Ring-Opening Homo- and Copolymerization of Cyclic Esters Catalyzed by Iron(III) Triflate
"> Figure 1
<p>MALDI-TOF MS spectra of PLLA synthesized by using Fe(OTf)<sub>3</sub> (run 11): (<b>a</b>) mass–charge range of 500 to 5000; (<b>b</b>) mass–charge range of 1500 to 2000.</p> "> Figure 1 Cont.
<p>MALDI-TOF MS spectra of PLLA synthesized by using Fe(OTf)<sub>3</sub> (run 11): (<b>a</b>) mass–charge range of 500 to 5000; (<b>b</b>) mass–charge range of 1500 to 2000.</p> "> Figure 2
<p>MALDI-TOF MS spectra of PLLA synthesized by using the Fe(OTf)<sub>3</sub>–2PS system (run 30): (<b>a</b>) mass–charge range of 500 to 5000; (<b>b</b>) mass–charge range of 1500 to 2000.</p> "> Figure 2 Cont.
<p>MALDI-TOF MS spectra of PLLA synthesized by using the Fe(OTf)<sub>3</sub>–2PS system (run 30): (<b>a</b>) mass–charge range of 500 to 5000; (<b>b</b>) mass–charge range of 1500 to 2000.</p> "> Figure 3
<p>Plots for the Fineman–Ross method of the copolymerization of LLA and CL catalyzed by Fe(OTf)<sub>3</sub> with or without PS. (<b>a</b>) [PS]/[Fe(OTf)<sub>3</sub>] = 0; (<b>b</b>) [PS]/[Fe(OTf)<sub>3</sub>] = 2.</p> "> Figure 4
<p>Dependence of the LLA polymerization rate on Fe(OTf)<sub>3</sub> (<b>left</b>) and Fe(OTf)<sub>3</sub>–4PS (<b>right</b>) concentration.</p> "> Scheme 1
<p>Homo- and copolymerization of cyclic esters catalyzed by Fe(OTf)<sub>3</sub> with or without PS.</p> "> Scheme 2
<p>Speculated mechanism for the ring-opening polymerization of a cyclic ester catalyzed by the Fe(OTf)<sub>3</sub> system in the absence of PS.</p> "> Scheme 3
<p>Speculated mechanism for the ring-opening polymerization of a cyclic ester catalyzed by the Fe(OTf)<sub>3</sub> system in the presence of PS.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Measurements
3.3. Solution Polymerization of LLA in Toluene Without PS
3.4. Bulk Polymerization of LLA Without PS
3.5. Bulk Polymerization of LLA with PS
3.6. Bulk Polymerization of CL Without PS
3.7. Bulk Polymerization of CL with PS
3.8. Bulk Copolymerization of LLA with CL in the Absence of PS
3.9. Bulk Copolymerization of LLA with CL in the Presence of PS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penczek, S.; Duda, A.; Kowalski, A.; Libiszowski, J.; Majerska, K.; Biela, T. On the mechanism of polymerization of cyclic esters induced by tin(II) octoate. Macromol. Symp. 2000, 157, 61–70. [Google Scholar] [CrossRef]
- Kowalski, A.; Duda, A.; Penczek, S. Mechanism of Cyclic Ester Polymerization Initiated with Tin(II) Octoate. 2.† Macromolecules Fitted with Tin(II) Alkoxide Species Observed Directly in MALDI−TOF Spectra. Macromolecules 2000, 33, 689–695. [Google Scholar] [CrossRef]
- Sosnowski, S.; Lewinski, P. L-Lactide polymerization catalysed by tin(II) 2-ethyl-hexanoate. A deeper look at chain transfer reactions. Polym. Chem. 2015, 6, 6292–6296. [Google Scholar] [CrossRef]
