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Abstract: Public transportation plays a crucial role in our lives, and the road network
is a vital component in the implementation of smart cities. Recent advancements in Al
have enabled the development of advanced monitoring systems capable of detecting
anomalies in road surfaces and road signs, which can lead to serious accidents. This
paper presents an innovative approach to enhance road safety through the detection and
classification of traffic signs and road surface damage using advanced deep learning
techniques (CNN), achieving over 90% precision and accuracy in both detection and
classification of traffic signs and road surface damage. This integrated approach supports
proactive maintenance strategies, improving road safety and resource allocation for the
Molise region and the city of Campobasso. The resulting system, developed as part of the
CTE Molise research project funded by the Italian Minister of Economic Growth (MIMIT),
leverages cutting-edge technologies such as cloud computing and High-Performance
Computing with GPU utilization. It serves as a valuable tool for municipalities, for the
quick detection of anomalies and the prompt organization of maintenance operations.

Keywords: road safety; traffic sign detection; road surface damage detection; smart cities;
YOLO; convolutional neural network (CNN); predictive maintenance; High-Performance
Computing (HPC); cloud computing

1. Introduction

According to the latest World Health Organization (WHO) report, public road net-
works are the lifeblood of modern societies, playing a crucial role in the transportation
of goods and people, which is fundamental for trade, commerce, and tourism. They also
enable easy access to jobs, education, healthcare, and social activities, both in urban and
rural areas. However, ensuring road safety remains a critical challenge.

Harsh weather conditions can accelerate road degradation, and as traffic volume
grows—including heavy traffic—frequent repairs become necessary. Any lapse in mainte-
nance can lead to severe incidents, resulting in fatalities worldwide. The 2023 WHO report
states that approximately 1.19 million people die each year due to road traffic crashes [1],
highlighting the urgency of proactive and efficient road monitoring systems.

This paper presents a novel deep learning-based approach for real-time traffic sign
detection and road damage assessment, designed to support a Road Management System
for public municipalities. While previous studies have focused either on road condition
monitoring or traffic sign detection separately, our method integrates both tasks into a
unified Al-driven framework.
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By leveraging state-of-the-art computer vision techniques, our approach aims to
provide higher accuracy, real-time processing capabilities, and improved adaptability to
various environmental conditions. Unlike traditional rule-based or sensor-heavy solu-
tions, our system operates efficiently using standard cameras and cloud-based AI models,
reducing costs and making large-scale deployment feasible.

This research is conducted as part of the Molise CTE research project, funded by the
Italian Ministry of Economic Growth (MIMIT). The project aims to harness emerging tech-
nologies such as cloud computing, High-Performance Computing, Artificial Intelligence,
and AR/VR to develop and demonstrate next-generation Smart City solutions.

The structure of this paper is as follows. Section 2 presents a comprehensive Literature
Review, positioning our approach within existing research and highlighting key differentia-
tors. Section 3 describes the proposed Al-powered road monitoring system, detailing its
architecture, data pipeline, and cloud-based infrastructure. Section 4 outlines the computa-
tional experiments, providing a rigorous performance evaluation with relevant benchmarks.
Section 5 discusses Challenges, Solutions, and Integration with Municipal Maintenance
Applications, addressing potential limitations, their mitigations, and demonstrating the
practical applicability of our solution. Section 6 presents ongoing developments, future
improvements, and potential exploitation opportunities, before concluding the paper.

2. Literature Review
2.1. Introduction

The detection and classification of traffic signs and road damage are vital components
of intelligent transportation systems. Recent advancements in deep learning—particularly
using convolutional neural networks (CNNs) and YOLO (You Only Look Once) archite-
cture—have markedly enhanced the accuracy and efficiency of these systems. Moreover,
the integration of GPS data has opened new avenues for comprehensive road monitor-
ing and predictive maintenance. This section reviews seminal and recent literature in
traffic sign detection and classification, road damage detection, and GPS-based road condi-
tion monitoring.

2.2. Traffic Sign Detection Approaches
2.2.1. Early and Seminal Work

Early research laid the groundwork for automated traffic sign detection using tradi-
tional machine learning methods. A key paper by Maldonado-Bascon et al. employs color
segmentation and Support Vector Machines (SVMs) to detect and recognize road signs,
demonstrating robustness against transformations and occlusions [2]. Another seminal
approach by Fang, Chen, and Fuh integrates neural networks for feature extraction and
Kalman filters for tracking, enabling reliable performance under diverse environmental
conditions [3].

2.2.2. YOLO Architecture and Enhancements

In recent years, the YOLO family of algorithms has become a popular choice for
real-time object detection, including traffic signs. YOLOv4 was shown by Yang and Zhang
(2020) to significantly improve detection accuracy over YOLOV3 for Chinese traffic signs [4].
Zhang (2023) similarly demonstrated that YOLOvV3 outperformed R-CNN algorithms in
both speed and accuracy [5].

Enhancements to YOLO have been introduced to address specific challenges:

e Lightweight Models. Sign-YOLO integrates the Coordinate Attention (CA) module
and High-BiFPN to improve multi-scale semantic fusion, achieving significant gains
in precision, recall, and speed on the CCTSDB2021 dataset [6].
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e  Advanced Feature Extraction. PVF-YOLO employs Omni-Dimensional Convolution
(ODconv) and Large Kernel Attention (LKA) to further boost detection accuracy and
speed [7].

2.3. Traffic Sign Classification
2.3.1. CNN-Based Classification

Once detected, traffic signs need to be accurately classified into specific categories.
Convolutional neural networks (CNNs) have shown exceptional performance in this area.
Ciresan et al. (2012) achieved state-of-the-art results on German traffic signs using CNNs [8].
More recently, models like TSR-YOLO embed advanced modules tailored to complex traffic
scenarios, further improving classification metrics [9].

2.3.2. Traffic Sign Damage Classification

Relatively few papers address traffic sign damage classification. Trpkovic, Selmic,
and Jevremovic (2021) employed a CNN to identify and classify damaged and vandalized

traffic signs [10]. Acilo et al. (2018) used transfer learning with ResNet-50 to detect signs
compliance status and physical degradation, achieving high accuracy [11].

2.3.3. Generative Al for Synthetic Data

Generative Adversarial Networks (GANSs), particularly DCGAN, have been used to
address the imbalance between damaged and undamaged traffic signs in training datasets.
By generating realistic synthetic images of damaged traffic signs, researchers can enhance
model robustness and accuracy [12]. This approach not only balances the dataset but also
improves performance in recognizing signs under diverse and challenging conditions.

2.4. Road Damage Detection
2.4.1. Public Datasets

Datasets such as Mapillary and the Road Damage Detection (RDD) dataset are widely
used for training and evaluating models aimed at identifying potholes, cracks, and surface
wear. