
Citation: Martinez-Zuniga, G.; Antwi,

S.; Soni-Castro, P.; Olayiwola, O.;

Chuprin, M.; Holmes, W.E.;

Buchireddy, P.; Gang, D.; Revellame,

E.; Zappi, M.E.; et al. Methyl

Mercaptan Removal from Methane

Using Metal-Oxides and

Aluminosilicate Materials. Catalysts

2024, 14, 907. https://doi.org/

10.3390/catal14120907

Academic Editors: Salete Balula and

Fátima Mirante

Received: 26 October 2024

Revised: 21 November 2024

Accepted: 25 November 2024

Published: 10 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Methyl Mercaptan Removal from Methane Using Metal-Oxides
and Aluminosilicate Materials
Gerson Martinez-Zuniga, Samuel Antwi, Percival Soni-Castro, Olatunji Olayiwola , Maksym Chuprin,
William E. Holmes , Prashanth Buchireddy , Daniel Gang , Emmanuel Revellame , Mark E. Zappi
and Rafael Hernandez *

Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
gerson.martinez@dnr.ga.gov (G.M.-Z.); samuel.antwi1@louisiana.edu (S.A.); perci_soni@hotmail.com (P.S.-C.);
olatunji.olayiwola1@louisiana.edu (O.O.); Chuprin.maksym@gmail.com (M.C.);
william.holmes@louisiana.edu (W.E.H.); prashanth.buchireddy@louisiana.edu (P.B.);
daniel.gang@louisiana.edu (D.G.); emmanuel.revellame@louisiana.edu (E.R.); mark.zappi@louisiana.edu (M.E.Z.)
* Correspondence: rafael.hernandez@louisiana.edu

Abstract: Methyl mercaptan is a sulfur-based chemical found as a co-product in produced natural
gas and it causes corrosion in pipelines, storage tanks, catalysts, and solid adsorption beds. To
improve the quality of methane produced, researchers have studied the use of metal oxides and
aluminum silicates as catalysts for removing mercaptan. However, there are restrictive limitations on
the efficiency of metal oxides or aluminum silicates as adsorbents for this application. Therefore, this
study investigated the performance of these materials in a fixed-bed reactor with simulated natural
gas streams under various operating conditions. The testing procedure includes a detailed assessment
of the adsorbent/catalysts by several techniques, such as Braeuer–Emmett–Teller (BET), Scanning
Electron Microscope (SEM), Energy-Dispersive X-ray Spectrometry (EDS), and X-ray Photoelectron
Spectroscopy. The results revealed that metal oxides such as copper, manganese, and zinc performed
well in methyl mercaptan elimination. The addition of manganese, copper, and zinc oxides to the
aluminum silicate surface resulted in a sulfur capacity of 1226 mg S/g of catalyst. These findings
provide critical insights for the development of catalysts that combine metal oxides to increase
adsorption while reducing the production of byproducts like dimethyl sulfide (DMS) and dimethyl
disulfide (DMDS) during methyl mercaptan removal.

Keywords: dimethylsulfide; breakthrough; pore size; adsorption; metal-oxides

1. Introduction

Natural gas is widely recognized as a more environmentally friendly fuel compared
to other fossil fuels like coal and oil. It boasts the lowest carbon content per unit of mass
among fossil fuels, resulting in reduced emissions of key pollutants such as carbon dioxide
(CO2), sulfur dioxide (SO2), particulate matter (PM), and nitrogen oxides (NOx) when
generating an equivalent amount of energy [1]. The primary components of natural gas
include methane (CH4), nitrogen (N2), carbon dioxide (CO2), water (H2O), and sulfur
compounds, particularly hydrogen sulfide, dimethyl sulfide, dimethyl disulfide, carbon
sulfide, carbonyl sulfide, and mercaptans. However, the composition varies depending on
the field, formation, or reservoir from which it is extracted [2].

Methyl mercaptan, also referred to as methanethiol (CH3SH), is a colorless gas with
a highly unpleasant odor resembling that of rotten cabbage. It is produced from various
sources, including sewage sludge, wastepaper, wood-pulping production, and petroleum-
refining processes [3]. This compound poses significant health risks when exposure exceeds
the Occupational Safety and Health Administration (OSHA) time-weighted average (TWA)
limits [4] impacting the nervous, respiratory, and cardiac systems. Furthermore, it can
have detrimental effects, such as corroding pipelines and fuel storage tanks, as well as
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harming the catalysts and solid adsorption beds used in catalytic processes like ethylene
oxidation, hydrogenation, and ammonia synthesis [5–7]. Additionally, the combustion of
methyl mercaptan results in the emission of sulfur dioxide (SO2).

Several methods are available for the removal of acid gases from product gas streams.
These technologies are mainly based on absorption, adsorption, catalytic, and thermal
oxidation processes to convert acid gases to elemental sulfur. Processes designed to re-
move hydrogen sulfide and carbon dioxide from natural gas are generally ineffective at
eliminating mercaptans [8–10]. This is because mercaptans, which are higher molecular
weight sulfur compounds, do not ionize (or hydrolyze) into anions that can react with
caustic substances, amines, or certain metal oxides [8,10–12]. As a result, efforts have been
directed towards designing, adapting, verifying, and scaling up more efficient techniques
for the removal of mercaptans. These methods include adsorption [13], MEROX [14], and
chemisorption [15].

Formulations such as transition-metal salts (e.g., Zn, Fe), water-soluble aldehydes, and
metal carboxylates (e.g., acetates, formates) enhance the effectiveness of porous carriers in
removing hydrogen sulfide (H2S) and low-molecular-weight mercaptans (RSH) from gas
mixtures [16].

Among these techniques, adsorption has gained prominence due to its chemical selec-
tivity. Additionally, the adsorption process has proven effective for the thorough removal
of methyl mercaptan from natural gas, offering a high desulfurization rate, manageable
operating conditions (e.g., ambient temperature and low pressure), and cost-effectiveness.
Contemporary research for the purpose of methyl mercaptan removal primarily centers
on adsorbents like activated carbon, zeolites, and metal–organic frameworks. Activated
carbon is a well-known material characterized by its large surface area of about 1000 m2/g
due to its substantial porosity and specific surface chemistry [17]. It is sourced from various
materials like coconut shells, wood, waste tea, sludge, coal, peat, and rice husks, providing
cost-effective alternatives [17–19].