- Tanzi, M.C.; Verderio, P.; Lampugnani, M.G.; Resnati, M.; Dejana, E.; Sturani, E. Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use. J. Mater. Sci. Mater. Med. 1994, 5, 393–396. [Google Scholar] [CrossRef]
- Yamada, T.; Jung, D.-Y.; Sawada, R.; Tsuchiya, T. Intracerebral microinjection of stannous 2-ethylhexanoate affects dopamine turnover in cerebral cortex and locomotor activity in rats. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 87B, 381–386. [Google Scholar] [CrossRef]
- Hege, C.S.; Schiller, S.M. Non-toxic catalysts for ring-opening polymerizations of biodegradable polymers at room temperature for biohybrid materials. Green Chem. 2014, 16, 1410–1416. [Google Scholar] [CrossRef]
- O’Keefe, B.J.; Hillmyer, M.A.; Tolman, W.B. Polymerization of lactide and related cyclic esters by discrete metal complex. J. Chem. Soc. Dalton Trans. 2001, 2215–2224. [Google Scholar] [CrossRef]
- Kamber, N.E.; Jeong, W.; Waymouth, R.M.; Pratt, R.C.; Lohmeijer, B.G.G.; Hedrick, J.L. Organocatalytic Ring-Opening Polymerization. Chem. Rev. 2007, 107, 5813–5840. [Google Scholar] [CrossRef]
- Dubois, P.; Coulembier, O.; Raquez, J.-M. (Eds.) Handbook of Ring-Opening Polymerization; Wiley: Weinheim, Germany, 2009. [Google Scholar]
- Arbaouia, A.; Redshaw, C. Metal catalysts for ε-caprolactone polymerisation. Polym. Chem. 2010, 1, 801–826. [Google Scholar] [CrossRef]
- Li, X.; Chen, C.; Wu, J. Lewis Pair Catalysts in the Polymerization of Lactide and Related Cyclic Esters. Molecules 2018, 23, 189. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.J.; Hyatt, M.G.; Miller, S.A.; Guironnet, D. Recent Trends in Catalytic Polymerizations. ACS Catal. 2019, 9, 11153–11188. [Google Scholar] [CrossRef]
- McGraw, M.L.; Chen, E.Y.-X. Lewis Pair Polymerization: Perspective on a Ten-Year Journey. Macromolecules 2020, 53, 6102–6122. [Google Scholar] [CrossRef]
- Li, H.; Shakaroun, R.M.; Guillaume, S.M.; Carpentier, J.-F. Recent Advances in Metal-Mediated Stereoselective Ring-Opening Polymerization of Functional Cyclic Esters towards Well-Defined Poly(hydroxy acid)s: From Stereoselectivity to Sequence-Control. Chem. Eur. J. 2020, 26, 128–138. [Google Scholar] [CrossRef]
- Dong, X.; Robinson, J.R. The versatile roles of neutral donor ligands in tuning catalyst performance for the ring-opening polymerization of cyclic esters. New J. Chem. 2022, 46, 444–453. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Zhang, W.; Sun, W.-H. Progress of Ring-Opening Polymerization of Cyclic Esters Catalyzed by Iron Compounds. Organometallics 2023, 42, 1680–1692. [Google Scholar] [CrossRef]
- Baran, J.; Duda, A.; Kowalski, A.; Szymanski, R.; Penczek, S. Quantitative comparison of selectivities in the polymerization of cyclic esters. Macromol. Symp. 1997, 123, 93–101. [Google Scholar] [CrossRef]
- O’Keefe, B.J.; Monnier, S.M.; Hillmyer, M.A.; Tolman, W.B. Rapid and Controlled Polymerization of Lactide by Structurally Characterized Ferric Alkoxides. J. Am. Chem. Soc. 2001, 123, 339–340. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, B.J.; Breyfogle, L.E.; Hillmyer, M.A.; Tolman, W.B. Mechanistic Comparison of Cycllic Ester Polymerizations by Novel Iron(III)-Alkoxide Complexes: Single vs. Multiple Site Catalysis. J. Am. Chem. Soc. 2002, 124, 4384–4393. [Google Scholar] [CrossRef]
- Södergård, A.; Stolt, M. Ring-opening polymerization of L-lactide by means of different iron compounds. Macromol. Symp. 1998, 130, 393–402. [Google Scholar] [CrossRef]
- Naolou, T.; Lendlein, A.; Neffe, A.T. Amides as Non-polymerizable Catalytic Adjuncts Enable the Ring-Opening Polymerization of Lactide With Ferrous Acetate Under Mild Conditions. Front. Chem. 2019, 7, 346. [Google Scholar] [CrossRef] [PubMed]
- Kirchhecker, S.; Nguyen, N.; Reichert, S.; Lützow, K.; Bungu, P.S.E.; Wangelin, A.J.v.; Sandl, S.; Neffe, A.T. Iron(II) carboxylates and simple carboxamides: An inexpensive and modular catalyst system for the synthesis of PLLA and PLLA-PCL block copolymers. RSC Adv. 2023, 13, 17102–17113. [Google Scholar] [CrossRef]
- Gorczynski, J.L.; Chen, J.; Fraser, C.L. Iron Tris(dibenzoylmethane)-Centered Polylactide Stars: Multiple Roles for the Metal Complex in Lactide Ring-Opening Polymerization. J. Am. Chem. Soc. 2005, 127, 14956–14957. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gorczynski, J.L.; Fraser, C.L. Iron Tris(dibenzoylmethane) Centered PCL and PCL-b-PLA Stars from Dual Functional Catalyst-Initiators. Macromol. Chem. Phys. 2010, 211, 1272–1279. [Google Scholar] [CrossRef]
- Idage, B.B.; Idage, S.B.; Kasegaonkar, A.S.; Jadhav, R.V. Ring opening polymerization of dilactide using salen complex as catalyst. Mater. Sci. Eng. B 2010, 168, 193–198. [Google Scholar] [CrossRef]
- Duan, R.; Hu, C.; Li, X.; Pang, X.; Sun, Z.; Chen, X.; Wang, X. Air-Stable Salen–Iron Complexes: Stereoselective Catalysts for Lactide and ε-Caprolactone Polymerization through in Situ Initiation. Macromolecules 2017, 50, 9188–9195. [Google Scholar] [CrossRef]
- Biernesser, A.B.; Li, B.; Byers, J.A. Redox-Controlled Polymerization of Lactide Catalyzed by Bis(imino)pyridine Iron Bis(alkoxide) Complexes. J. Am. Chem. Soc. 2013, 135, 16553–16560. [Google Scholar] [CrossRef]
- Biernesser, A.B.; Chiaie, K.R.D.; Curley, J.B.; Byers, J.A. Block Copolymerization of Lactide and an Epoxide Facilitated by a Redox Switchable Iron-Based Catalyst. Angew. Chem. Int. Ed. 2016, 55, 5251–5254. [Google Scholar] [CrossRef] [PubMed]
- Manna, C.M.; Kaur, A.; Yablon, L.M.; Haeffner, F.; Li, B.; Byers, J.A. Stereoselective Catalysis Achieved through in Situ Desymmetrization of an Achiral Iron Catalyst Precursor. J. Am. Chem. Soc. 2015, 137, 14232–14235. [Google Scholar] [CrossRef]
