [Google Scholar] [CrossRef]
- Lin, C.W.; Chien, C.H.; Tan, J.; Chao, Y.J.; Van Zee, J.W. Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment. J. Power Sources 2011, 196, 1955–1966. [Google Scholar] [CrossRef]
- Lin, C.W.; Chien, C.H.; Tan, J.; Chao, Y.J.; Van Zee, J.W. Dynamic mechanical characteristics of five elastomeric gasket materials aged in a simulated and an accelerated PEM fuel cell environment. Int. J. Hydrogen Energy 2011, 36, 6756–6767. [Google Scholar] [CrossRef]
- Wang, Z.N.; Shen, S.L.; Zhou, A.; Lyu, H.M. Mechanical, flame-retarding, and creep-recovery proprieties of ethylene–propylene–diene monomer enhanced with nano-hydroxide for undersea tunnel sealing gasket. J. Appl. Polym. Sci. 2021, 138, 49946. [Google Scholar] [CrossRef]
- Homocianu, M.; Airinei, A.; Stelescu, D.M.; Timpu, D.; Ioanid, A. Morphological structure and surface properties of maleated ethylene propylene diene monomer/organoclay nanocomposites. Polym. Compos. 2012, 33, 379–387. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Yuan, Z.; Ye, L. Construction of sacrificial bonds and hybrid networks in EPDM rubber towards mechanical performance enhancement. Appl. Surf. Sci. 2019, 484, 616–627. [Google Scholar] [CrossRef]
- Gamlin, C.D.; Dutta, N.K.; Choudhury, N.R. Mechanism and kinetics of the isothermal thermodegradation of ethylene-propylene-diene (EPDM) elastomers. Polym. Degrad. Stab. 2003, 80, 525–531. [Google Scholar] [CrossRef]
- Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Hvilsted, S.; Almdal, K. An investigation on changes in chemical properties of pure ethylene-propylene-diene rubber in aqueous acidic environments. Mater. Chem. Phys. 2006, 98, 248–255. [Google Scholar] [CrossRef]
- Dillon, R.; Srinivasan, S.; Arico, A.S.; Antonucci, V. International activities in DMFC R&D: Status of technologies and potential applications. J. Power Sources 2004, 127, 112–126. [Google Scholar]
- Imanifar, M.; Ostad Movahed, S.; Ahmadpour, A. Effects of peroxide and phenolic cure systems on characteristics of the filled ethylene–propylene–diene monomer rubber (EPDM). J. Appl. Polym. Sci. 2018, 135, 46213. [Google Scholar] [CrossRef]
- Sararoudi, S.S.; Nazockdast, H.; Katbab, A.A. Study on parameters affecting the morphology development of dynamically vulcanized thermoplastic elastomers based on EPDM/PP in a co-rotating twin screw extruder. Rubber Chem. Technol. 2004, 77, 847–855. [Google Scholar] [CrossRef]
- Machado, A.V.; Van Duin, M. Dynamic vulcanisation of EPDM/PE-based thermoplastic vulcanisates studied along the extruder axis. Polymer 2005, 46, 6575–6586. [Google Scholar] [CrossRef]
- Goharpey, F.; Foudazi, R.; Nazockdast, H.; Katbab, A.A. Determination of twin-screw extruder operational conditions for the preparation of thermoplastic vulcanizates on the basis of batch-mixer results. J. Appl. Polym. Sci. 2008, 107, 3840–3847. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Su, B.; Chen, F.; Fu, Q.; Ning, N.; Tian, M. Property enhancement of PP-EPDM thermoplastic vulcanizates via shear-induced break-up of nano-rubber aggregates and molecular orientation of the matrix. Polymer 2015, 63, 170–178. [Google Scholar] [CrossRef]
- Yu, Y.; White, J.L. Structure development in injection molding of isotactic polypropylene, its blends, compounds and dynamic vulcanizates. Int. Polym. Process. 2003, 18, 388–397. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Jiang, Y.; Cong, C.; Xu, L.; Zhang, Y.; Meng, X.; Zhou, Q. Effect of crosslinked structure on the chemical degradation of EPDM rubber in an acidic environment. Polym. Degrad. Stab. 2021, 185, 109475. [Google Scholar] [CrossRef]
- Zulkifli, M.H.; Rasidi, M.S.M.; Rahim, N.A.M.; Musa, L.; Masa, A.H. The Study of Recycled Ethylene Propylene Diene Monomer (EPDM-r)/Polypropylene (PP) Polymeric Blends. In Proceedings of the 1st International Conference on Green Materials, Processing and Characterization 2021 (ICoGMPAC 2021), Perlis, Malaysia, 12 October 2021; Journal of Physics: Conference Series. IOP Publishing: Bristol, UK, 2021; Volume 2080, p. 012012. [Google Scholar]
