Preparation and Characterization of GaN-on-Si HEMTs with Nanocrystalline Diamond Passivation
<p>Schematic diagram of the fabrication processes of the NCD passivated GaN HEMTs.</p> "> Figure 2
<p>SEM micrographs of the fabricated devices. (<b>a</b>) Overview of the HEMT device with NCD passivation; (<b>b</b>) magnified view of the local 2 μm-gate region area.</p> "> Figure 3
<p>SEM micrographs of the sample after NCD film growth. (<b>a</b>) Surface morphology and (<b>b</b>) cross-section view.</p> "> Figure 4
<p>Raman spectrum on the AlGaN/GaN-on-Si sample after NCD growth.</p> "> Figure 5
<p>X-ray diffraction results of the prepared sample before and after NCD growth. (<b>a</b>) Comparison of the (002) plane rocking curves; (<b>b</b>) the (002) plane FWHM and peak intensity shift; (<b>c</b>) comparison of the (102) plane rocking curves; (<b>d</b>) the (102) plane FWHM and peak intensity shift.</p> "> Figure 6
<p>CTLM test results (<b>a</b>) before and (<b>b</b>) after NCD growth.</p> "> Figure 7
<p>Output characteristics comparison between the devices with and without the NCD passivation layer.</p> "> Figure 8
<p>Transfer characteristics comparison between the devices with and without the NCD passivation layer. (<b>a</b>) I<sub>D</sub> and G<sub>m</sub>; (<b>b</b>) I<sub>D</sub> and I<sub>G</sub>.</p> "> Figure 9
<p>Breakdown characteristics comparison between the devices with and without the NCD passivation layer.</p> "> Figure 10
<p>Junction temperature variations in the devices with and without the NCD passivation layer under different output power densities.</p> ">
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bader, S.J.; Lee, H.; Chaudhuri, R.; Huang, S.; Hickman, A.; Molnar, A.; Xing, H.G.; Jena, D.; Then, H.W.; Chowdhury, N.; et al. Prospects for Wide Bandgap and Ultrawide Bandgap CMOS Devices. IEEE Trans. Electron Devices 2020, 67, 4010–4020. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Wei, K.; Zhang, Y.; Yin, H.; Chen, X.; Huang, S.; Liu, G.; Zheng, Y.; Yuan, T.; et al. Improved Stability of GaN MIS-HEMT With 5-nm Plasma-Enhanced Atomic Layer Deposition SiN Gate Dielectric. IEEE Electr. Device Lett. 2022, 43, 1408–1411. [Google Scholar] [CrossRef]
- Mazumder, S.K.; Voss, L.F.; Dowling, K.M.; Conway, A.; Hall, D.; Kaplar, R.J.; Pickrell, G.W.; Flicker, J.; Binder, A.T.; Chowdhury, S.; et al. Overview of Wide/Ultrawide Bandgap Power Semiconductor Devices for Distributed Energy Resources. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3957. [Google Scholar] [CrossRef]
- Mao, W.; Fan, J.-S.; Du, M.; Zhang, J.-F.; Zheng, X.-F.; Wang, C.; Ma, X.-H.; Zhang, J.-C.; Hao, Y. Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate. Chin. Phys. B 2016, 25, 127305. [Google Scholar] [CrossRef]
- Su, C.-W.; Wang, T.-W.; Wu, M.-C.; Ko, C.-J.; Huang, J.-B. Fabrication and characterization of GaN HEMTs grown on SiC substrates with different orientations. Solid-State Electron. 2021, 179, 107980. [Google Scholar] [CrossRef]
