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Abstract: This study investigates the effects of chromium (Cr3+) doping on BaTiO3 nanoparticles
synthesized via the sol–gel route. X-ray diffraction confirms a Cr-induced cubic-to-tetragonal phase
transition, with lattice parameters and crystallite size varying systematically with Cr3+ content. UV–
visible spectroscopy reveals a monotonic decrease in bandgap energy from 3.168 eV (pure BaTiO3) to
2.604 eV (5% Cr3+-doped BaTiO3). Raman and FTIR spectroscopy elucidate structural distortions
and vibrational mode alterations caused by Cr3+ incorporation. Transmission electron microscopy
and energy-dispersive X-ray spectroscopy verify nanoscale morphology and successful Cr3+ doping
(up to 1.64 atom%). Antioxidant activity, evaluated using the DPPH assay, shows stable radical
scavenging for pure BaTiO3 (40.70–43.33%), with decreased activity at higher Cr3+ doping levels.
Antibacterial efficacy against Escherichia coli peaks at 0.5% Cr3+ doping (10.569 mm inhibition zone at
1.5 mg/mL), decreasing at higher concentrations. This study demonstrates the tunability of structural,
optical, and bioactive properties in Cr3+-doped BaTiO3 nanoparticles, highlighting their potential as
multifunctional materials for electronics, photocatalysis, and biomedical applications.

Keywords: BaTiO3; sol–gel; doping; phase change and bioactive

1. Introduction

Barium titanate (BaTiO3) nanoparticles have garnered significant attention in materials
science due to their exceptional ferroelectric, piezoelectric, and dielectric properties [1,2].
These nanoparticles, belonging to the perovskite family with the general formula ABO3 [3],
exhibit a unique crystal structure that undergoes several phase transitions, each associ-
ated with distinct functional characteristics. At the nanoscale, BaTiO3 exhibits distinct
advantages over its bulk counterpart. Nanoparticles with diameters below 100 nm show
a reduced Curie temperature of 30–50 ◦C compared to bulk, extending their ferroelectric
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behavior to lower temperatures [4,5]. The dielectric constant increases significantly, with
values up to 15,000 reported for 70 nm particles, enhancing capacitor performance [6].
Piezoelectric coefficients are also amplified, with a d33 of 416 pC/N observed in 100 nm
BaTiO3, compared to 216 pC/N in 500 nm particles [7]. Additionally, the surface area
can increase up to seven times with the reduction of particle size from 70 nm to 10 nm,
which can enhance the catalytic activity [8]. These quantifiable nanoscale-specific prop-
erties make BaTiO3 nanoparticles promising for applications in miniaturized electronics,
high-sensitivity sensors, and efficient photocatalysts [2].

Various synthesis methods have been employed to produce BaTiO3 nanoparticles,
each offering distinct advantages and challenges. Conventional solid-state reactions, while
straightforward, often require high temperatures and yield particles with limited size
control [9]. Coprecipitation methods allow for lower processing temperatures but can
struggle with precise stoichiometry control [10]. Hydrothermal synthesis offers good
control over particle morphology and size, but is limited by small production volumes
due to high-pressure autoclave reactors [11]. Other methods such as microwave-assisted
and combustion synthesis have also been investigated [12,13]. Among these techniques,
the sol–gel method stands out for its versatility and effectiveness in producing high-
quality BaTiO3 nanoparticles [14], particularly when incorporating dopants. This method
involves the transition of a system from a colloidal suspension (sol) into a three-dimensional
network structure that entraps the solvent (gel), allowing for molecular-level mixing of
the precursors and dopants. The gel state, an intermediate phase in this process, plays
a crucial role in controlling the evolution of the material, enabling precise tailoring of
the composition, particle size, and morphology [15]. Furthermore, the sol–gel approach
facilitates homogeneous dopant distribution and allows for the synthesis of nanocrystalline
materials at relatively low temperatures [16], making it particularly suitable for studying
the effects of dopant incorporation on BaTiO3 properties.

The incorporation of dopants into the BaTiO3 lattice has emerged as a powerful
strategy to further tailor its properties [17]. Among various dopants, trivalent chromium
(Cr3+) has shown particular promise due to its ability to simultaneously modulate the
structural, optical, and electrical properties of BaTiO3 nanoparticles. The ionic radius of
Cr3+ (0.69 Å) closely matches that of Ti4+ (0.68 Å), facilitating its substitution at the B-site
of the perovskite structure [18]. This substitution introduces complex defect chemistry,
profoundly affecting the characteristics of the material at multiple scales.

From a structural perspective, Cr3+ doping induces lattice distortions and alters the
phase transition behavior of BaTiO3 nanoparticles [19]. These structural modifications can
significantly influence the material’s ferroelectric and piezoelectric responses, potentially
enhancing its performance in various applications [20]. The precise control over the crystal
structure through Cr3+ doping offers a unique opportunity to tailor the functional properties
of BaTiO3 nanoparticles for specific technological needs.

The optical properties of BaTiO3 nanoparticles undergo substantial changes upon
Cr3+ doping. The introduction of Cr3+ ions creates additional electronic states within the
bandgap, leading to a reduction in the optical bandgap energy [21]. This bandgap engineer-
ing not only alters the optical absorption characteristics of the material, resulting in visible
color changes, but also expands its potential for photocatalytic and optoelectronic applica-
tions [22]. The ability to tune the optical absorption characteristics through Cr3+ doping
opens up new avenues for utilizing BaTiO3 nanoparticles in light-driven technologies.

Morphologically, Cr3+ doping can significantly influence the size, shape, and surface
properties of BaTiO3 nanoparticles [23,24]. These morphological changes are crucial as
they directly impact the material’s reactivity, catalytic activity, and interaction with its
environment. Understanding and controlling the morphological evolution of Cr3+-doped
BaTiO3 nanoparticles is essential for optimizing their performance in various applications,
particularly those involving interface-dependent processes [25].