- Nylund, P.V.S.; Monney, B.; Weder, C.; Albrecht, M. N-Heterocyclic carbene iron complexes catalyze the ring-opening polymerization of lactide. Polym. Chem. 2022, 12, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Prior, T.J.; Hughes, D.L.; Arbaoui, A.; Redshaw, C. Coordination chemistry of [2 + 2] Schiff-base macrocycles derived from the dianilines [(2-NH2C6H4)2X] (X = CH2CH2, O): Structural studies and ROP capability towards cyclic esters. Dalton Trans. 2021, 50, 8057–8069. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, W.; Wang, X.; Zuo, W.; Xue, X.; Ma, Y.; Sun, W.-H. N-(2-(Diphenylphosphino)ethyl)-2-alkyl-5,6,7,8-tetrahydro-quinolin-8-amines iron(II) complexes: Structural diversity and the ring opening polymerization of ε-caprolactone. RSC Adv. 2023, 13, 29866–29878. [Google Scholar] [CrossRef] [PubMed]
- Adibi, H.; Samimi, H.A.; Beygzadeh, M. Iron(III) trifluoroacetate and trifluoromethanesulfonate: Recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols. Catal. Commun. 2007, 8, 2119–2124. [Google Scholar] [CrossRef]
- Möller, M.; Kånge, R.; Hedrick, J.L. Sn(OTf)2 and Sc(OTf)3: Efficient and versatile catalysts for the controlled polymerization of lactones. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 2067–2074. [Google Scholar] [CrossRef]
- Nomura, N.; Taira, A.; Tomioka, T.; Okada, M. A Catalytic Approach for Cationic Living Polymerization: Sc(OTf)3-Catalyzed Ring-Opening Polymerization of Lactones. Macromolecules 2000, 33, 1497–1499. [Google Scholar] [CrossRef]
- Kunioka, M.; Wang, Y.; Onozawa, S.-y. Polymerization of Poly(ε-caprolactone) Using Yttrium Triflate. Polym. J. 2003, 35, 422–429. [Google Scholar] [CrossRef]
- Wang, Y.; Onozawa, S.-y.; Kunioka, M. Ring-opening polymerization of ε-caprolactone with yttrium triflate. Green Chem. 2003, 5, 571–574. [Google Scholar] [CrossRef]
- Wang, Y.; Kunioka, M. Ring-opening polymerization of cyclic monomers with aluminum triflate. Macromol. Symp. 2005, 224, 193–205. [Google Scholar] [CrossRef]
- Kunioka, M.; Wang, Y.; Onozawa, S.-y. Poly(lactic acid) polymerized by aluminum triflate. Macromol. Symp. 2005, 224, 167–179. [Google Scholar] [CrossRef]
- Nomura, N.; Taira, A.; Nakase, A.; Tomioka, T.; Okada, M. Ring-opening polymerization of lactones by rare-earth metal triflates and by their reusable system in ionic liquids. Tetrahedron 2007, 63, 8478–8484. [Google Scholar] [CrossRef]
- Lahcini, M.; Qayouh, H.; Yashiro, T.; Weidner, S.M.; Kricheldorf, H.R. Bismuth-Triflate-Catalyzed Polymerizations of ε-Caprolactone. Macromol. Chem. Phys. 2011, 212, 583–591. [Google Scholar] [CrossRef]
- Zhang, K.; Bai, T.; Ling, J. Iron(III) Triflate as a Green Catalyst for Janus Polymerization to Prepare Block Polyesters. Macromolecules 2023, 56, 7389–7395. [Google Scholar] [CrossRef]
- Möller, M.; Nederberg, F.; Lim, L.S.; Kånge, R.; Hawker, C.J.; Hedrick, J.L.; Gu, Y.; Shah, R.; Abbott, N.L. Stannous(II) trifluoromethane sulfonate: A versatile catalyst for the controlled ring-opening polymerization of lactides: Formation of stereoregular surfaces from polylactide “brushes”. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 3529–3538. [Google Scholar] [CrossRef]