Zeolites, which are crystalline microporous aluminosilicates, have garnered substantial
attention across scientific and industrial domains owing to their exceptional properties
and diverse applications. These materials possess a unique three-dimensional crystal
structure formed by interconnected oxygen atoms in SiO4 and AlO4-networks, resulting in
a highly porous substance with pore dimensions ranging from 0.3 to 1 nm [20]. Currently,
there are more than 190 synthetic zeolite frameworks and over 40 naturally occurring
zeolites. There is an increasing demand for natural zeolites in gas separation applications,
including Mordenite, Clinoptilolite, Erionite, Phillipsite, and Ferrierite [21]. Metal-organic
frameworks (MOFs) represent a class of advanced crystalline materials known for their
exceptional properties, making them highly versatile and promising for applications in
nanotechnology and biotechnology [22]. These materials feature a hybrid structure that
combines metal ions or clusters with organic molecules through covalent bonds, resulting
in a unique inorganic–organic framework [23].

Notably, MOFs are characterized by their impressive porosity, with pore diameters
typically ranging from 3 to 20 Å, and they exhibit large surface areas that can span from
1000 to 10,000 m2/g. Moreover, the design of MOFs can be tailored by altering the inor-
ganic components or organic linkers, allowing for the creation of materials with specific
pore shapes, sizes, and chemical functionalities [24]. However, there is limited explo-
ration of the effectiveness of metal oxides or aluminum silicates as adsorbents for this
specific application.

The effectiveness of an adsorbent in sulfur removal depends on the adsorbent’s
capacity to accommodate the anticipated load of sulfur compounds in the gas stream.
This ensures prolonged and efficient operation, reducing the frequency of replacement and
contributing to the economic viability of the sulfur removal process [25].

The adsorption process for H2S removal has several limitations, including a low
adsorption capacity, the potential for saturation and breakthrough, challenges with regen-
eration, competition with other gas components, and dependence on operating conditions
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such as temperature and pressure. These factors make adsorption less efficient for high H2S
concentrations and require careful management of the adsorbent to maintain effectiveness.

This study adopts a comprehensive approach to advance the understanding of com-
mercial catalysts’ composition and performance while also exploring novel catalyst syn-
thesis methods for improved methyl mercaptan removal from natural gas. By utilizing
rigorous characterization techniques, breakthrough experiments, and the synthesis and
evaluation of both commercial and new catalysts, this research aims to make significant
contributions to optimizing methyl mercaptan removal processes in the natural gas indus-
try. The primary goal of this research is to determine the optimal conditions for the specific
catalysts provided by industry.

2. Results
2.1. The Analysis of Surface Morphology
2.1.1. Commercial Catalysts

Table 1 displays the results of the Brunauer-Emmett-Teller (BET) analysis conducted
to determine the surface area, pore volume, and pore size of the five commercial cata-
lysts. Among these catalysts, CTG-ESC-011 exhibited the highest surface area, measuring
196.74 m2/g. Following closely behind was Select HP at 88.82 m2/g, and Halloysite MinO
with a surface area of 85.5 m2/g. A similar trend was observed in terms of pore volume,
where CTG-ESC-011 had the highest value of 0.5 cm3/g, while Select HP and Halloysite
MinO displayed similar pore volume values of 0.27 cm3/g. Pore size is a crucial factor for
adsorption capacity [26,27]. The molecular size of methyl mercaptan (MM) is known to be
approximately 4.37 Å [28]. Pore sizes varied across the commercial catalysts, ranging from
108.42 Å to 163.98 Å, with CTG-ESC-011 featuring the smallest pore size and Halloysite
Pure showcasing the largest.

Table 1. Surface area (SBET), Pore size and Pore volume (vt) of the five catalysts tested.

Catalyst SBET (m2/g) vt (cm3/g) Pore Size (A)

CTG-ESC-011 196.74 0.5 108.4
Select HP 88.82 0.27 137.7

Halloysite Pure 51.18 0.21 163.9
Halloysite MinO 85.5 0.27 126.8
Halloysite Mixed 27.63 0.089 129

The optimal pore size for the effective adsorption of methyl mercaptan is suggested to
be within a certain range. The literature suggests that an optimal ratio of pore size to pollu-
tant molecular size falls between 1.7 and 3.0 for excellent adsorption performance [29,30].
This means that the pore size should be sufficiently large to allow methyl mercaptan
molecules to enter and interact with the catalyst, but not excessively large. Comparing the
size of methyl mercaptan molecules with the pore size of these commercial catalysts, the
pore sizes are extremely large. The differences in methyl mercaptan removal cannot be
attributed only to pore size. Other critical factors contributing to the varying adsorption
capacities are the chemical compositions. A detailed analysis of the chemical composition
will be discussed in the next sections with the analysis of EDS, FTIR, and XPS results.

2.1.2. Synthesized Catalysts

Table 2 presents the BET results for Halloysite Pure alongside the top three catalysts
developed in this study. A notable reduction in surface area is evident in these three
catalysts when compared to Halloysite Pure. Halloysite Pure exhibits a BET surface area of
51.18 m2/g, an average pore size of 163.9 Å, and a pore volume of 0.21 cm3/g. However,
in the developed catalysts numbered Run 08, Run 016, and Run 022, the BET surface area
decreased to 43.26 m2/g, 29.97 m2/g, and 43.02 m2/g, respectively. This decrease can be
attributed to the physical blocking effect of the impregnated metal oxides on the surface of
Halloysite Pure.
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Table 2. Surface area, Pore size and Pore volume of the three best catalysts.

Catalyst Theoretical Chemical
Composition SBET (m2·g−1) Vt (cm3·g−1) Pore Size (A)

Run 08 0.4Cu-0.4Zn-0.2Mg 43.26 0.19 180.29

Run 016 0.286Cu-0.286Zn-0.286Ni-
0.143Mg 29.97 0.14 198.32

Run 022 0.4Cu-0.4Zn-0.2Ni 43.02 0.16 158.36
Halloysite Base 51.18 0.21 163.9

2.2. The Analysis of Functional Groups

The catalysts’ characteristic bands were identified using FTIR spectroscopy within
the wave number range of 4000–400 cm−1. Figure 1 illustrates the FTIR spectra for Select
HP. Typically, vibrations associated with metal-oxygen bonds manifest as peaks below
1000 cm−1 [30]. In this spectrum, the peak at 488 cm−1 is attributed to the zinc oxide
bond [31], while the bands at 439 cm−1, 516 cm−1, and 556 cm−1 may be linked to Mn-O
lattice vibrations [32]. Additionally, the small peak at 590 cm−1 corresponds to the CuO
vibrational band [30]. Peaks observed at 3389 cm−1 and 1620 cm−1 indicate the presence of
O-H groups originating from adsorbed water [33]. Furthermore, the bands at 1450 cm−1

and 1650 cm−1 are associated with symmetric and asymmetric vibrations of carboxylic
groups [34].
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Figure 1. FTIR spectra of the Select HP catalyst and CTG-ESC-011 catalyst.

In Figure 1, the FTIR spectra of CTG-ESC-011 are displayed. The peak observed
at 650 cm−1 corresponds to the stretching of Fe-O bonds [35]. Additionally, the peak at
1150 cm−1 indicates the stretching of metal-hydroxyl bonds, while the presence of the
carbonate vibration is attributed to the peak at 1484 cm−1 [36]. It is worth noting that the
presence of O-H groups from adsorbed water molecules, which is also observed in the
Select HP catalyst, is evident here at 3389 cm−1 and 1620 cm−1 [33].

Figure 2, on the other hand, illustrates the FTIR spectra of the Halloysite Pure, Hal-
loysite MinO, and Halloysite Mixed catalysts. These Halloysite catalysts displayed closely
positioned peaks and intensities, with minor differences. The stretching vibrations associ-
ated with aluminum hydroxide (Al-OH) were identified at 3688 cm−1 and 3617 cm−1 [37].
Moreover, the presence of the OH peak from water was evident at 1623 cm−1, as observed
previously in the Select HP and CTG-ESC-011 catalysts.
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Figure 2. FTIR spectra for (a) Halloysite Pure, (b) Halloysite MinO, and (c) Halloysite Mixed.

Additionally, a Si-O group stretching peak was observed at 1105 cm−1 in all three
Halloysite spectra [38]. The stretching vibration associated with Si-O-Si bonds was noted at
1030 cm−1 [38,39], while the vibration corresponding to the inner surface hydroxyl group
was observed at 910 cm−1 [38,40]. Peaks at 788 cm−1 and 751 cm−1 were attributed to
O-H translation vibrations of Halloysite O-H units, and those identified at 530 cm−1 and
461 cm−1 represent Si-O and Al-O bonds [38,41]. Additionally, the FTIR spectra of Mn2O3
exhibited a characteristic peak at 524 cm−1, attributed to the vibrations of Mn-O stretching
in both Halloysite Mixed and MinO. Furthermore, a peak at 1545 cm−1 corresponded to
the presence of the Mn atom group within the Halloysite MinO catalyst [42].

2.3. The Analysis of Elemental Composition Verification

The chemical composition of the five commercial catalysts used for methyl mercaptan
removal was determined through EDS analysis, as summarized in Table 3. Select HP
exhibited a significant concentration of Zn, Cu, and Mn, whereas CTG-ESC-011 contained
a higher proportion of Fe. As anticipated, the Halloysite catalysts, being aluminosilicate
minerals, displayed elevated levels of Si and Al. However, the three Halloysite catalysts
exhibited some distinctions. Halloysite Pure had the most fundamental composition,
whereas Halloysite MinO was a modified variant of Halloysite Pure, featuring additional
Mn and Fe. In contrast, Halloysite Mixed was Halloysite Pure that had been further
modified with the addition of Mg and Mn. These findings corroborate the FTIR results and
provide additional confirmation regarding the nature of the catalysts.
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Table 3. Chemical composition of the 5 raw catalysts obtained by EDS analysis.

Compound
[Mass%] Select HP CTG-ESG-011

Halloysites

Pure MinO Mixed

Al 11.4 0.7 23.5 23.2 23.9
Si 2 0.5 26.1 24.5 29.6
Fe 1.7 45.3 12.5 12.9 11.8
Ca 6.9 3.4 0.2 0.7 0.8
Mg 0.4 1.8 0 0 0.4
K 0 0 0.2 0 0.7
Cl 0 1.9 0 0 0
Zn 18.9 0.7 0 0 0
Cu 17.6 0 0 0 0
Mn 19.5 0.2 0 7.6 1.7
O 21.6 45.5 37.5 31.1 31.1

2.4. The Analysis of XPS Measurements

The survey spectra for the Select HP catalyst are presented in Figure 3, revealing the
presence of several main surface elements, including Zn, Mn, Cu, Mg, Fe, Al, Cr, Ca, and
O. Analysis of the Mn 2p spectra identified two distinct peaks at 642.4 eV and 655.9 eV,
corresponding to MnO2 [43,44] The presence of a Mg-O bond in MgO is indicated by
the Mg 2p peak at approximately 49.9 eV. Within the Al 2p region, the binding energies
observed at 75.5 eV for Al 2p and 119.5 eV for Al 2s confirm the presence of Al-O bonds,
indicating the presence of Al2O3. The binding energies of the Fe 2p1/2 and Fe 3s peaks,
positioned at 720.1 eV and 91.3 eV, respectively, are consistent with values reported in the
literature for Fe2O3 [45]. The Ca 2p3/2 peak at 348.6 eV confirms the presence of the Ca-O
bond. In the O 1s region, a peak at 532.8 eV indicates the presence of hydroxyl surface
groups [46] The Cr 2p3/2 peak is observed at 573.4 eV. Cu peaks were observed between
935.2 eV and 954.1 eV [47], while the peaks at 1022.9 eV and 1046.2 eV corresponded to
Zn 2p3/2 and Zn 2p1/2, respectively, closely approaching the binding energy of ZnO
(1021.6 eV–1022 eV) [48].
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Figure 3 displays the survey spectra for the CTG-ESC-011 catalyst, revealing distinct
peaks at 57 eV, 350.9 eV, 532.1 eV, 712.6 eV, and 726.3 eV. These peaks correspond to the
binding energies of Fe 3p, Ca 2p1/2, O 1s, Fe 2p3/2, and Fe 2p1/2, respectively. The
presence of a characteristic broad shake-up satellite (identified as feature F1 in Figure 2)
at 720 eV is a known characteristic of Fe2O3 [45]. The peak observed at 350.9 eV in the
Ca 2p1/2 region confirms the existence of Ca-O bonds. Furthermore, the O 1s spectrum
exhibits a peak at 532.1 eV, corresponding to the O-H bond present in H2O.