Perhaps most intriguingly, recent research has hinted at the potential bioactive be-
havior of Cr3+-doped BaTiO3 nanoparticles, opening up exciting possibilities in the realm
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of biomedical applications [3]. The unique combination of ferroelectric properties and
controlled doping may impart novel functionalities relevant to biological interactions [26].
These could include enhanced biocompatibility, antimicrobial activity, or the ability to influ-
ence cellular processes through localized charge distributions or piezoelectric effects [27].

This study aims to provide a comprehensive investigation of the effects of Cr3+ doping
on the structural, optical, and morphological characteristics of BaTiO3 nanoparticles, with
a particular focus on their resultant bioactive behavior. Using advanced characterization
techniques, we aim to unravel the complex relationships between doping concentration,
nanoparticle characteristics, and biological interactions. This research contributes to the
fundamental understanding of doped ferroelectric nanomaterials but also paves the way
for their rational design in next-generation applications in biomedicine.

2. Materials and Methods
2.1. Materials

High-purity analytical grade materials were used for the preparation of pure and Cr3+-
doped barium titanate, including barium nitrate (Ba[NO3]2, Merck, 99.0%), titanium (IV)
isopropoxide (C12H28O4Ti, Sigma Aldrich, 97%, St. Louis, MO, USA), chromium (III) nitrate
nonahydrate (CrN3O9.9H2O, Sigma Aldrich, 99%, MO, USA), citric acid (C6H8O7, Sigma
Aldrich, MO, USA), 2-propanol (CH3CH[OH]CH3, Merck, Darmstadt, Germany), DPPH
(2,2-Difenil-1-(2,4,6-trinitrofenil)hidrazil, Merck Darmstadt, Germany), Mueller–Hinton
agar (Merck Darmstadt, Germany), and ultrapure water.

2.2. Pure and Cr3+-Doped BaTiO3 Synthesis

The sol–gel method was employed for synthesizing pure and Cr3+-doped BaTiO3
nanoparticles. This method was chosen for its ability to achieve molecular-level mixing
of the precursors and dopants, facilitating homogeneous composition and precise control
over the doping process.

Ultrapure water (20 mL) was used to dissolve barium nitrate (6.25 mmol), while
2-propanol served in two steps: 5 mL to dissolve citric acid (1.7 mmol) and another 5 mL
for titanium isopropoxide (6.25 mmol). For Cr3+-doping, barium nitrate was partially
substituted with chromium nitrate (0.03, 0.05, 0.1, 0.3, and 0.5 mol%). These solutions were
prepared separately and combined sequentially, with the barium nitrate and citric acid
solutions mixed and stirred for 150 min before the dropwise addition of the titanium iso-
propoxide solution. The gel state, characterized by a three-dimensional network structure
entrapping the solvent, is crucial in this process. It allows for the homogeneous distribu-
tion of dopants at the molecular level, particularly important for achieving uniform Cr3+

incorporation into the BaTiO3 lattice. This stage significantly influences the final properties
of the material.

Gels underwent aging at 50 ◦C for 12 h, during which further condensation reactions
and structural reorganization occurred. The dried gels were ground into fine powders
and thermally treated at 700 ◦C for two hours, causing gel network breakdown, organic
component removal, and BaTiO3 phase crystallization.

2.3. Characterization

A comprehensive array of analytical techniques was utilized to characterize the struc-
tural, compositional, thermal, optical, vibrational, and morphological properties of pure
and chromium-doped barium titanate (BaTiO3) ceramic samples. Simultaneous thermo-
gravimetric analysis and differential scanning calorimetry were conducted on the dried gel
precursors prior to calcination using an SDT 650 module from TA Instruments (New Castle,
DE, USA) to study the thermal decomposition behavior of the precursors, determine the
optimal calcination temperature for crystalline BaTiO3 formation, and quantify changes
in thermal behavior and weight loss. The samples were heated from room temperature to
900 ◦C at a constant rate of 20 ◦C per minute under a nitrogen atmosphere. X-ray diffraction
patterns were collected using a PANalytical Aeris diffractometer (PANalytical, Almelo,
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The Netherlands) with copper K-alpha radiation and a nickel filter, and Rietveld refine-
ment of the patterns enabled the determination of the crystal structure and crystallite size.
Additionally, vibrational spectroscopy based on a 532 nm Raman microscope from Ocean
Optics (MAYA 2000-Pro, Ocean Optics, Dunedin, FL, USA) was utilized to acquire Raman
spectra. Diffuse reflectance spectroscopy in the ultraviolet–visible wavelength range was
performed using an Evolution 220 spectrometer from Thermo Scientific (San Jose, CA,
USA). Infrared spectroscopy was performed on a Bruker Invenio R Fourier Transform
Infrared spectrometer equipped with an attenuated total reflectance accessory (Bruker,
Saarbrucken, Germany). Photoluminescence spectra were recorded using a Fluoromax Plus
spectrometer (Horiba Scientific, Irvine, CA, USA). The morphology and microstructure
were evaluated using transmission electron microscopy on a Thermo Scientific Talos F200i
microscope (Thermo Scientific Co., Eindhoven, The Netherlands).

2.4. Antioxidant Activity

Pure and doped Barium titanate nanoparticle solutions were prepared at varying
concentrations ranging from 0.5 to 4 mg/mL. The radical scavenging activity was assessed
by reacting the BaTiO3 nanoparticles solutions with the stable free radical 2,2-diphenyl-
1-picrylhydrazyl (DPPH). Specifically, 50 µL of each sample concentration was added in
triplicate to the wells of a 96-well microplate followed by the addition of a 50 µL methanolic
solution of 100 µM DPPH. Control wells contained 50 µL DPPH solution and 50 µL sterile
deionized water. The microplate was incubated at room temperature in the dark for 20 min.
Thereafter, the absorbance was measured at 517 nm using a spectrophotometer (Epoch 2C,
Biotek Instruments, Winooski, VT, USA). The assays were performed in three independent
replicates. Radical scavenging percentages were computed using the following equation:

Percent scavenging (%) =
A0 − A1

A0
· 100

where A0 = absorbance of DPPH control and A1 = absorbance of DPPH solution after
reaction with the pure and doped BaTiO3 nanoparticles.