- Rittinghaus, R.D.; Zenner, J.; Pich, A.; Kol, M.; Herres-Pawlis, S. Master of Chaos and Order: Opposite Microstructures of PCL-co-PGA-co-PLA Accessible by a Single Catalyst. Angew. Chem. Int. Ed. 2022, 61, e202112853. [Google Scholar] [CrossRef]
- Vion, J.M.; Jerome, R.; Teyssie, P.; Aubin, M.; Prudhomme, R.E. Synthesis, characterization, and miscibility of caprolactone random copolymers. Macromolecules 1986, 19, 1828–1838. [Google Scholar] [CrossRef]
- Vanhoorne, P.; Dubois, P.; Jerome, R.; Teyssie, P. Macromolecular engineering of polylactones and polylactides. 7. Structural analysis of copolyesters of iε-caprolactone and L- or D,L-lactide initiated by triisopropoxyaluminum. Macromolecules 1992, 25, 37–44. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Karroonnirun, O. Ring-Opening Polymerization of l-Lactide and ε-Caprolactone Utilizing Biocompatible Zinc Catalysts. Random Copolymerization of l-Lactide and ε-Caprolactone. Macromolecules 2010, 43, 8880–8886. [Google Scholar] [CrossRef]
- Stirling, E.; Champouret, Y.; Visseaux, M. Catalytic metal-based systems for controlled statistical copolymerisation of lactide with a lactone. Polym. Chem. 2018, 9, 2517–2531. [Google Scholar] [CrossRef]
- Baśko, M.; Kubisa, P. Cationic copolymerization of ε-caprolactone and L,L-lactide by an activated monomer mechanism. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 7071–7081. [Google Scholar] [CrossRef]
- Nomura, N.; Akita, A.; Ishii, R.; Mizuno, M. Random Copolymerization of ε-Caprolactone with Lactide Using a Homosalen—Al Complex. J. Am. Chem. Soc. 2010, 132, 1750–1751. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lamberti, M.; Pappalardo, D.; Pellecchia, C. Random Copolymerization of ε-Caprolactone and Lactides Promoted by Pyrrolylpyridylamido Aluminum Complexes. Macromolecules 2012, 45, 8614–8620. [Google Scholar] [CrossRef]
- Pilone, A.; Maio, N.D.; Press, K.; Venditto, V.; Pappalardo, D.; Mazzeo, M.; Pellecchia, C.; Kol, M.; Lamberti, M. Ring-opening homo- and co-polymerization of lactides and ε-caprolactone by salalen aluminum complexes. Dalton Trans. 2015, 44, 2157–2165. [Google Scholar] [CrossRef]
- Otera, J. Transesterification. Chem. Rev. 1993, 93, 1449–1470. [Google Scholar] [CrossRef]
Run | Catalyst | Temp (°C) | Time (h) | Yield (%) | Mn(theo) 2 (kg/mol) | Mn(GPC) 3 (kg/mol) | Mw/Mn 3 |
---|---|---|---|---|---|---|---|
1 | Fe(OTf)3 | 65 | 12 | 64 | 9.2 | 5.9 | 1.09 |
2 | 65 | 24 | 93 | 13 | 11 | 1.20 | |
3 | 110 | 1.5 | 62 | 8.9 | 5.3 | 1.12 | |
4 | 110 | 6 | 93 | 13 | 9.5 | 1.53 | |
5 | FeCl3 | 65 | 24 | 0 | - | - | - |
6 | 110 | 24 | 22 | 3.2 | 3.7 | 1.16 | |
7 | Fe(OTf)2 | 65 | 24 | 0 | - | - | - |
8 | 110 | 24 | 9 | 1.3 | 4.2 | 1.08 | |
9 | Sn(Oct)2 | 65 | 12 | 95 | 14 | 15 | 1.09 |