- Desai, N.; Then, H.W.; Yu, J.; Krishnamurthy, H.K.; Lambert, W.J.; Butzen, N.; Weng, S.; Schaef, C.; Radhakrishnan, K.; Ravichandran, K.; et al. A 32-A, 5-V-Input, 94.2% Peak Efficiency High-Frequency Power Converter Module Featuring Package-Integrated Low-Voltage GaN nMOS Power Transistors. IEEE J. Solid-State Circuits 2022, 57, 1090–1099. [Google Scholar] [CrossRef]
- Chen, J.; Peng, H.; Feng, Z.; Kang, Y. A GaN BCM AC–DC Converter for Sub-1 V Electromagnetic Energy Harvesting With Enhanced Output Power. IEEE Trans. Power Electron. 2021, 36, 9285–9299. [Google Scholar] [CrossRef]
- Malakoutian, M.; Kasperovich, A.; Rich, D.; Woo, K.; Perez, C.; Soman, R.; Saraswat, D.; Kim, J.-k.; Noshin, M.; Chen, M.; et al. Cooling future system-on-chips with diamond inter-tiers. Cell Rep. Phys. Sci. 2023, 4, 101686. [Google Scholar] [CrossRef]
- Malakoutian, M.; Laurent, M.A.; Chowdhury, S. A Study on the Growth Window of Polycrystalline Diamond on Si3N4-coated N-Polar GaN. Crystals 2019, 9, 498. [Google Scholar] [CrossRef]
- Minoura, Y.; Ohki, T.; Okamoto, N.; Sato, M.; Ozaki, S.; Yamada, A.; Kotani, J. GaN MMICs on a diamond heat spreader with through-substrate vias fabricated by deep dry etching process. Appl. Phys. Express 2022, 15, 036501. [Google Scholar] [CrossRef]
- Qin, Y.; Albano, B.; Spencer, J.; Lundh, J.S.; Wang, B.; Buttay, C.; Tadjer, M.; DiMarino, C.; Zhang, Y. Thermal management and packaging of wide and ultra-wide bandgap power devices: A review and perspective. J. Phys. D Appl. Phys 2023, 56, 093001. [Google Scholar] [CrossRef]
- Malakoutian, M.; Ren, C.; Woo, K.; Li, H.; Chowdhury, S. Development of Polycrystalline Diamond Compatible with the Latest N-Polar GaN mm-Wave Technology. Cryst. Growth Des. 2021, 21, 2624–2632. [Google Scholar] [CrossRef]
- Angadi, M.A.; Watanabe, T.; Bodapati, A.; Xiao, X.; Auciello, O.; Carlisle, J.A.; Eastman, J.A.; Keblinski, P.; Schelling, P.K.; Phillpot, S.R. Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. J. Appl. Phys. 2006, 99, 114301. [Google Scholar] [CrossRef]
- Tadjer, M.J.; Anderson, T.J.; Ancona, M.G.; Raad, P.E.; Komarov, P.; Bai, T.; Gallagher, J.C.; Koehler, A.D.; Goorsky, M.S.; Francis, D.A.; et al. GaN-On-Diamond HEMT Technology With TAVG = 176 °C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging. IEEE Electr. Device Lett. 2019, 40, 881–884. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, X.; Yang, L.; Ma, X.; Hao, Y. Noninvasive Lift-off Technology for Integration of GaN HEMTs with Diamond. In Proceedings of the 6th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Oita, Japan, 6–9 March 2022; pp. 122–124. [Google Scholar]
- Gerrer, T.; Cimalla, V.; Waltereit, P.; Müller, S.; Benkhelifa, F.; Maier, T.; Czap, H.; Ambacher, O.; Quay, R. Transfer of AlGaN/GaN RF-devices onto diamond substrates via van der Waals bonding. Int. J. Microw. Wirel. Technol. 2018, 10, 666–673. [Google Scholar] [CrossRef]
- Gerrer, T.; Pomeroy, J.; Yang, F.; Francis, D.; Carroll, J.; Loran, B.; Witkowski, L.; Yarborough, M.; Uren, M.J.; Kuball, M. Thermal Design Rules of AlGaN/GaN-Based Microwave Transistors on Diamond. IEEE Trans. Electron Devices 2021, 68, 1530. [Google Scholar] [CrossRef]