2.5. Antibacterial Activity Assay

The antimicrobial activity of pure and doped BaTiO3 nanoparticles was evaluated
against E. coli using the Kirby–Bauer disk diffusion method. E. coli was cultured in Mueller–
Hinton broth at 37 ◦C for 24 h prior to use on agar plates. E. coli inoculum was prepared
by adjusting the turbidity to match the 0.5 McFarland standard, corresponding to an
approximate cell density of 1.5 × 108 CFU/mL. Mueller–Hinton agar plates were inoculated
with 100 µL of bacterial suspension evenly spread across the surface. Sterile filter paper
discs (6 mm diameter) (Oxoid Ltd., Basingstoke, UK) were prepared from deactivated
sensitivity test discs through a validated sterilization protocol (autoclaving at 121 ◦C for
15 min in distilled water, followed by triple rinsing with sterile distilled water and dry
heat sterilization at 180 ◦C for 1 h). Complete deactivation was verified through control
experiments. These blank discs were then impregnated with varying concentrations of pure
and doped BaTiO3 nanoparticle suspensions (0.5–4 mg/mL). The impregnated discs were
dried at room temperature under sterile conditions before being placed on the inoculated
agar plates. BaTiO3 nanoparticle solutions were prepared in sterile deionized water. The
agar plates were incubated at 37 ◦C for 24 h under aerobic conditions. Deionized water
was used as a negative control in parallel with all antibacterial experiments. The negative
control experiments were conducted under identical conditions to those used for testing
the Cr3+-doped BaTiO3 nanoparticles.

Finally, the diameters of the inhibition zones formed around the disks were measured
to evaluate the antimicrobial activity. The assays were performed in triplicate and the mean
inhibition zone diameters were recorded for each BaTiO3 nanoparticle concentration.
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3. Results and Discussion
3.1. Thermal Analysis

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were
employed to investigate the thermal behavior of pure and Cr3+-doped BaTiO3 nanoparticles
synthesized using citric acid as the chelating agent (Figure 1). The TGA curves (Figure 1a)
reveal varied weight loss patterns across the doping concentrations. Notably, the 5% Cr3+-
doped sample exhibits a higher mass loss compared to the undoped sample, suggesting
that Cr3+ doping has a complex effect on the thermal behavior of BaTiO3 nanoparticles.
This may involve influencing the retention of volatile species or altering decomposition
pathways of residual organics, particularly the citric acid chelate complexes [28,29].
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Figure 1. (a) Thermogravimetric analysis and (b) differential scanning calorimetry of pure and
Cr3+-doped BaTiO3.

The DSC curves (Figure 1b) provide insight into the energetic processes occurring dur-
ing heating. An endothermic event around 100 ◦C is primarily attributed to the evaporation
of residual moisture. The subsequent thermal events in the 200–500 ◦C range correspond to
a complex series of decomposition processes, primarily involving the citric acid used as
the chelating agent in our synthesis [30]. Citric acid decomposition typically occurs over
a broad temperature range (177–500 ◦C) [31], which aligns with our observations. The
exothermic nature of these events suggests the combustion of organic material, releasing
energy that may facilitate the initial stages of BaTiO3 formation.

The exothermic peak observed around 600 ◦C corresponds to the crystallization of
BaTiO3. Interestingly, the peak temperatures for Cr3+-doped samples are slightly higher
than the undoped sample, suggesting that Cr3+ doping may increase the energy required
for crystallization. This could be due to lattice distortions, altered nucleation dynamics, or
the influence of Cr3+ on the decomposition products of the citric acid complexes [28,32].

The role of Cr3+ in the crystallization and phase transition of BaTiO3 is complex.
While Cr3+ doping appears to slightly increase the crystallization temperature, it may
still influence the subsequent cubic-to-tetragonal transition. Recent studies have shown
that transition metal dopants can create local distortions in the BaTiO3 lattice, potentially
serving as nucleation points for the tetragonal phase [33–35]. However, this transition is
not distinctly visible in our DSC data, likely due to the small energy difference between
the cubic and tetragonal phases in nanocrystalline BaTiO3. The exact mechanism in our
Cr3+-doped samples requires further investigation, potentially using in situ diffraction
techniques to resolve the subtle structural changes during heating.
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The varied weight loss patterns observed in TGA, particularly for higher Cr3+ dop-
ing levels, may be attributed to the formation of different metal–citrate complexes during
synthesis. These complexes could have different thermal stabilities and decomposition path-
ways, leading to the observed variations in weight loss. This complex interplay between
Cr3+ doping, citric acid complexation, and thermal decomposition underscores the intricate
nature of the synthesis–structure–property relationships in these doped nanoparticles.

3.2. X-Ray Diffraction

The X-ray diffraction (XRD) patterns are shown in Figure 2a. The analysis reveals
the influence of chromium (Cr3+) doping on the structural transformation of BaTiO3,
where Cr3+ was introduced through chromium nitrate dissolved in 2-propanol during
the sol–gel synthesis. The pristine BaTiO3 exhibits a cubic crystal system (Pm-3m space
group), characterized by a single peak in the XRD pattern at 2θ ≈ 45.75◦ (Figure 2b).
The observed XRD pattern for the cubic phase shows good agreement with the reference
pattern (Figure S1) from the Crystallography Open Database [36] (COD 96-591-0150). Upon
Cr3+ doping at the A site through the controlled substitution of Ba2+ during the sol–gel
process, a structural transition to the tetragonal phase (P4mm space group) is observed
(Figure 2b), evidenced by the splitting of the original peak into a doublet, with a new
shoulder appearing at 2θ ≈ 45.25◦ for Cr3+-doped samples. The XRD pattern of the Cr3+-
doped samples matches well with the COD entry 96-152-5438, indicating the successful
formation of the tetragonal phase. These findings are consistent with the well-established
concept of dopant-induced phase transitions in perovskite oxides [37,38].
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Figure 2. (a) X-ray diffraction patterns of pure and doped BaTiO3 and (b) amplification of XRD peaks
within the 44–46.5◦ range.

The effectiveness of using chromium nitrate dissolved in 2-propanol for Cr3+ incorpo-
ration is demonstrated by the systematic evolution of the XRD patterns with increasing
dopant concentration. The homogeneous distribution of Cr3+ ions achieved through the
sol–gel route enables uniform substitution at the A-site, as evidenced by the consistent
peak splitting patterns across different doping levels.

The minor peaks observed around 24.37◦, 24.78◦, 34.83◦, 42.45◦, 43.46◦, and 46.9◦ can
be attributed to trace amounts of BaCO3 (COD: 96-900-6842), formed by the reaction of
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Ba2+ with atmospheric CO2 during synthesis. These peaks correspond to the (111), (102),
(013), (203), (104), and (114) planes of BaCO3, respectively.

The sol–gel synthesis approach using chromium nitrate in 2-propanol plays a crucial
role in achieving the observed structural characteristics, where molecular-level mixing in
the sol state and controlled hydrolysis and condensation reactions enable precise control
over the Cr3+ substitution process. This is particularly important given the significant
difference in ionic radii between Ba2+ (1.35 Å) and Cr3+ (0.69 Å). Furthermore, the sol–
gel method has demonstrated versatility in accommodating various dopants, such as
calcium [39], lanthanum [40], and cerium [41], among others [17,42], which have smaller
ionic radii compared to Ba2+.

The Rietveld refinement analysis (Figure S2) reveals systematic changes in structural
parameters with increasing Cr3+ content, as presented in Table 1. The pristine BaTiO3
sample exhibits equal lattice parameters (a = b = c = 4.00785 Å) and 90◦ angles between
them, characteristic of the cubic phase. Upon Cr3+ doping, the structural transition to
the tetragonal symmetry, with the a = b lattice parameter decreasing from 4.00698 Å to
4.00379 Å, and the c parameter increasing from 4.01477 Å to 4.01699 Å (Figure S3) [43,44].

Table 1. Structural parameters of chromium-doped BaTiO3 nanoparticles.

Structural
Parameter

Sample

BaTiO3
BaTiO3-

0.3%Cr3+
BaTiO3-

0.5%Cr3+
BaTiO3-
1%Cr3+

BaTiO3-
3%Cr3+

BaTiO3-
5%Cr3+

Crystal system Cubic Tetragonal Tetragonal Tetragonal Tetragonal Tetragonal
Space group Pm-3m P4mm P4mm P4mm P4mm P4mm

A = b (Å) 4.00785 4.00698 4.00554 4.00599 4.00476 4.00379
c (Å) 4.00785 4.01477 4.01602 4.01555 4.01558 4.01699

α = β = γ (◦) 90 90 90 90 90 90
ρ(g/cm3) 6.01 6.01 6.01 6 6.01 6.01
D (nm) 63.27 55.29 54.49 54.61 57.71 58.27

Micro strain (%) 0.097 0.063 0.056 0.062 0.053 0.046
Rexp (%) 2.25336 2.37418 2.386 3.25221 2.36559 2.34574
Rp (%) 2.82395 3.21306 4.25722 3.53244 3.24347 3.31153

Rwp (%) 4.08684 4.30687 6.03794 4.50786 4.29443 4.37974
GOF 1.81367 1.81405 2.53057 1.38609 1.81537 1.8671

The defect chemistry associated with this A-site substitution can be described using
Kröger–Vink notation:

2Cr
(

NO3)3 + 3Ba×Ba → 2Cr•Ba + V ′′
Ba + 3Ba (NO3)2

Cr
(

NO3)3 + Ba×Ba → Cr•Ba + O′′
i + Ba (NO3)2

where Cr•Ba represents Cr3+ on a Ba2+ site (single positive charge), V ′′
Ba represents a bar-

ium vacancy (double negative charge), and O′′
i represents an oxygen interstitial (double

negative charge).
The crystallite size analysis shows a marked decrease from 63.27 nm (pristine) to

55.29 nm (0.3% Cr3+), followed by relatively stable values around 54–58 nm for higher
doping levels. The micro strain analysis from the Rietveld refinement shows values decreas-
ing from 0.097% (pristine) to 0.046% (5% Cr3+), indicating that despite the significant size
mismatch between Ba2+ and Cr3+, the sol–gel synthesis conditions enabled the formation
of a relatively stable crystal structure [38].

3.3. Raman Spectroscopy

The Raman spectra (Figure 3) provide detailed insights into the local structural changes
induced by A-site Cr3+ substitution in BaTiO3. The pristine BaTiO3 (Figure 3a) exhibits
characteristic first-order vibrational modes with F2g symmetry, representing symmetric
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Ti-O bending (305 cm−1) and stretching (720 cm−1) motions. These modes reflect the cubic
symmetry of the undoped structure, where TiO6 octahedra maintain regular coordination
geometry [45].
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Figure 3. Raman spectra of (a) Pristine BaTiO3 and (b) Cr3+-doped BaTiO3.

Upon Cr3 incorporation at the A-site (Figure 3b), systematic changes in the vibrational
spectra emerge, reflecting the modified crystal structure. The development of additional
modes at 153, 521, 637, and 719 cm−1 indicates increasing lattice distortion with Cr3 content.
These spectral changes can be attributed to the formation of defect complexes (Cr•Ba, V ′′

Ba,
and O′′

i ) that modify local symmetry, strain fields created by the significant size mismatch
between Cr3+ and Ba2+, and enhanced displacement of Ti4+ ions from their central positions
in response to the modified A-site environment [46].