XPS survey spectra for the three types of Halloysites are depicted in Figure 4. These
Halloysite samples displayed characteristic peaks associated with aluminum silicates. The
presence of Al-O bonds is indicated by the peak at 75.3 eV corresponding to Al 2p1/2,
and the Al-O bond is further identified by the peak at 120 eV attributed to Al 2s [49–51].
The confirmation of Al-O-Si bonds is provided by the Si 2p1/2 peak at 103.4 eV [52].
Additionally, the presence of Si 2s is evident at 154.4 eV [53]. The O 1s spectrum exhibits a
characteristic peak at 534.8 eV, signifying O-H bonds from water. Moreover, the Mn 2p3/2
and Mn 2p1/2 peaks, positioned at 643.6 eV and 656.4 eV, respectively, confirm the Mn2+

oxidation state, providing confirmation of the presence of manganese in the Halloysite
MinO catalyst [54,55].
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2.5. The Breakthrough Analysis–Commercial Catalysts

The efficiency of methyl mercaptan removal was investigated using various catalysts:
Select HP, CTG-ESC-011, Halloysite Pure, Halloysite MinO, and Halloysite Mixed. The
experimental parameters were selected based on the typical operating conditions for nat-
ural gas processing from the literature [17,54,56–59], encompassing a broad spectrum of
absolute pressures ranging from 100 to 200 psi. To simulate these conditions, an initial con-
centration of 100 ppm CH3SH in CH4 was employed. These experiments also encompassed
diverse flow rates, ranging from 36 to 60 mL/min, and were conducted at temperatures
spanning from 25 ◦C to 75 ◦C. The results obtained from the breakthrough experiments are
summarized in Table 4, and the breakthrough curves for the removal of methyl mercaptan
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over time for each of the five catalysts are presented in Figures 5–9. In Table 4, the break-
through time (in minutes) represents the duration it took for the outlet concentration of
methyl mercaptan and its byproducts to reach 5 ppm.

Table 4. Breakthrough times for the 5 commercial catalysts.

Operating Conditions
Catalysts Breakthrough Time (Mins)

Meal Oxides Halloysites

Temperature
(◦C)

Pressure
(psi)

Flowrate
(mL/Min) Select HP CTG-ESC-011 Pure MinO Mixed

25 100 36 148.14 22.15 1.3 6.84 0
25 100 60 97.29 101.41 0.43 1.7 0
75 100 36 186.45 8.49 1 0.344 85.94
25 200 36 224.06 49.06 0 23.34 0
25 200 60 65.04 0 0.48 31.43 0
75 200 60 96.58 5.31 0 2.36 60.58
75 200 36 361.66 16.84 0 0 60.48
75 100 60 136.04 20.14 0.54 8.4 71.65
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2.5.1. Select HP

The methyl mercaptan breakthrough curves for the Select HP catalyst are depicted
in Figure 5. Among the runs conducted, the longest breakthrough time occurred at 75 ◦C,
200 PSI, and 36 mL/min, with a duration of 318 min. This was followed by the run
at 75 ◦C, 100 psi, and 36 mL/min, which had a breakthrough time of 178 min. Higher
temperatures provide more energy to the reaction, potentially enhancing its performance
via chemisorption and reaction, a phenomenon supported by previous research [60–63]
Conversely, the shortest breakthrough times were observed in runs conducted with an
operational condition of 60 mL/min. The quickest breakthrough occurred at 25 ◦C, 200 psi,
and 60 mL/min, with a breakthrough time of 65 min. This difference in time is attributed
to the varying residence times for the reaction with the catalyst. Select HP, distinguished
by its composition of mixed metal oxides, plays a pivotal role in this context. A noteworthy
advantage linked to mixed metal oxides is the efficient dispersion of active sites within the
catalyst. This high level of dispersion is critical, as it significantly enhances the interaction
of active sites with sulfur compounds [64].

2.5.2. CTG-ESC-011

The results derived from the catalyst performance are illustrated in Figure 6. These
results unveiled intriguing insights into the impact of various parameters on the break-
through time for methyl mercaptan removal. Among the tested parameter combinations,
the most effective one was identified at 25 ◦C, 100 psi, with a flow rate of 36 mL/min,
achieving a breakthrough time of 45 min. Subsequently, the next best-performing condition
was observed at 25 ◦C, 100 psi, with a flow rate of 60 mL/min, resulting in a breakthrough
time of 20 min.

The disparities between the experimental outcomes and the literature could be at-
tributed to the chemical composition of the catalysts. Specifically, CTG-ESC-011 consists
mainly of Fe2O3 without a mixture of other metal oxides. It is widely recognized that mixed
oxides typically exhibit higher activity than single oxides in most catalytic reactions [65].
This could possibly explain why Select HP, which is a blend of metal oxides, demonstrated
superior performance over this catalyst.

2.5.3. Halloysites

Halloysite Pure consistently demonstrated the poorest breakthrough results among
all the catalysts. The breakthrough times exhibited almost no variations under different
conditions. Specifically, at conditions of 25 ◦C, 200 psi, and 36 mL/min, 25 ◦C, 200 psi,
and 60 mL/min, and 75 ◦C, 200 psi, and 36 mL/min, the breakthrough time was virtually
instantaneous (less than 1 min). The longest breakthrough time was observed at 75 ◦C,
100 psi, and 36 mL/min, with a time of 1.3 min. In general, higher temperatures resulted
in lower concentrations of methyl mercaptan in the effluent gas, as depicted in Figure 7.
This suggests that temperature has a significant influence on removal efficiency. However,
the effects of pressure and flow rate on breakthrough times were not as pronounced as
temperature. For Halloysite Pure, its poor performance can be attributed to the absence of
active metals or compounds that are effective at catalyzing the reaction.

Halloysite MinO, as depicted in Figure 8, also exhibited relatively low efficiency in
methyl mercaptan removal across various conditions, with the longest breakthrough time
recorded at just 23 min under the conditions of 75 ◦C, 200 psi, and 36 mL/min.

Halloysite Mixed, as illustrated in Figure 9, demonstrated superior breakthrough times
compared to the other two Halloysite catalysts under specific conditions, notably achieving
a 94-min breakthrough time at 75 ◦C, 100 psi, and 36 mL/min. However, its performance
was notably lacking in other conditions, such as 25 ◦C, 100 psi, and 36 mL/min, where it
exhibited zero efficiency. Halloysite catalysts primarily consist of aluminum, silicon, and
oxygen. While these elements can potentially contribute to catalytic activity, they may not
possess the ideal combination of active metallic species or promoters required for efficient
methyl mercaptan removal.
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In terms of effective removal performance based on breakthrough times, the order from
highest to lowest is as follows: Select HP > Halloysite Mixed > CTG-ESC-011 > Halloysite
MinO > Halloysite Pure. Their respective sulfur capacities at the optimal conditions for
each catalyst are illustrated in Figure 10.
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The catalyst composition sheds light on why specific catalysts excelled under condi-
tions. Select HP, with its composition of Zn, Cu, and Mn oxides, emerges as the top choice
for methyl mercaptan removal due to its outstanding performance. Studies have indicated
that the inclusion of Cu, Zn, Mn, and Ni oxides alongside an alumina base can enhance the
removal of sulfur compounds [64–68]. Furthermore, mixed metal oxides exhibit superior
dispersion of active sites and robust metal interactions [69]. These factors may also account
for the subpar performance of the Halloysites, given their limited active sites.

2.6. The Breakthrough Analysis–Novel Catalysts

The sulfur adsorption capacity results of the novel catalysts impregnated with various
metals (Cu, Zn, Ni, Mg, and Mn) were measured according to a design matrix and the re-
sponses are listed in Table 5. The catalysts underwent testing at specific conditions, namely
25 ◦C, 200 PSI, 36 mL/min, with an initial methyl mercaptan concentration of 200 ppm. A
response surface methodology (RSM) using Central Composite Design (CCD) was applied
to determine the optimal combination of these metals in the catalyst. Furthermore, an
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analysis of variance (ANOVA) was employed to identify the significant metals involved in
the removal process, and the subsequent results are thoroughly examined and discussed.

Table 5. Experimental and model predicted responses by varying the metal loading.

Run A:Cu (%) B:Zn (%) C:Ni (%) D:Mg (%) Bt Time
(Minutes)

Sulfur Capacity
(mg S/g Catalyst)

1 33.33 33.33 16.67 16.67 5.58 78.44
2 28.57 28.57 14.29 28.57 14.22 199.69
3 42.50 7.5 25.00 25 6 82.84
4 45.95 27.03 13.51 13.51 28.00 393.12
5 43.48 13.04 21.74 21.74 4.73 66.50
6 33.33 33.33 16.67 16.67 0.00 0
7 50.00 50 0 0 49 692.80
8 40.00 40 0 20 70 979.90
9 11.54 11.54 38.46 38.46 14.80 207.70
10 27.03 45.95 13.51 13.51 28.40 398.70
11 10 56.67 0 33.33 15.95 223.93
12 33.33 33.33 16.67 16.67 30.00 421.20
13 18.75 18.75 0 62.5 0.0 0
14 10 56.67 33.33 0 33 468.00
15 13.04 43.48 21.74 21.74 16.55 232.36
16 28.57 28.57 28.57 14.29 61.30 860.65
17 38.64 38.64 0 22.73 30.93 434.25
18 56.67 10 33.33 0 42 589.68
19 50 50 0 0 42 589.68
20 31.48 31.48 18.52 18.52 18.10 254.12
21 33.33 33.33 16.67 16.67 29.20 409.96
22 40 40 20 0 58 816.84
23 18.75 18.75 62.5 0 29 412.49
24 7.5 42.5 25 25 17 231.66
25 56.67 15 28.53 0 3 42.12
26 15.00 85 0 0 43 602.31
27 33.33 33.33 16.67 16.67 35.90 504.00
28 33.33 33.33 16.67 16.67 30.00 421.20
29 38.64 38.64 22.73 0 56 789
30 56.67 10 0 33.33 46.00 645.84

The importance of Cu, Zn, Ni, and Mg oxides in the context of methyl mercaptan
removal, as measured by sulfur capacity, was determined through ANOVA. To visually
guage the influence of copper composition, refer to Figures 11a,b and 12. In the case of
copper, a quadratic model was constructed, suggesting that an optimal concentration of
40% Cu is required to maximize sulfur capacity. The parabolic shape indicates that the
right amount of Cu can provide an adequate number of active sites. However, excessive
Cu loading may lead to the precipitation of CuO active components, which can result in
the overlapping of active sites on the catalyst surface [68,69] The incorporation of copper
into Halloysite Pure significantly improved the performance of methyl mercaptan removal,
with the most successful developed catalysts featuring higher Cu concentrations. However,
magnesium exhibited a negative significance (Figure 11b), suggesting that an increase in
magnesium concentration led to a reduction in sulfur capacity. Magnesium might compete
with copper and other adsorption sites on the catalyst surface. When the magnesium
concentration is high, it could occupy the active sites that would otherwise be used for
methyl mercaptan adsorption. This competition for adsorption sites can result in decreased
sulfur capacity.

The interaction between copper and magnesium is visualized in the response surface
graphs depicting sulfur capacity in methyl mercaptan removal (Figure 12). It is clear from
Figure 12 that when the magnesium concentration is at 0%, the sulfur capacity increases as
copper concentrations rise (up to 40%).
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3. Discussions
3.1. The Impact of Metal Composition on the Breakthrough Performance

Select HP exhibited the highest performance in methyl mercaptan removal, containing
18.9% Zn, 17.6% Cu, and 19.5% Mn. To replicate these proportions and explore the impact
of manganese (Mn) on catalytic efficiency for methyl mercaptan removal, these elements
were impregnated onto Halloysite Pure’s surface. The catalyst with a composition of 33%
Cu, 33% Zn, and 33% Mn (UL-Best catalyst) demonstrated a sulfur capacity of 1226 mgS per
gram of catalyst, along with a breakthrough time of 131minutes. In contrast, the Select HP
catalyst only achieved a 42 min breakthrough time under identical conditions (as depicted
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in Figure 13). This improvement, in comparison to the other developed catalysts, can be
attributed to the presence of Mn, which enhances the dispersion and activity of Cu on
Halloysite Pure’s surface [68].
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3.2. The Impact of Temperature on the Breakthrough Performance

Breakthrough experiments were conducted to investigate the influence of temperature
on methyl mercaptan removal using the UL-Best catalyst (33% Cu, 33% Zn, and 33% Mn)
at various temperatures, including ambient, 40 ◦C, 60 ◦C, 75 ◦C, and 100 ◦C, as shown in
Figure 14. The breakthrough curves demonstrated a consistent trend: as the temperature
increased, the breakthrough times decreased. For instance, at ambient temperature, the
breakthrough time was achieved at 131 min while at 100 ◦C was achieved at 16 min. A study
conducted by [69] using MnO2 for methyl mercaptan removal, indicated that increasing
temperature led to a higher rate of methyl mercaptan decomposition into dimethyl disulfide
(DMDS), which aligns with our observations of increased sulfur concentration in the
breakthrough experiments as the temperature increases. A similar trend was noted in a
study by [70] which used MOF-199 (a copper-based metal-organic framework) to remove
methyl and ethyl mercaptan removal.

Figure 14 compares the breakthrough times for methyl mercaptan removal using
both Select HP and UL-Best catalyst at different temperatures. At 25 ◦C, the Select HP
catalyst has a breakthrough time of 42 min, which significantly increases to 112 min
when the temperature is raised to 75 ◦C. The UL-Best catalyst was tested at 25 ◦C, 40 ◦C,
60 ◦C, 75 ◦C, and 100 ◦C. It exhibited breakthrough times of (131 min, 23 min, 7 min,
32 min, and 16 min, respectively). As mentioned before, this may be attributed to higher
temperatures accelerating methyl mercaptan decomposition into DMDS, which poisons
the catalyst surface at elevated temperatures. The UL-Best catalyst is better at 25 ◦C, but
its performance reduces as the temperature increases. This difference in temperature
behavior may be attributed to the nature of Select HP. Select HP is composed of a mix
of metal oxides, containing 18.9% Zn, 17.6% Cu, and 19.5% Mn. Higher temperatures
provide additional energy to the reaction, potentially enhancing its performance, this result
aligns with prior research findings [60–62] related to H2S removal, supporting the idea that
increased temperature can positively impact the catalyst’s effectiveness.
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The situation differs when testing Select HP for ethyl mercaptan removal. In a parallel
study, Select HP was evaluated at the temperatures of 25 ◦C, 100 ◦C, and 150 ◦C for ethyl
mercaptan breakthrough experiments. The results indicate a reduction in removal efficiency
with increasing temperature, with the best performance observed at 25 ◦C. This behavior
may be also linked to the formation of disulfides. A study by [69] confirmed the conversion
of ethyl mercaptan to diethyl disulfide at 150 ◦C. Our results align with this observation,
disulfide was present at the 150 ◦C experiment but not at ambient temperature. This could
explain why Select HP performs better at ambient temperatures, as the absence of disulfides
prevents the catalysts from being poisoned.

3.3. General Comparison

Table 6 compares the sulfur removal capacities of two catalysts, UL-Best catalyst and
Select HP, with various adsorbents found in the literature for removing methyl mercaptan.
Traditional zeolites, specifically NaX, 5A, and CaX, have exhibited sulfur capacities of
182.8 mgS/gcat, 186.3 mgS/gcat, and 140 mgS/gcat, respectively. Furthermore, a study
by [71] demonstrated that the introduction of nitrogen into raw activated carbon signif-
icantly enhanced methyl mercaptan removal. This nitrogen-enriched activated carbon
achieved a substantial sulfur removal capacity of 602.1 mgS/gcat. The Table also includes
data on methyl mercaptan removal using metal-organic frameworks, with MIL-53(Al)
showing a sulfur capacity of 433 mgS/gcat. Notably, the 33Mn-33Cu-33Zn adsorbent
exhibited an impressive sulfur capacity of 1226 mg S/g, suggesting promising prospects
for further industrial applications. There is potential for even higher performance through
additional research and development.

The statistical analysis pinpointed copper and magnesium as significant contributors
to methyl mercaptan removal. Nevertheless, the catalyst impregnated with manganese,
copper, and zinc exhibited the highest removal efficiency among all the tested catalysts. The
incorporation of manganese, copper, and zinc oxides onto the aluminum silicate surface
resulted in a sulfur capacity of 1226 mg S/g catalyst under conditions of 25 ◦C, 200 psi,
36 mL/min, and 200 ppm methyl mercaptan. This makes it the most effective catalyst
among all the developed catalysts. In contrast, Select HP’s sulfur capacity under the same
conditions was only 389.11 mg S/g catalyst. Also, it was tested at various temperatures,
including ambient, 40 ◦C, 60 ◦C, 75 ◦C, and 100 ◦C to see the effect of temperature on
methyl mercaptan removal.
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Table 6. Experimental and model predicted responses by varying the metal loading.

Order Adsorbent Composition T ◦C P atm Sulfur Cap mgs/gCat Reference

Zeolites
1 13X (NaX) 0–2000 ppm CH3SH in CH4 25 1 182.8 [72]
2 5A 0–2000 ppm CH3SH in CH4 25 1 186.3 [72]

3 Silica Allumina
gel 0–2000 ppm CH3SH in CH4 25 1 24 [72]

4 CaX 0.05% CH3SH in CH4 25 1 140 [73]
5 MgNaX 0.05% CH3SH in CH4 25 1 132 [73]
6 ZnNaX 0.05% CH3SH in CH4 25 1 115 [73]

Activated carbon
8 HNO3-AC 2000 ppm CH4SH 25 1 602.1 [74]
9 AC 50 ppm of methyl mercaptan 25 1 1.1 [75]

10 aAC-Fe 50 ppm of methyl mercaptan 25 1 13.4 [75]
MOF

11 MIL-53 (Al) CH3SCH3 in methane 25 1 433 [72]
12 MAC-2 600 mgm−3.CH3SCH3 50 _ 85.3 [76]
13 MAC-1 600 mgm−3.CH3SCH3 50 _ 66.3 [76]
14 MOF-199 600 mgm−3.CH3SCH3 50 _ 60.1 [76]
15 MAC-3 600 mgm−3.CH3SCH3 50 _ 58.1 [76]

Metal Oxides
16 Select HP 200 ppm of CH3SCH3 in methane 25 13.6 389.1 This work

17 0.33Mn-33Cu-
33Zn 200 ppm of CH3SCH3 in methane 25 13.6 1213 This work

Figure 15 displays SEM/EDS images of Select HP before and after the breakthrough
experiments. The surface structure of the Select HP catalyst appears to have maintained
its integrity following exposure to methyl mercaptan. This suggests that the catalyst
remains stable and does not undergo degradation under the specified conditions at 75 ◦C.
This stability is attributed to the fact that methyl mercaptan primarily interacts with the
catalyst’s active sites. Furthermore, EDS analysis (Figure 15d) reveals a low sulfur peak,
indicating the presence of sulfur compounds on the catalyst’s surface, albeit in relatively
small quantities. These findings suggest the adsorption of methyl mercaptan onto the Select
HP surfaces or the accumulation of other sulfur species on the surface. The presence of
sulfur on the catalyst’s surface is associated with the accumulation of sulfur components,
which can lead to catalyst deactivation [77].

XPS analysis unveiled the Zn 2p spectra of the Select HP catalyst before methyl
mercaptan removal, displaying peaks at 1022.9 eV and 1046.2 eV, corresponding to Zn
2p3/2 and Zn 2p1/2, respectively. However, a notable shift in the binding energy of
Zn 2p was observed in Figure 15b after methyl mercaptan removal. This shift indicates a
surface alteration of the catalyst in the presence of methyl mercaptan, suggesting a chemical
reaction occurred [78].

A similar phenomenon was observed for Cu and Mn, as depicted in Figure 16a,c,
respectively. The XPS Spectrum of S 2p in Figure 16d illustrates Select HP before and
exhausted after methyl mercaptan removal. The spectrum of Select HP before removal does
not display any sulfur-related peaks. Conversely, peaks at 163.9 eV and 168.9 eV emerged in
the spectrum after removal, attributed to C-SH and methyl thiolate, respectively [79]. The
presence of methyl thiolate on the catalyst surface during the removal of methyl mercaptan
is an indicator of the chemical reactions that occur during the removal process. Somes
studies reported that methyl thiolate can be form as an intermediate in the formation of
disulfides on the catalyst surface [71].

The FT-IR results are illustrated in Figure 17 with significant alterations observed
in the wave number range of 3000–2800 cm−1 following exposure to methyl mercaptan.
The OH stretching vibration at 3450 cm−1, observed in both the raw and spent catalyst,
exhibited a decrease in absorption band strength. This reduction indicates the consumption
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of some hydroxyl groups as part of the reaction involving the removal of methyl mercap-
tan [80]. Furthermore, peaks at 1462 cm−1 and 1380 cm−1 can be attributed to -CH3 groups,
indicating that the adsorbed substances on the catalyst surface contain -CH3 groups (such
as methyl thiolate or methyl mercaptan) [69]. Also, the adsorption of methyl mercaptan is
further confirmed by peaks at 1050 cm−1, resulting from the stretching vibration of carbon
sulfur bond (C-S), which implies that methyl mercaptan is attached to the catalyst, and a
peak at 2352 cm−1 indicating the presence of S-H bonds [69,81].
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Furthermore, two small peaks at 2921 cm−1 and 2818 cm−1 were found, indicating
the presence of the methyl group of DMDS on the catalyst surface [81]. These observations
are consistent with the detection of this sulfide compound in the effluent, as illustrated in
Figure 18.
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Figure 18. Total Ion chromatogram for Select HP catalyst at 75 ◦C, 200 PSI, 36 mL/min.

Therefore, it can be reasonably speculated that CH3SH is adsorbed onto the surface
of Select HP, followed by decomposition by the active sites (Cu, Mn, and Zn) present in
Select HP, leading to the formation of CH3SSCH3 and CH3SCH3. Subsequently, these
byproducts are desorbed from the catalyst surface. This observation aligns with prior
research indicating the transformation of methyl mercaptan to dimethyl disulfide and
dimethyl sulfide by metal oxides [82,83]. The surface of Select HP contains many OH-
and M-O bonds from (Mn, Cu, and Zn), which were the active centers for the catalytic
transformation of methyl mercaptan to sulfides. Under the action of surface hydroxyl
and metal oxide active sites, CH3SH is adsorbed on the surface of Select HP, and then
decomposed by active sites on the Select HP surface to form dimethyl sulfide (DMS) and
dimethyl disulfide (DMDS). The accumulation of these sulfide compounds on the catalyst’s
surface may contribute to its deactivation, as they tend to cover the dispersed active sites
on the surface [69,77] Furthermore, a previous study reported CH3SO3H as an intermediate
product of the oxidation reaction, leading to catalyst deactivation [84], while [85] observed
the formation of sulfate as shown in Figure 19. Others have suggested the production of
sulfonic acid [80]. However, it is essential to note that these byproducts were not observed
in our study.
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4. Materials and Methods

This study examined the performance of five different catalysts provided by Coastal
Chemical LLC, Select HP, CTG-ESC-011, Halloysite Pure, Halloysite Mixed, and Halloysite
MinO, in the removal of methyl mercaptan. Before the experiments, the catalyst samples
were grounded into a fine powder and sieved to a 40-mesh particle size. To replicate natural
gas conditions, a gas mixture containing 100 ppm of methyl mercaptan in CH4 was used.
Prior to conducting the experiments, the reactor system, shown in Figure 20, was purged
with a compressed nitrogen source.
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4.1. Materials for Synthesis

Zinc acetate dihydrate (97%wt.), Nickel (II) acetate tetrahydrate (99%wt.), Copper(II)
nitrate trihydrate (99%wt.), and Magnesium acetate tetrahydrate (98%wt.) were obtained
from Thermo Fisher Scientific, Waltham, MA USA. Sodium hydroxide and Acetic acid
(99.7%wt.) were acquired from Sigma-Aldrich, Saint Louis, MO, USA, and 200-proof
ethanol was sourced from Decon Labs, Inc., King Of Prussia, PA, USA.

4.1.1. Catalyst Preparation

To improve the catalyst preparation, the Sol–Gel method was employed to prepare
metal-impregnated Halloysite Pure, utilizing four different metals: zinc (Zn), copper (Cu),
nickel (Ni), and magnesium (Mg). An amount of 3 g of Halloysite Pure were crushed and
sieved through a Mesh 40 screen to obtain particles with a size of 0.4 mm. Subsequently,
the Halloysite Pure was combined with 120 mL of 99.5% ethanol. This mixture was then
homogenized using ultrasonication for a duration of 20–25 min, resulting in Solution 1.
For the preparation of Solution 2, Zinc acetate dihydrate (zn(CH3COO)2·2H2O), Nickel (II)
acetate tetrahydrate (Ni(CH3CO2)2·4H2O), Copper(II) nitrate trihydrate (Cu(NO3)2·3H2O),
Magnesium acetate tetrahydrate (Mg(H3CCOO)2·4H2O), and 3.6 mL of 99.7% acetic acid
was dissolved in 240 mL of 99.5% ethanol. The quantities of these metals were adjusted
according to their mass percentages (%wt./wt.). This solution was gradually introduced
into Solution 1, followed by further ultrasonication. Subsequently, the pH of the resulting
mixture was raised to 8 by adding a 1M NaOH solution.

The mixture was then subjected to reflux at 80 ◦C for a duration of 3 h, leading to
the formation of the CuO-ZnO-NiO-MgO-MnO/Halloysite Pure precursor. Any remain-
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ing ethanol was removed by filtration, and the sample was air-dried. Finally, the solid
sample was recovered and underwent heat treatment at 400 ◦C for 3 h. To determine the
best performing catalyst loading for the removal of methyl mercaptan in terms of sulfur
capacity, a Central Composite Design (CCD) for the experiments was utilized. The various
factor levels used in the CCD experiments were chosen from prior studies on metal oxide
impregnation for mercaptan removal [85–89].

4.1.2. System Calibration

The calibration of methyl mercaptan was carried out with the Agilent 6890 gas chro-
matography (GC) system manufactured by Agilent technologies. Inc. (Santa Clara County,
CA, USA) A standard calibration procedure was implemented by injecting 100 ppm of
CH3SH in CH4 into the system. The calibration of methyl mercaptan was carried out by
flowing the mercaptan through an empty reactor. A sample was taken 7–10 times using
auto-sampling to generate an average calibration curve. These calibration curves establish
the correlation between the average area counts and the concentrations of the gas standards.
Subsequently, these curves are employed to convert the area counts of the test samples
collected during experiments into corresponding concentrations. This calibration process
ensures the precise quantification of methyl mercaptan levels in the analyzed samples.