- Gohel, K.; Zhou, L.; Mukhopadhyay, S.; Pasayat, S.S.; Gupta, C. Understanding of multiway heat extraction using peripheral diamond in an AlGaN/GaN high electron mobility transistor by electrothermal simulations. Semicond. Sci. Technol. 2024, 39, 075016. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.; Hua, B.; Ni, X.; Fan, Q.; Gu, X. Interface Engineering Enabling Next Generation GaN-on-Diamond Power Devices. J. Electron. Mater. 2021, 50, 4239–4249. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, J.; Le, X.; Lee, C. Heterogeneous Wafer Bonding Technology and Thin-Film Transfer Technology-Enabling Platform for the Next Generation Applications beyond 5G. Micromachines 2021, 12, 946. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Ge, L.; Liu, Z.; Xu, M.; Peng, Y.; Li, B.; Yang, Y.; Li, S.; Xie, X.; et al. Research Progress in Capping Diamond Growth on GaN HEMT: A Review. Crystals 2023, 13, 946. [Google Scholar] [CrossRef]
- Liang, J.; Kobayashi, A.; Shimizu, Y.; Ohno, Y.; Kim, S.W.; Koyama, K.; Kasu, M.; Nagai, Y.; Shigekawa, N. Fabrication of GaN/Diamond Heterointerface and Interfacial Chemical Bonding State for Highly Efficient Device Design. Adv. Mater. 2021, 33, 2104564. [Google Scholar] [CrossRef] [PubMed]
- Matsumae, T.; Kurashima, Y.; Takagi, H.; Shirayanagi, Y.; Hiza, S.; Nishimura, K.; Higurashi, E. Room temperature bonding of GaN and diamond substrates via atomic layer. Scr. Mater. 2022, 215, 114725. [Google Scholar] [CrossRef]
- Mu, F.; Xu, B.; Wang, X.; Gao, R.; Huang, S.; Wei, K.; Takeuchi, K.; Chen, X.; Yin, H.; Wang, D.; et al. A novel strategy for GaN-on-diamond device with a high thermal boundary conductance. J. Alloys Compd. 2022, 905, 164076. [Google Scholar] [CrossRef]
- Hu, X.; Ge, L.; Liu, Z.; Li, M.; Wang, Y.; Han, S.; Peng, Y.; Xu, M.; Hu, X.; Tang, G.; et al. Diamond-SiC composite substrates: A novel strategy as efficient heat sinks for GaN-based devices. Carbon 2024, 218, 118755. [Google Scholar] [CrossRef]
- Soman, R.; Malakoutian, M.; Shankar, B.; Field, D.; Akso, E.; Hatui, N.; Hines, N.J.; Graham, S.; Mishra, U.K.; Kuball, M.; et al. Novel all-around diamond integration with GaN HEMTs demonstrating highly efficient device cooling. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 30.38.31–30.38.34. [Google Scholar]
- Anderson, T.J.; Hobart, K.D.; Tadjer, M.J.; Koehler, A.D.; Imhoff, E.A.; Hite, J.K.; Feygelson, T.I.; Pate, B.B.; Eddy, C.R.; Kub, F.J. Nanocrystalline Diamond Integration with III-Nitride HEMTs. ECS J. Solid State Sci. Technol. 2016, 6, Q3036–Q3039. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.; Yu, X.; Zhou, J.; Kong, Y. Thermal Performance Improvement of AlGaN/GaN HEMTs Using Nanocrystalline Diamond Capping Layers. Micromachines 2022, 13, 1486. [Google Scholar] [CrossRef]
- Ryou, J.-H.; Choi, S. All-around diamond for cooling power devices. Nat. Electron. 2022, 5, 834. [Google Scholar] [CrossRef]
- Zhou, X.; Malakoutian, M.; Soman, R.; Bian, Z.; Martinez, R.P.; Chowdhury, S. Impact of Diamond Passivation on fT and fmax of mm-wave N-Polar GaN HEMTs. IEEE Trans. Electron Devices 2022, 69, 6650. [Google Scholar] [CrossRef]
- Tadjer, M.J.; Anderson, T.J.; Hobart, K.D.; Feygelson, T.I.; Caldwell, J.D.; Eddy, C.R.; Kub, F.J.; Butler, J.E.; Pate, B.; Melngailis, J. Reduced Self-Heating in AlGaN/GaN HEMTs Using Nanocrystalline Diamond Heat-Spreading Films. IEEE Electr. Device Lett. 2012, 33, 23–25. [Google Scholar] [CrossRef]