The systematic evolution of peak intensities and the emergence of new vibrational
features correlate with the increasing tetragonal distortion observed in XRD analysis.
Notably, samples with higher Cr3+ content (1%, 3%, and 5%) show more pronounced
spectral changes, consistent with greater structural modification at elevated doping levels.
The low-frequency band at 153 cm−1 can be assigned to A-site cation motions, while the
additional features in the 500–700 cm−1 range reflect modified Ti-O bonding environments
resulting from the accommodation of Cr3+ in the lattice [18,21,47]. These spectroscopic
observations provide compelling evidence for the successful incorporation of Cr3+ at the
A-site and the consequent local structural modifications, despite the significant ionic radius
mismatch. The Raman data thus support our proposed defect compensation mechanism
and provides valuable insights into the local structural changes that enable stable A-site
substitution in this system [48].

3.4. Fourier-Transform Infrared Spectroscopy (FTIR)

FTIR spectra (Figure 4) reveal systematic modifications in the vibrational character-
istics of BaTiO3 upon A-site Cr3+ substitution. The spectrum of pristine BaTiO3 shows
characteristic absorption bands at 507 cm−1 (Ti-O bending), 632 cm−1 (asymmetric O-Ti-O
stretching), 857 cm−1 (asymmetric Ti-O-Ti bridging stretch), and 1417 cm−1 (Ti-O stretch),
consistent with previous reports [49,50]. Upon Cr3+ incorporation, several systematic
changes emerge in the spectral features. The relative intensity of the 507 cm−1 band de-
creases with increasing Cr3+ content, while new features develop in the 600–700 cm−1

region. These changes reflect modifications in the Ti-O bonding environments induced by
the accommodation of Cr3+ at the A-site [51].



Crystals 2024, 14, 998 9 of 19

Crystals 2024, 14, x FOR PEER REVIEW 9 of 20 
 

 

site and the consequent local structural modifications, despite the significant ionic radius 
mismatch. The Raman data thus support our proposed defect compensation mechanism 
and provides valuable insights into the local structural changes that enable stable A-site 
substitution in this system [48]. 

3.4. Fourier-Transform Infrared Spectroscopy (FTIR) 
FTIR spectra (Figure 4) reveal systematic modifications in the vibrational character-

istics of BaTiO3 upon A-site Cr3⁺ substitution. The spectrum of pristine BaTiO3 shows char-
acteristic absorption bands at 507 cm−1 (Ti-O bending), 632 cm−1 (asymmetric O-Ti-O 
stretching), 857 cm−1 (asymmetric Ti-O-Ti bridging stretch), and 1417 cm−1 (Ti-O stretch), 
consistent with previous reports [49,50]. Upon Cr3⁺ incorporation, several systematic 
changes emerge in the spectral features. The relative intensity of the 507 cm−1 band de-
creases with increasing Cr3⁺ content, while new features develop in the 600–700 cm−1 re-
gion. These changes reflect modifications in the Ti-O bonding environments induced by 
the accommodation of Cr3⁺ at the A-site [51]. 

The band at 695 cm−1, associated with symmetric O-Ti-O stretching in TiO₆ octahedra, 
shows progressive modification in intensity and shape with increasing Cr3⁺ concentration 
[48]. This evolution indicates that A-site substitution influences the local symmetry of the 
octahedral units, likely through the formation of defect complexes involving barium va-
cancies and oxygen interstitials. The high-frequency mode at 1417 cm−1, corresponding to 
localized oxygen vibrations, exhibits systematic changes in intensity that correlate with 
the increasing Cr3⁺ content [52]. Additional weak features observed in samples with higher 
Cr3⁺ concentrations may indicate the presence of trace secondary phases, although these 
remain below the detection limit of XRD [53]. 

 
Figure 4. FTIR spectra of pure and Cr3+-doped BaTiO3. 

The systematic evolution of the FTIR spectra provides further evidence for the suc-
cessful incorporation of Cr3⁺ at the A-site and the resulting modifications in the local bond-
ing environments. The observed spectral changes align with our proposed defect compen-
sation mechanism, where the significant size mismatch between Cr3⁺ and Ba2⁺ is accom-
modated through the formation of ordered defect structures. These spectroscopic signa-
tures complement our XRD and Raman analyses, offering additional insights into the local 
structural modifications that enable stable A-site substitution in this system. 

2000 1750 1500 1250 1000 750 5002000 1500 1000 500

Tr
an

sm
ita

nc
e 

(a
.u

.)

Wavenumber (cm─1)

 BaTiO3

 BaTiO3-0.3% Cr3+

 BaTiO3-0.5% Cr3+

 BaTiO3-1% Cr3+

 BaTiO3-3% Cr3+

 BaTiO3-5% Cr3+

1417

857

691

632

507

1058

1750

Tr
an

sm
ita

nc
e 

(a
.u

.)

Wavenumber (cm─1)

Figure 4. FTIR spectra of pure and Cr3+-doped BaTiO3.

The band at 695 cm−1, associated with symmetric O-Ti-O stretching in TiO6 octahedra,
shows progressive modification in intensity and shape with increasing Cr3+ concentra-
tion [48]. This evolution indicates that A-site substitution influences the local symmetry of
the octahedral units, likely through the formation of defect complexes involving barium
vacancies and oxygen interstitials. The high-frequency mode at 1417 cm−1, corresponding
to localized oxygen vibrations, exhibits systematic changes in intensity that correlate with
the increasing Cr3+ content [52]. Additional weak features observed in samples with higher
Cr3+ concentrations may indicate the presence of trace secondary phases, although these
remain below the detection limit of XRD [53].

The systematic evolution of the FTIR spectra provides further evidence for the suc-
cessful incorporation of Cr3+ at the A-site and the resulting modifications in the local
bonding environments. The observed spectral changes align with our proposed defect
compensation mechanism, where the significant size mismatch between Cr3+ and Ba2+ is
accommodated through the formation of ordered defect structures. These spectroscopic
signatures complement our XRD and Raman analyses, offering additional insights into the
local structural modifications that enable stable A-site substitution in this system.

3.5. UV–Visible Spectroscopy

The UV–vis diffuse reflectance spectra, as shown in Figure 5a, reveal the influence of
Cr3+ doping on the optical properties of BaTiO3. Pure BaTiO3 exhibits a sharp absorption
edge and low reflectance below 375 nm, indicating its wide bandgap and strong UV
absorption. As the Cr3+ doping concentration increases, the reflectance progressively
decreases across the visible range, correlating with a visible color change from white for
undoped BaTiO3 to pale grey hues in the doped ceramics. This qualitative observation
suggests a narrowing of the bandgap due to Cr3+ incorporation.

