Ru- and Rh-Based Catalysts for CO2 Methanation Assisted by Non-Thermal Plasma
<p>Specific pore volume vs. pore size for the catalytic samples from the Hg intrusion porosimetry.</p> "> Figure 2
<p>Catalysts’ adsorption–desorption isotherms compared with the bare γAl<sub>2</sub>O<sub>3</sub> spheres.</p> "> Figure 3
<p>SEM-EDX Ru-γAl<sub>2</sub>O<sub>3</sub>.</p> "> Figure 4
<p>SEM-EDX Rh-γAl<sub>2</sub>O<sub>3</sub>.</p> "> Figure 5
<p>SEM-EDX Ru,Rh-γAl<sub>2</sub>O<sub>3</sub>.</p> "> Figure 6
<p>SEM-EDX Rh,Ru-γAl<sub>2</sub>O<sub>3</sub>.</p> "> Figure 7
<p>Catalysts’ H<sub>2</sub>-Temperature Programmed Analysis charts.</p> "> Figure 8
<p>Catalysts’ CO<sub>2</sub> conversion, CH<sub>4</sub> selectivity and yield at WHSV = 6 NL/g<sub>cat</sub>h.</p> "> Figure 9
<p>Catalysts’ CO<sub>2</sub> conversion, CH<sub>4</sub> selectivity and yield at WHSV = 1 NL/g<sub>cat</sub>h.</p> "> Figure 10
<p>RuRh-γAl<sub>2</sub>O<sub>3</sub> CH<sub>4</sub> selectivity comparison between the two space velocities.</p> "> Figure 11
<p>Catalysts’ CO<sub>2</sub> conversion, CH<sub>4</sub> selectivity and yield in non-thermal-plasma-assisted tests at WHSV = 6 NL/g<sub>cat</sub>h.</p> "> Figure 12
<p>Catalysts’ CO<sub>2</sub> conversion, CH<sub>4</sub> selectivity and yield in non-thermal-plasma-assisted tests at WHSV = 1 NL/g<sub>cat</sub>h.</p> "> Figure 13
<p>RuRh-γAl<sub>2</sub>O<sub>3</sub> CH<sub>4</sub> yield comparison for both thermal and non-thermal-plasma-assisted tests at WHSV = 1 NL/g<sub>cat</sub>h.</p> "> Figure 14
<p>Experimental plant design.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.1.1. Physical Characteristics
2.1.2. Chemical Characteristics
2.2. Activity Tests
2.2.1. Thermal Methanation Tests
2.2.2. Non-Thermal-Plasma-Assisted Methanation Tests
2.2.3. Thermal/NTP-assisted Methanation Comparison
2.3. Energy Considerations
3. Materials and Methods
3.1. Preparation of the Catalysts
3.2. Catalysts’ Characterization
3.3. Experimental Plant
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. Global CO2 Emissions Rebounded to Their Highest Level in History in 2021; International Energy Agency: Paris, France, 2022; Available online: www.iea.org (accessed on 1 March 2022).
- US Environmental Protection Agency. Overview of Greenhouse Gases. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 1 March 2022).