- Babchenko, O.; Dzuba, J.; Lalinský, T.; Vojs, M.; Vincze, A.; Ižák, T.; Vanko, G. Stability of AlGaN/GaN heterostructures after hydrogen plasma treatment. Appl. Surf. Sci. 2017, 395, 92–97. [Google Scholar] [CrossRef]
- Xu, T.; Yang, S.; Lu, J.; Xue, Q.; Li, J.; Guo, W.; Sun, Y. Characterization of nanocrystalline diamond films implanted with nitrogen ions. Diam. Relat. Mater. 2001, 10, 1441–1447. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Origin of the1150−cm−1Raman mode in nanocrystalline diamond. Phys. Rev. B 2001, 63, 121405. [Google Scholar] [CrossRef]
- Tian, Y.; Ma, H.A.; Li, S.S.; Xiao, H.Y.; Zhang, Y.F.; Huang, G.F.; Ma, L.Q.; Jia, X.P. Dependence of limited growth rate of high-quality gem diamond on growth conditions. Chin. Phys. Lett. 2007, 24, 2115–2117. [Google Scholar]
- Greco, G.; Iucolano, F.; Roccaforte, F. Ohmic contacts to Gallium Nitride materials. Appl. Surf. Sci. 2016, 383, 324–345. [Google Scholar] [CrossRef]
- Benbakhti, B.; Soltani, A.; Kalna, K.; Rousseau, M.; De Jaeger, J.-C. Effects of Self-Heating on Performance Degradation in AlGaN/GaN-Based Devices. IEEE Trans. Electron Devices 2009, 56, 2178–2185. [Google Scholar] [CrossRef]
- Conroy, M.; Li, H.; Zubialevich, V.Z.; Kusch, G.; Schmidt, M.; Collins, T.; Glynn, C.; Martin, R.W.; O’Dwyer, C.; Morris, M.D.; et al. Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods. Cryst. Growth Des. 2016, 16, 6769–6775. [Google Scholar] [CrossRef]
Works | Substrate | Passivation Layer | Idmax (mA/mm) | Heat Dissipation Improvement | Vbr (V) |
---|---|---|---|---|---|
Ref. [31] | Si | 50 nm SiO2 + 500 nm NCD | 249.6 | ~20% | 140 V |
Ref. [27] | SiC | 50 nm SiNx + 500 nm NCD | 445 | ~20% | 800 V |
Ref. [28] | SiC | 20 nm SiNx + 500 nm NCD | 743.28 | 21.4% | / |
Ref. [26] | SiC | 5 nm SiNx + 500 nm NCD | 1450 | 29.4% | / |
This work | Si | 50 nm SiNx + 250–383 nm NCD | 555 | 36% | 500 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Song, S.; Ren, Z.; Zhu, L.; Zhang, J.; Su, K.; Chen, J.; Zhang, T.; Zhu, W.; Li, J.; et al. Preparation and Characterization of GaN-on-Si HEMTs with Nanocrystalline Diamond Passivation. Crystals 2025, 15, 242. https://doi.org/10.3390/cryst15030242
Fu Y, Song S, Ren Z, Zhu L, Zhang J, Su K, Chen J, Zhang T, Zhu W, Li J, et al. Preparation and Characterization of GaN-on-Si HEMTs with Nanocrystalline Diamond Passivation. Crystals. 2025; 15(3):242. https://doi.org/10.3390/cryst15030242
Chicago/Turabian StyleFu, Yu, Songyuan Song, Zeyang Ren, Liaoliang Zhu, Jinfeng Zhang, Kai Su, Junfei Chen, Tao Zhang, Weidong Zhu, Junpeng Li, and et al. 2025. "Preparation and Characterization of GaN-on-Si HEMTs with Nanocrystalline Diamond Passivation" Crystals 15, no. 3: 242. https://doi.org/10.3390/cryst15030242
APA StyleFu, Y., Song, S., Ren, Z., Zhu, L., Zhang, J., Su, K., Chen, J., Zhang, T., Zhu, W., Li, J., Man, W., Hao, Y., & Zhang, J. (2025). Preparation and Characterization of GaN-on-Si HEMTs with Nanocrystalline Diamond Passivation. Crystals, 15(3), 242. https://doi.org/10.3390/cryst15030242