To quantitatively evaluate the optical bandgap values, the Kubelka–Munk function,
which relates the absorption coefficient to diffuse reflectance, was employed. The Kubelka–
Munk function, F(R), is defined as:

F(R) =
K
S

=
(1 − R)2

2R

where K is the absorption coefficient of radiation, S is the scattering factor, and R is the
ratio of the intensities of radiation reflected in a diffuse manner. This function assumes
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that the transitions occur between extended states, consistent with the electronic structure
of BaTiO3.
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The calculated bandgap values demonstrate a monotonic decline from 3.168 eV for
pure BaTiO3 to 3.03 eV (0.3% Cr3+), 2.939 eV (0.5% Cr3+), 2.834 eV (1% Cr3+), 2.775 eV
(3% Cr3+), and finally to 2.604 eV in the 5% Cr3+-substituted composition, validating the
significant bandgap engineering achieved through controlled Cr3+ dopant inclusion.

The slightly enhanced bandgap reduction observed at 1% Cr3+ doping suggests an
optimal configuration of defect complexes at this concentration, leading to more effective
modification of the electronic band structure.

This quantifies the magnitude of bandgap engineering achieved through controlled
dopant inclusion. The decrease in bandgap energy with increasing Cr3+ concentration can
be attributed to the increased hybridization between the Cr 3d and O 2p orbitals localized
within the distorted TiO6 octahedral units [54,55]. The structural transitions induced by Cr3+

doping, as evidenced by XRD and Raman spectroscopy, enhance the bonding covalence,
facilitating the reduction in bandgap energy.

Moreover, the polarization-strain effects associated with the tetragonal distortion
in Cr3+-doped BaTiO3 can assist in charge carrier separation and mobility, further con-
tributing to the observed optical properties. The introduction of Cr3+ dopants also creates
mid-gap states, which can act as intermediate energy levels for sub-bandgap optical ab-
sorption [56]. These mid-gap states allow for the absorption of photons with energies lower
than the intrinsic bandgap of BaTiO3, effectively extending the absorption range into the
visible region.

3.6. Photoluminescence Spectroscopy

The photoluminescence (PL) spectra of pure and Cr3+-doped BaTiO3 samples (Figure 6),
recorded under carefully controlled experimental conditions (excitation: 254 nm, tempera-
ture: 25 ◦C, and fixed illumination area), reveal complex emission behavior reflecting the
electronic structure modifications induced by A-site substitution. Gaussian deconvolution
analysis (Figure S4, R2 > 0.999) demonstrates the presence of multiple emission components,
indicating diverse radiative recombination pathways in the material.

The pristine BaTiO3 exhibits three primary emission components centered at 361.17,
396.74, and 415.92 nm, with relative contributions of 7.08%, 41.17%, and 51.75%, respec-
tively (Table S1). The dominant peak at 415.92 nm (FWHM = 47.69 nm) originates from
radiative recombination involving oxygen vacancy states, while the bands at 361.17 nm
(FWHM = 60.64 nm) and 396.74 nm (FWHM = 32.77 nm) correspond to near-band-edge
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transitions and shallow defect states [57], respectively. Upon Cr3+ incorporation, the emer-
gence of a fourth emission component (~430–433 nm) is observed in all doped samples,
with systematically varying intensity and FWHM values. This new emission band can be
attributed to electronic transitions involving the Cr3+-induced defect complexes (Cr•Ba, V ′′

Ba,
and O′′

i ) [58].
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A notable feature is the progressive decrease in overall PL intensity with increasing
Cr3+ concentration, particularly pronounced for 3%- and 5%-doped samples, where the
integrated intensity decreases to approximately 45% and 25% of the pristine value, respec-
tively. This reduction correlates with the enhanced tetragonal distortion and increased
defect concentration, suggesting that a higher Cr3+ content promotes non-radiative recom-
bination pathways [59]. The relative contributions of emission components also evolve
systematically, with the second peak (392–396 nm) maintaining a dominant contribution
(~68–72%) in doped samples while the intensity of the third peak decreases significantly.
Peak positions show subtle but consistent shifts (∆λ ≤ 3 nm) with increasing Cr3+ content,
indicating modification of the local electronic environment around emission centers.

The evolution of PL characteristics provides valuable insights into the defect structure
and electronic properties of Cr3+-doped BaTiO3. The appearance of the fourth emission
component and the modification of existing emission intensities directly reflect the forma-
tion and interaction of defect complexes arising from A-site Cr3+ substitution [60]. These
spectroscopic signatures, combined with the observed trends in peak parameters and
overall intensity, strongly support our proposed model of defect-mediated accommodation
of Cr3+ at the Ba2+ site. The high quality of peak deconvolution (R2 > 0.999) and the
systematic nature of spectral changes across the doping series provide robust evidence for
the proposed electronic structure modifications.

3.7. Transmission Electron Microscopy

The transmission electron microscopy (TEM) analysis elucidates the morphological
and structural evolution of Cr3+-doped BaTiO3 nanoparticles as a function of dopant con-
centration (Figure 7). Quantitative size distribution analysis, based on measurements of
over 100 particles per sample with uniform 10 nm interval widths (Figure S3a–f), reveals
systematic changes in particle size statistics. The pristine BaTiO3 exhibits a broad size distri-
bution with mean diameter 74.52 ± 74.04 nm and median 48.59 nm, indicating significant
size polydispersity. Upon Cr3+ incorporation, a dramatic reduction in both average size
and distribution width is observed, with the 0.3% Cr3+-doped sample showing a narrower
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distribution with mean 33.46 ± 28.82 nm and median 32.954 nm, suggesting more uniform
nucleation and growth dynamics. Further doping reveals systematic evolution in particle
statistics, with 0.5% Cr3+ showing a mean of 32.84 ± 19.29 nm (median 27.98 nm), 1.0%
Cr3+ with a mean of 33.61 ± 17.44 nm (median 26.77 nm), 3.0% Cr3+ displaying a mean of
40.02 ± 25.30 nm (median 32.94 nm), and 5.0% Cr3+ exhibiting means of 42.71 ± 24.18 nm
(median 35.89 nm). The size distributions follow a lognormal pattern, with decreasing
skewness at higher doping concentrations, suggesting more controlled particle growth [15].
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High-resolution TEM (HRTEM) analysis reveals well-resolved lattice fringes, enabling
direct measurement of interplanar spacings. The pristine BaTiO3 (Figure 7a) shows clear
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lattice fringes with a d-spacing of 0.289 nm, corresponding to the (111) planes. Upon Cr3+