10 | 110 | 1.5 | 96 | 14 | 18 | 1.26 |
Run | Temp (°C) | Time (h) | Yield (%) | Mn(theo) 2 (kg/mol) | Mn(GPC) 3 (kg/mol) | Mw/Mn 3 |
---|---|---|---|---|---|---|
11 | 120 | 3 | 16 | 23 | 6.3 | 1.11 |
12 | 120 | 6 | 24 | 35 | 12 | 1.22 |
13 | 120 | 12 | 49 | 71 | 24 | 1.41 |
14 | 120 | 24 | 58 | 84 | 24 | 1.42 |
15 | 120 | 48 | 88 | 130 | 33 | 1.57 |
16 | 150 | 3 | 32 | 46 | 9.0 | 1.31 |
17 | 150 | 6 | 89 | 130 | 11 | 1.39 |
18 | 150 | 12 | 90 | 130 | 11 | 1.52 |
Run | Base | [Base]/[C] | Yield (%) | Mn(theo) 2 (kg/mol) | Mn(GPC) 3 (kg/mol) | Mw/Mn 3 |
---|---|---|---|---|---|---|
13 | - | 0 | 49 | 71 | 24 | 1.41 |
19 | PS | 1 | 59 | 85 | 56 | 1.51 |
20 | PS | 2 | 86 | 120 | 99 | 1.64 |
21 | TBA | 2 | 15 | 22 | 6 | 1.22 |
22 | DMA | 2 | 18 | 26 | 8 | 1.15 |
23 | TMEDA | 2 | 78 | 110 | 67 | 1.42 |
Run | [PS]/[C] | [M]0/[I]0 | Yield (%) | Mn(theo) 2 (kg/mol) | Mn(GPC) 3 (kg/mol) | Mw/Mn 3 |
---|---|---|---|---|---|---|
24 | 0 | 1000/0 | 38 | - | 22 | 1.32 |
13 | 0 | 1000/1 | 58 | 83 | 24 | 1.42 |
25 | 0 | 1000/2 | 54 | 39 | 18 | 1.33 |
26 | 0 | 1000/4 | 75 | 27 | 23 | 1.24 |
27 | 2 | 1000/0 | 80 | - | 150 | 1.79 |
20 | 2 | 1000/1 | 86 | 120 | 99 | 1.64 |
28 | 2 | 1000/2 | 77 | 56 | 60 | 1.55 |
29 | 2 | 1000/4 | 93 | 34 | 58 | 1.60 |
30 | 2 | 1000/50 | 66 | 1.9 | 4.6 | 1.24 |
Run | [PS]/[C] | Time (h) | Yield (%) | Mn(theo) 2 (kg/mol) | Mn(GPC) 3 (kg/mol) | Mw/Mn3 |
---|---|---|---|---|---|---|
31 | 0 | 3 | 93 | 106 | 14 | 1.56 |
32 | 2 | 6 | 55 | 63 | 31 | 1.53 |
Run | [PS] /[C] | Time (h) | Yield 2 (%) | fLLA3 (mol%) | Mn 4 (kg/mol) | Mw/Mn 4 | Tg 5 (°C) | Tm 6 (°C) | ΔHm 6 (J/g) |
---|---|---|---|---|---|---|---|---|---|
33 | 0 | 3 | 36 | 17 | 12 | 1.33 | −46.0 | 43.3 | 56.8 |
34 | 0 | 12 | 59 | 35 | 11 | 1.43 | −32.9 | n.d. 7 | n.d. 7 |
35 | 0 | 72 | 82 | 50 | 12 | 1.35 | −15.1 | n.d. 7 | n.d. 7 |
36 | 2 | 6 | 36 | 86 | 14 | 1.30 | 32.0 | 135.4 | 29.5 |
37 | 2 | 48 | 69 | 71 | 36 | 1.70 | 10.1 | 111.2 | 14.5 |
38 | 2 | 96 | 89 | 54 | 45 | 1.81 | −11.0 | n.d. 7 | n.d. 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakayama, Y.; Omori, T.; Tanaka, R.; Shiono, T. Ring-Opening Homo- and Copolymerization of Cyclic Esters Catalyzed by Iron(III) Triflate. Catalysts 2024, 14, 945. https://doi.org/10.3390/catal14120945
Nakayama Y, Omori T, Tanaka R, Shiono T. Ring-Opening Homo- and Copolymerization of Cyclic Esters Catalyzed by Iron(III) Triflate. Catalysts. 2024; 14(12):945. https://doi.org/10.3390/catal14120945
Chicago/Turabian StyleNakayama, Yuushou, Toshihiko Omori, Ryo Tanaka, and Takeshi Shiono. 2024. "Ring-Opening Homo- and Copolymerization of Cyclic Esters Catalyzed by Iron(III) Triflate" Catalysts 14, no. 12: 945. https://doi.org/10.3390/catal14120945
APA StyleNakayama, Y., Omori, T., Tanaka, R., & Shiono, T. (2024). Ring-Opening Homo- and Copolymerization of Cyclic Esters Catalyzed by Iron(III) Triflate. Catalysts, 14(12), 945. https://doi.org/10.3390/catal14120945