- Ma, L.F.; Bao, R.Y.; Dou, R.; Liu, Z.Y.; Yang, W.; Xie, B.H.; Yang, M.B.; Fu, Q. A high-performance temperature sensitive TPV/CB elastomeric composite with balanced electrical and mechanical properties via PF-induced dynamic vulcanization. J. Mater. Chem. A 2014, 2, 16989–16996. [Google Scholar] [CrossRef]
- Colom, X.; Cañavate, J.; Formela, K.; Shadman, A.; Saeb, M.R. Assessment of the devulcanization process of EPDM waste from roofing systems by combined thermomechanical/microwave procedures. Polym. Degrad. Stab. 2021, 183, 109450. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, X.; Gao, J. Aging of ethylene–propylene–diene monomer (EPDM) in artificial weathering environment. Polym. Degrad. Stab. 2007, 92, 1841–1846. [Google Scholar] [CrossRef]
- Wang, W.; Qu, B. Photo-and thermo-oxidative degradation of photocrosslinked ethylene–propylene–diene terpolymer. Polym. Degrad. Stab. 2003, 81, 531–537. [Google Scholar] [CrossRef]
- Li, C.; Ding, Y.; Yang, Z.; Yuan, Z.; Ye, L. Compressive stress-thermo oxidative ageing behaviour and mechanism of EPDM rubber gaskets for sealing resilience assessment. Polym. Test. 2020, 84, 106366. [Google Scholar] [CrossRef]
- Barroso-Bujans, F.; Verdejo, R.; Lozano, A.; Fierro, J.L.G.; Lopez-Manchado, M.A. Sulfonation of vulcanized ethylene–propylene–diene terpolymer membranes. Acta Mater. 2008, 56, 4780–4788. [Google Scholar] [CrossRef]
- Mengistu, T.; Pazur, R.J. The thermal oxidation of hydrogenated acrylonitrile-co-butadiene rubber from ambient to 150 °C. Polym. Degrad. Stab. 2021, 188, 109574. [Google Scholar] [CrossRef]
- Gong, C.; Ding, W.; Soga, K.; Mosalam, K.M.; Tuo, Y. Sealant behavior of gasketed segmental joints in shield tunnels: An experimental and numerical study. Tunn. Undergr. Space Technol. 2018, 77, 127–141. [Google Scholar] [CrossRef]
- Persson, A.M.M.; Hinrichsen, E.L.; Andreassen, E. On the temperature dependence of the cyclic compression behaviour of a thermoplastic vulcanizate elastomer. Polym. Test. 2022, 112, 107650. [Google Scholar] [CrossRef]
- Banna, M.H.; Shirokoff, J.; Molgaard, J. Effects of two aqueous acidic solutions on polyester and bisphenol A epoxy vinyl ester resins. Mater. Sci. Eng. A 2011, 528, 2137–2142. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, J.; Chen, Y.; Liu, S.; Wang, Z. Effects of gas permeation on the sealing performance of PEMFC stacks. Int. J. Hydrogen Energy 2021, 46, 36424–36435. [Google Scholar] [CrossRef]
Wd | Ws | α | ρ | ρs | Χ [28,29] | V0 | |
---|---|---|---|---|---|---|---|
EPDM | 1.5711 | 3.2913 | 0.477349 | 0.86 | 0.774 | 0.321 | 108.7 |
TPV | 1.4973 | 3.0264 | 0.494746 | 1.12 | 0.774 | 0.321 | 108.7 |
1st Step | 2nd Step | 3rd Step | 4th Step | 5th Step | |
---|---|---|---|---|---|
Temperature (°C) | 25 | - | 150 | - | −45 |
Duration time (min) | - | - | 30 | - | 30 |
Ramping rate (°C/min) | - | 10 | - | −10 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, H.; Jeoung, S. Mechanical Aging Test and Sealing Performance of Thermoplastic Vulcanizate as Sealing Gasket in Automotive Fuel Cell Applications. Polymers 2023, 15, 1872. https://doi.org/10.3390/polym15081872
Im H, Jeoung S. Mechanical Aging Test and Sealing Performance of Thermoplastic Vulcanizate as Sealing Gasket in Automotive Fuel Cell Applications. Polymers. 2023; 15(8):1872. https://doi.org/10.3390/polym15081872
Chicago/Turabian StyleIm, Hyungu, and Sunkyoung Jeoung. 2023. "Mechanical Aging Test and Sealing Performance of Thermoplastic Vulcanizate as Sealing Gasket in Automotive Fuel Cell Applications" Polymers 15, no. 8: 1872. https://doi.org/10.3390/polym15081872
APA StyleIm, H., & Jeoung, S. (2023). Mechanical Aging Test and Sealing Performance of Thermoplastic Vulcanizate as Sealing Gasket in Automotive Fuel Cell Applications. Polymers, 15(8), 1872. https://doi.org/10.3390/polym15081872