doping, systematic variations in the lattice parameters are observed. The 0.3% Cr3+-doped
sample (Figure 7b) exhibits lattice fringes with d = 0.393 nm indexed to (100) planes, while
the 0.5% Cr3+-doped sample (Figure 7c) shows fringes with d = 0.279 nm corresponding to
(110) planes. The 1%, 3%, and 5% Cr3+-doped samples (Figure 7d–f) display interplanar
spacings of 0.394 nm, all corresponding to (100) planes.

Energy-dispersive X-ray spectroscopy (EDX) analysis (Table 2) quantitatively confirms
the successful and controlled incorporation of Cr3+, with atomic concentrations incre-
menting from 0.46 atom% for 0.3% nominal Cr3+-doping to 1.64 atom% for 5% nominal
Cr3+-doping. The remarkable reduction in particle size upon initial Cr3+ doping (0.3–1.0%)
suggests that even small amounts of dopant significantly alter the nucleation dynamics. The
subsequent gradual increase in particle size at higher doping levels (3–5% Cr3+) indicates a
transition in the growth mechanism, possibly due to the increased concentration of defect
complexes affecting crystal growth kinetics [61].

Table 2. Energy dispersive X-ray spectroscopy (EDX) analysis of all samples.

Element

Sample

BaTiO3
BaTiO3-

0.3%Cr3+
BaTiO3-

0.5%Cr3+
BaTiO3-
1%Cr3+

BaTiO3-
3%Cr3+

BaTiO3-
5%Cr3+

Ba (Atom %) 18.06 14.81 16.35 16.91 17.62 13.34
Ti (Atom %) 18.13 15.39 17.67 17.57 18.87 14.92
O (Atom %) 58.53 52.66 51.17 50.16 47.08 53.61
Cr (Atom %) - 0.46 0.57 0.97 1.32 1.64
C (Atom%) 5.28 16.68 14.24 14.39 15.11 16.49

Total (%) 100 100 100 100 100 100

The convergence of mean and median values with increasing Cr3+ content indicates
enhanced size uniformity, particularly evident in the 3% and 5% doped samples, suggesting
a more controlled growth process mediated by the presence of dopant-induced defect
complexes [15].

3.8. DPPH Radical Antioxidant Activity

The antioxidant activity of pure and Cr3+-doped BaTiO3 nanoparticles was evaluated
using the DPPH assay, which measures the ability of the nanoparticles to scavenge stable
free radicals. Figure 8 shows that the scavenging percentages obtained from the assay pro-
vide valuable insights into the radical scavenging potential of the nanoparticles at different
concentrations (125, 250, 500, and 1000 µg/mL). Pure BaTiO3 nanoparticles exhibited rela-
tively stable scavenging percentages across the tested concentrations, ranging from 40.70%
to 43.33%, indicating their inherent antioxidant properties. On the other hand, Cr3+-doped
BaTiO3 nanoparticles displayed a more pronounced variation in scavenging percentages,
particularly at higher concentrations. At lower concentrations (125 and 250 µg/mL), the
Cr3+-doped samples showed scavenging percentages comparable to or slightly lower than
pure BaTiO3. However, as the concentration increased to 500 and 1000 µg/mL, the scaveng-
ing percentages of Cr3+-doped samples tended to decrease, especially for higher doping
concentrations (3% and 5% Cr3+). This trend suggests that the incorporation of Cr3+ into
the BaTiO3 lattice influences the antioxidant activity of the nanoparticles, likely due to
structural modifications, electronic effects, and changes in surface chemistry. The structural
transition from cubic to tetragonal phase induced by Cr3+ doping may affect the surface
properties and reactivity of the nanoparticles [49], impacting their ability to interact with
and neutralize DPPH radicals [62]. Additionally, the alteration of the electronic structure
and band gap of the material, as well as the presence of Cr3+ ions on the surface, may
influence the electron transfer processes involved in the scavenging of DPPH radicals [63],
leading to a decrease in antioxidant activity at higher doping concentrations.
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Figure 8. Antioxidant activity of pure and Cr3+-doped BaTiO3.

A comprehensive analysis of the antioxidant activity of Cr3+-doped BaTiO3 nanoparti-
cles was conducted using a two-way analysis of variance (ANOVA) (Table 3). The results
revealed highly significant main effects for both the sample type (F(5, 48) = 47.45, p < 0.001)
and DPPH concentration (F(3, 48) = 58.70, p < 0.001). Furthermore, a strong interaction
effect between sample type and DPPH concentration was observed (F(15, 48) = 23.99,
p < 0.001). These findings provide robust evidence that the level of Cr3+ doping in BaTiO3
nanoparticles significantly influences their antioxidant activity, and this effect is markedly
dependent on the DPPH concentration used in the assay. The substantial interaction ef-
fect underscores a complex relationship between Cr3+ doping and DPPH concentration,
highlighting the critical importance of considering both factors when evaluating the antiox-
idant properties of these nanoparticles. The use of triplicate measurements enhances the
reliability of these results.