- Raza, A.; Gholami, R.; Rezaee, R.; Rezaee, R.; Rasouli, V.; Rabiei, M. Significant aspects of carbon capture and storage—A review. Petroleum 2019, 5, 335–340. [Google Scholar] [CrossRef]
- Erdiwansyah; Mahidin; Husin, H.; Zaki, M. A critical review of the integration of renewable energy sources with various technologies. Prot. Control Mod. Power Syst. 2021, 6, 1–18. [Google Scholar] [CrossRef]
- Tan, H.; Li, J.; He, M.; Li, J.; Zhi, D.; Qin, F.; Zhang, C. Global evolution of research on green energy and environmental technologies: A bibliometric study. J. Environ. Manag. 2021, 297, 113382. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, M.; Dincer, I. A comprehensive review on power-to-gas with hydrogen options for cleaner applications. Int. J. Hydrogen Energy 2021, 46, 31511–31522. [Google Scholar] [CrossRef]
- Martínez, J.; Hernández, E.; Alfaro, S.; López, M.R.; Valverde, A.G.; Albiter, E.; Valenzuela, M.A. High Selectivity and Stability of Nickel Catalysts for CO2 Methanation: Support Effects. Catalysts 2019, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.Y.; Chang, S.W.; Lee, S.M.; Sung, S.K.; Woo, J.C.; Jung, C.L.; Yong, J.C.; Kyung, S.S.; Dea, H.M.; Dinh, D.N. Developing Ni-based honeycomb-type catalysts using different binary oxide-supported species for synergistically enhanced CO2 methanation activity. Fuel 2019, 250, 277–284. [Google Scholar] [CrossRef]
- Gac, W.; Zawadzki, W.; Słowik, G.; Sienkiewicz, A.; Kieryset, A. Nickel catalysts supported on silica microspheres for CO2 methanation. Microporous Mesoporous Mater. 2018, 272, 79–91. [Google Scholar] [CrossRef]
- Quindimil, A.; De-La-Torre, U.; Pereda-Ayo, B.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; González-Marcos, J.A.; Bueno-López, A.; González-Velasco, J.R. Effect of metal loading on the CO2 methanation: A comparison between alumina supported Ni and Ru catalysts. Catal. Today 2020, 356, 419–432. [Google Scholar] [CrossRef]
- López-Rodríguez, S.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; Bueno-López, A. Effect of Ru loading on Ru/CeO2 catalysts for CO2 methanation. Mol. Catal. 2021, 515, 111911. [Google Scholar] [CrossRef]
- Porta, A.; Falbo, L.; Visconti, C.G.; Lietti, L.; Bassano, C.; Deiana, P. Synthesis of Ru-Based catalysts for CO2 methanation and experimental assessment of intraporous transport limitations. Catal. Today 2020, 343, 38–47. [Google Scholar] [CrossRef]
- Tsiotsias, A.I.; Charisiou, N.D.; Yentekakis, I.V.; Goula, M.A. Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review. Nanomaterials 2021, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Botzolaki, G.; Goula, G.; Rontogianni, A.; Nikolaraki, E.; Chalmpes, N.; Zygouri, P.; Karakassides, M.; Gournis, D.; Charisiou, N.; Goula, M.; et al. CO2 Methanation on Supported Rh Nanoparticles: The combined Effect of Support Oxygen Storage Capacity and Rh Particle Size. Catalysts 2020, 10, 944. [Google Scholar] [CrossRef]
- Martin, N.M.; Hemmingsson, F.; Wang, X.; Merte, L.R.; Hejral, U.; Gustafson, J.; Skoglundh, M.; Meira, D.M.; Dippel, A.; Gutowski, O.; et al. Structure–Function relationship during CO2 methanation over Rh/Al2O3 and Rh/SiO2 catalysts under atmospheric pressure conditions. Catal. Sci. Technol. 2018, 8, 2686–2696. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.M.; Hemmingsson, F.; Schaefer, A.; Ek, M.; Merte, L.R.; Hejral, U.; Gustafson, J.; Skoglundh, M.; Dippel, A.; Gutowski, O. Structure-Function relationship for CO2 methanation over ceria supported Rh and Ni catalysts under atmospheric pressure conditions. Catal. Sci. Technol. 2019, 9, 1644–1653. [Google Scholar] [CrossRef] [Green Version]