4.2. Methods and Procedure

The catalytic activity assessment was conducted within a stainless-steel tube reactor,
featuring dimensions of 310 mm in length and an inner diameter of 6.35 mm. In each
experimental run, 0.5 g of catalyst was placed into the reactor. After the reactor bed,
depicted in Figure 1, was loaded with catalyst, it was then pressurized at 60 psi with
nitrogen gas flowing at a rate of 36 mL/min. As the operating pressure was reached, the
system was leak-checked using Snoop TM and was then left for 30 min to determine if
there were any small leaks that Snoop TM did not detect by measuring the pressure drop
on the pressure gauge. This allowed for leak testing along all connections from the gas tank
all the way to the downstream mass flow controller. Once the system was determined to
be leak-free, the reactor was wrapped with a heating coil for temperature requirements
above ambient temperature. Once the temperature had stabilized and all connections were
checked and corrected for leaks, the nitrogen was purged from the reactor. Then, the online
GC-MS sequence was prepared.

To initiate the methyl mercaptan removal process, the feed was switched from N2 to
a gas mixture containing 100 ppm methyl mercaptan in methane. This gas mixture was
introduced axially into the packed bed reactor. The GC-MS sequence was immediately
started once the flow was stabilized at the correct pressure. The concentration of methyl
mercaptan at the reactor outlet was monitored using an Agilent 6890 GC equipped with
an auto-sampling valve. The GC system was connected to an Agilent 5975 MS detector,
operated at 20.3 psi and maintained at 180 ◦C.

The experiment was concluded when the outlet concentration of sulfur reached 5 ppm.
Following this, the column was cooled down using N2, and the spent catalyst was removed.
The methyl mercaptan removal capacity at the breakthrough time, denoted as q [mg S/g
catalyst], was calculated using the following equations (Equations (1)–(5)).

A1 = t × Ci (1)

A2 = A1 − A3 (2)

A3 =
∫ t

t0
Co(t)dt (3)

Tm =
Ci × t × Q

1000
(4)

q = Tm ∗ A2

M ∗ A1
(5)
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where Ci stands for the initial concentration of CH3SH measured in ppm/L; Co stands for
the concentration of CH3SH at the outlet, measured in ppm/L; Q denotes the volumetric
flow rate of the model gas, measured in ml/min; t corresponds to the breakthrough time,
measured in minutes; M indicates the mass of the loaded catalyst, measured in mg-catalyst;
A1, A2, and A3 correspond to the total area, area above the curve and area under the curve,
respectively as shown in Figure 21. Tm corresponds to the total mass of methyl mercaptan
from time 0 to breakthrough time.
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A1: Calculates the total theoretical amount of methyl mercaptan introduced into the
system until the breakthrough time, expressed in ppm-minutes.

A2: Represents the difference between the total amount introduced (A1) and the
amount unadsorbed (A3). This measures the amount of methyl mercaptan adsorbed by the
catalyst, also in ppm-minutes. (This is the yellow area).

A3: Measures the total amount of methyl mercaptan that exits the reactor unadsorbed,
calculated over the operation time (until breakthrough time), and should also be in ppm-
minutes. (This is the gray area).

The breakthrough experiment is the laboratory investigation of breakthrough time.
The term “breakthrough time” refers to the time it takes for a detectable amount of adsorbate
to start exiting the adsorption column, indicating the point where the adsorbent bed is
becoming saturated and can no longer effectively remove the adsorbate from the flowing
stream; essentially, it is the time when the concentration of the adsorbate in the effluent
reaches a certain threshold, typically defined as a small percentage of the inlet concentration.

Equations (1)–(5) were employed to monitor the sulfur removal as it fluctuated under
different conditions of temperature, pressure, and flow rates, as outlined in Table 7.

Table 7. Experimental runs.

Run T (◦C) P (psi) Q (mL/Min)

1 25 100 36
2 25 100 60
3 25 200 60
4 25 200 36
5 75 100 60
6 75 100 36
7 75 200 60
8 75 200 36
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5. Conclusions

1. The results of the BET analysis reveal distinctive characteristics among the commercial
catalysts, emphasizing the significance of surface area, pore volume, and pore size in
their adsorption capacities. CTG-ESC-011 stands out with the highest surface area at
196.74 m2/g. In contrast, Select HP and Halloysite MinO follow closely, with surface
areas of 88.82 m2/g and 85.5 m2/g, respectively. Select

2. Pore size, a critical factor influencing adsorption capacity, varies across the catalysts,
ranging from 108.42 Å to 163.98 Å. Notably, CTG-ESC-011 has the smallest pore size,
while Halloysite Pure features the largest. Considering the molecular size of methyl
mercaptan (MM) at approximately 4.37 Å, the observed pore sizes in these catalysts
appear excessively large. It becomes evident that differences in methyl mercaptan
removal cannot be only attributed to pore size. Other critical factors, particularly the
chemical compositions of the catalysts, play a significant role in influencing varying
adsorption capacities.

3. HP and CTG-ESC-011 catalysts are predominantly composed of metal oxides. Select
HP contains Zn, Mn, and Cu oxides, while CTG-ESC-011 is primarily made up of
Fe oxide.

4. The breakthrough experiments provided a clear performance hierarchy of the com-
mercial catalysts, with Select HP demonstrating the highest performance, followed by
CTG-ESC-011, Halloysite Mixed, Halloysite MinO, and Halloysite Pure. The outstand-
ing performance of Select HP can be attributed to its chemical composition, primarily
consisting of Cu, Mn, and Zn oxides, which significantly enhance its catalytic activity
and methyl mercaptan.

5. Cu exhibited a quadratic relationship, suggesting that an optimal concentration of
40% Cu maximizes sulfur capacity, while higher Mg concentrations were associated
with decreased sulfur capacity.

6. UL Best catalyst demonstrated the most effective performance in methyl mercaptan
removal, achieving a sulfur capacity of 1226 mg S/g catalyst under conditions of
200 psi, 25 ◦C, 36 mL/min, and 200 ppm CH3SH. In contrast, when tested under
the same conditions, Select HP displayed a lower sulfur capacity of only 389.11 mg
S/g catalyst.

7. Breakthrough experiments were carried out to investigate the influence of temperature
on methyl mercaptan removal using the UL-Best catalyst (comprising 33% Cu, 33%
Zn, and 33% Mn). The results consistently showed that as the temperature increased,
the breakthrough times decreased. For instance, at room temperature, a breakthrough
occurred at 131 min, whereas at 100 ◦C, it happened within 16 min.

8. A comparison between the Select HP catalyst and the UL-Best catalyst at different
temperatures revealed that the UL-Best catalyst consistently exhibited shorter break-
through times at higher temperatures compared to Select HP. In contrast, Select HP
demonstrated an inverse relationship with temperature, where increasing the temper-
ature led to longer breakthrough times. It is worth noting that at 25 ◦C, the UL-Best
catalyst remained superior, with a breakthrough time of 131 min and a sulfur capacity
of 1226 mg S/g catalyst.
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