Table 3. ANOVA results.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F-Value p-Value

Sample 5 362.76 72.552 47.45 <0.001
Concentration 3 269.28 89.76 58.7 <0.001

Sample × Concentration 15 550.23 36.682 23.99 <0.001
Residuals 48 73.41 1.529

3.9. Antibacterial Activity

The antibacterial activity of pure and Cr3+-doped BaTiO3 nanoparticles against E. coli,
evaluated using the Kirby–Bauer disk diffusion method (Figure S4), reveals a complex
relationship between the Cr3+ doping concentration and antibacterial efficacy (Table 4).
Deionized water, used as a negative control, showed no inhibition zone, confirming the
specificity of the observed antibacterial effects to the nanoparticle treatments. Pure BaTiO3
nanoparticles exhibited stable inhibition zone diameters (8.988–9.886 mm) across the tested
concentrations (0.5–4 mg/mL), indicating inherent antibacterial properties attributed to
reactive oxygen species (ROS) generation and bacterial membrane disruption [64]. Cr3+

doping significantly influenced this activity, with a non-linear trend observed. At low Cr3+

concentrations (0.3% and 0.5%), antibacterial activity was enhanced, particularly at higher
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nanoparticle concentrations (1.5–4 mg/mL), with the 0.5% Cr3+-doped sample showing
peak performance (10.569 mm at 1.5 mg/mL). This enhancement likely stems from optimal
structural distortion, as evidenced by XRD results showing the cubic-to-tetragonal tran-
sition, combined with the introduction of non-radiative recombination centers observed
in the PL spectra, which may facilitate enhanced ROS generation and bacterial interac-
tion [65]. However, at higher Cr3+ concentrations (1%, 3%, and 5%), the antibacterial
efficacy decreased, with 5% Cr3+-doping exhibiting the lowest activity (6.892–8.992 mm).
This decline can be attributed to several factors: excessive structural distortion, as indicated
by XRD and Raman spectroscopy, potentially affecting surface reactivity and bacterial
membrane interaction; electronic structure modifications, revealed by PL and UV–vis spec-
troscopy, possibly leading to less efficient ROS generation; and surface property changes,
evidenced by the broadening of PL emission peaks and TEM observations of increased
surface roughness, potentially reducing active sites for bacterial interaction. The incorpo-
ration of Cr3+ ions into the BaTiO3 lattice alters the electronic structure and band gap of
the material [38,66], influencing the generation and transfer of ROS, which play a crucial
role in the antibacterial mechanism of metal oxide nanoparticles. At higher Cr3+ doping
concentrations, these electronic modifications may become less favorable for efficient ROS
generation and transfer, thereby reducing antibacterial efficacy. Additionally, the presence
of Cr3+ ions on the nanoparticle surface may modify surface chemistry and the availability
of reactive sites for bacterial cell interaction, potentially leading to a saturation of surface
sites at higher doping levels and reducing overall antibacterial efficiency. The observed
trends align with the complex interplay between structural transitions, electronic structure
modifications, and surface property changes induced by Cr3+ doping. The optimal 0.5%
Cr3+ concentration likely represents a balance point where these factors synergistically
enhance antibacterial activity, while higher concentrations lead to detrimental effects.

Table 4. Inhibition zones at various concentrations of pure and doped BaTiO3.

Zone of Inhibition (mm)

Concentration (mg/mL) 0.5 SD 1 SD 1.5 SD 2 SD 4 SD

BaTiO3 9.602 0.318 9.886 0.323 9.707 0.273 8.988 0.328 9.407 0.122
BaTiO3-0.3%Cr3+ 9.506 0.092 8.181 0.119 8.319 0.143 8.893 0.293 9.899 0.309
BaTiO3-0.5%Cr3+ 9.525 0.348 9.815 0.145 10.569 0.194 9.309 0.344 10.510 0.219
BaTiO3-1%Cr3+ 8.296 0.137 8.267 0.131 8.864 0.298 9.721 0.079 8.384 0.267
BaTiO3-3%Cr3+ 8.870 0.307 8.745 0.147 9.123 0.299 9.582 0.101 8.940 0.073
BaTiO3-5%Cr3+ 6.892 0.127 7.250 0.148 7.802 0.238 8.404 0.143 8.992 0.185

4. Conclusions

This comprehensive study on Cr3+-doped BaTiO3 nanoparticles demonstrates that
controlled Cr3+ doping induces significant modifications across multiple material prop-
erties. The sol–gel synthesis yields well-crystallized nanoparticles with a systematic size
evolution, showing an initial decrease from 74.52 nm to 33.46 nm at 0.3% Cr3+ followed
by a gradual increase to 42.71 nm at 5% Cr3+. Structural characterization reveals a cubic-
to-tetragonal phase transition upon doping, accompanied by systematic changes in lattice
parameters and the formation of defect complexes. The optical properties show remarkable
tunability, with bandgap reduction from 3.168 eV to 2.604 eV and systematic modifications
in photoluminescence characteristics, including the emergence of new emission compo-
nents and controlled intensity variations. Vibrational spectroscopy confirms the structural
transitions through systematic changes in Raman and FTIR modes. High-resolution TEM
analysis reveals systematic variations in lattice spacings and morphology, while EDX con-
firms successful dopant incorporation up to 1.64 atom%. The bioactive properties exhibit
concentration-dependent behavior, with optimal antibacterial activity at 0.5% Cr3+ doping
(10.569 mm inhibition zone) and sustained antioxidant activity in pure and Cr3+-doped
BaTiO3. These findings establish clear structure–property relationships in Cr3+-doped
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BaTiO3 nanoparticles and demonstrate their potential for applications ranging from elec-
tronics to biomedicine. Future research directions should include investigations into
long-term stability, exploration of co-doping strategies, and in-depth mechanistic studies to
further optimize these multifunctional nanomaterials for next-generation applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cryst14110998/s1, Figure S1: COD X-ray diffraction standard; Figure S2:
Rietveld refinement plots; Figure S3: Influence of dopant concentration on BaTiO3 lattice constant
and the tetragonality; Figure S4: Deconvolution peaks; Figure S5: TEM particle size distribution and
micrographs; Figure S6: Inhition zone; Table S1: Deconvolution parameters.
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