- Arandiyan, H.; Kani, K.; Wang, Y.; Jiang, B.; Kim, J.; Yoshino, M.; Rezaei, M.; Rowan, A.E.; Dai, H.; Yamauchi, Y. Highly selective reduction of carbon dioxide to methane on novel mesoporous Rh catalysts. ACS Appl. Mater. Interfaces 2018, 10, 24963–24968. [Google Scholar] [CrossRef] [PubMed]
- Palma, V.; Cortese, M.; Renda, S.; Ruocco, C.; Martino, M.; Meloni, M.E. A Review about the Recent Advances in Selected NonThermal Plasma Assisted Solid–Gas Phase Chemical Processes. Nanomaterials 2020, 10, 1596. [Google Scholar] [CrossRef]
- Wang, B.; Mikhail, M.; Galvez, M.E.; Cavadias, S.; Tatoulian, M.; Costa, P.D.; Ognier, S. Coupling experiment and simulation analysis to investigate physical parameters of CO2 methanation in a plasma-Catalytic hybrid process. Plasma Process. Polym. 2020, 17, 1900261. [Google Scholar] [CrossRef]
- Feng, X.; Liu, H.; He, C.; Shen, Z.; Wang, T. Synergistic effects and mechanism of a non-Thermal plasma catalysis system in volatile organic compound removal: A review. Catal. Sci. Technol. 2018, 8, 936–954. [Google Scholar] [CrossRef]
- Dębek, R.; Azzolina-Jury, F.; Travert, A.; Maugé, F. A review on plasma-Catalytic methanation of carbon dioxide—Looking for an efficient catalyst. Renew. Sustain. Energy Rev. 2019, 116, 109427. [Google Scholar] [CrossRef]
- Bogaerts, A.; Neyts, E.C. Plasma Technology: An Emerging Technology for Energy Storage. ACS Energy Lett. 2018, 3, 1013–1027. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, P.; Hasrack, G.; Bonnety, J.; Henriques, C. Ni-Based catalysts for plasma-assisted CO2 methanation. Curr. Opin. Green Sustain. Chem. 2021, 32, 100540. [Google Scholar] [CrossRef]
- Biset-Peiró, M.; Guilera, J.; Zhang, T.; Arbiol, J.; Andreu, T. On the role of ceria in Ni-Al2O3 catalyst for CO2 plasma methanation. Appl. Catal. A Gen. 2019, 575, 223–229. [Google Scholar] [CrossRef]
- Xu, S.; Chansai, S.; Shao, Y.; Xu, S.; Wang, Y.; Haigh, S.; Mu, Y.; Jiao, Y.; Stere, C.E.; Chen, H.; et al. Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide. Appl. Catal. B Environ. 2020, 268, 118752. [Google Scholar] [CrossRef]
- Nizio, M.; Albarazi, A.; Cavadias, S.; Amouroux, J.; Galvez, M.E.; Da Costa, P. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. Int. J. Hydrogen Energy 2016, 41, 11584–11592. [Google Scholar] [CrossRef] [Green Version]
- Nizio, M.; Benrabbah, R.; Krzak, M.; Debek, R.; Motak, M.; Cavadias, S.; Gálvez, M.E.; Da Costa, P. Low temperature hybrid plasma-Catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts. Catal. Commun. 2016, 83, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Dong, M.; Di, L.; Zhang, X. A Facile Method for Preparing UiO-66 Encapsulated Ru Catalyst and its Application in Plasma-Assisted CO2 Methanation. Nanomaterials 2019, 9, 1432. [Google Scholar] [CrossRef] [Green Version]
- Weng, W.; Pei, X.; Li, J.; Luo, C.; Liu, Y.; Lin, H.; Huang, C.; Wan, H. Effects of calcination temperatures on the catalytic performance of Rh/Al2O3 for methane partial oxidation to synthesis gas. Catal. Today 2006, 117, 53–61. [Google Scholar] [CrossRef]
- Mazzieri, V.; Coloma-Pascual, F.; Arcoya, A.; L’Argentière, P.C.; Fıgoli, N.S. XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts. Appl. Surf. Sci. 2003, 210, 222–230. [Google Scholar] [CrossRef]
- Benrabbah, R.; Cavaniol, C.; Liu, H.; Ognier, S.; Cavadias, S.; Gálvez, M.E.; Da Costa, P. Plasma DBD activated ceria-Zirconia-Promoted Ni-Catalysts for plasma catalytic CO2 hydrogenation at low temperature. Catal. Commun. 2016, 89, 73–76. [Google Scholar]
- Zeng, Y.; Tu, X. Plasma-Catalytic CO2 hydrogenation at low temperatures. IEEE Trans. Plasma Sci. 2016, 44, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Tu, X. Plasma-Catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor: Effect of argon addition. J. Phys. Appl. Phys. 2017, 50, 184004. [Google Scholar] [CrossRef]
- Lee, C.J.; Lee, D.H.; Kim, T. Enhancement of methanation of carbon dioxide using dielectric barrier discharge on a Ruthenium catalyst at atmospheric conditions. Catal. Today 2017, 293, 97–104. [Google Scholar] [CrossRef]
N2 @77K Physisorption | Hg Intrusion Porosimetry | ||||
---|---|---|---|---|---|
Sample Name | Surface Area (BET), m2/g | Mesopores Volume, cm3/g | Average Mesopore Diameter, nm | Average Pore Diameter, nm | Total Pore Volume, cm3/g |
γ-Al2O3 | 271.000 | 0.390 | 4.300 | 13.600 | 0.243 |
Rh-γAl2O3 | 246.000 | 0.410 | 4.870 | 13.860 | 0.367 |
Ru-γAl2O3 | 242.000 | 0.390 | 5.700 | 14.400 | 0.378 |
RhRu-γAl2O3 | 148.000 | 0.410 | 7.410 | 12.070 | 0.482 |
RuRh-γAl2O3 | 232.000 | 0.460 | 4.600 | 11.620 | 0.436 |
Catalyst Name | Theorical Hydrogen Uptake, mol | Experimental Hydrogen Uptake, mol |
---|---|---|
Ru-γγAl2O3 | 7.66 × 10−4 | 7.40 × 10−4 |
Rh-γAl2O3 | 7.64 × 10−4 | 7.35 × 10−4 |
RhRu-γAl2O3 | 2.70 × 10−3 | 2.40 × 10−3 |
RuRh-γAl2O3 | 2.70 × 10−3 | 2.75 × 10−3 |
Catalyst Name | Operating Conditions | CO2 Conversion | SEI [kJ/L] | CH4 Produced [mmol/min] | Reference |
---|---|---|---|---|---|
0.5%Ru0.5%Rh-γAl2O3 | Flow rate: 340 mL/min, T = 188.1 °C, H2:CO2 = 4; P = 55W | 0.97 | 9.7 | 14.71 | Present work |
0.5%Rh0.5%Ru-γAl2O3 | Flow rate: 340 mL/min, T = 190.1 °C, H2:CO2 = 4; P = 55W | 0.88 | 9.7 | 13.35 | Present work |
0.5%Ru0.5%Rh-γAl2O3 | Flow rate: 1 L/min, T = 217.6 °C, H2:CO2 = 4; P = 55W | 0.73 | 3.3 | 32.56 | Present work |
0.5%Rh0.5%Ru-γAl2O3 | Flow rate: 1 L/min, T = 208.3 °C, H2:CO2 = 4; P = 55W | 0.7 | 3.3 | 31.23 | Present work |
15%Ni-CeZrO2 | Flow rate: 200 mL/min, T = 170 °C, H2:CO2 = 7; P = 16W | 0.76 | 4.8 | 8.14 | [31] |
Mn-Al2O3 | Flow rate: 34.6 mL/min, T = 135 °C, H2:CO2 = 4; P = 35W | 0.76 | 60 | 1.18 | [32] |
Ni-Al2O3 | Flow rate: 69.2 mL/min, T = 150 °C, H2:CO2 = 4; P = 30W | 0.48 | 26 | 1.47 | [33] |
Ru-γAl2O3 | Flow rate: 80 mL/min, T = 250 °C, H2:CO2 = 7; P = 33W | 0.18 | 25 | 0.14 | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meloni, E.; Cafiero, L.; Renda, S.; Martino, M.; Pierro, M.; Palma, V. Ru- and Rh-Based Catalysts for CO2 Methanation Assisted by Non-Thermal Plasma. Catalysts 2023, 13, 488. https://doi.org/10.3390/catal13030488
Meloni E, Cafiero L, Renda S, Martino M, Pierro M, Palma V. Ru- and Rh-Based Catalysts for CO2 Methanation Assisted by Non-Thermal Plasma. Catalysts. 2023; 13(3):488. https://doi.org/10.3390/catal13030488
Chicago/Turabian StyleMeloni, Eugenio, Liberato Cafiero, Simona Renda, Marco Martino, Mariaconcetta Pierro, and Vincenzo Palma. 2023. "Ru- and Rh-Based Catalysts for CO2 Methanation Assisted by Non-Thermal Plasma" Catalysts 13, no. 3: 488. https://doi.org/10.3390/catal13030488
APA StyleMeloni, E., Cafiero, L., Renda, S., Martino, M., Pierro, M., & Palma, V. (2023). Ru- and Rh-Based Catalysts for CO2 Methanation Assisted by Non-Thermal Plasma. Catalysts, 13(3), 488. https://doi.org/10.3390/catal13030488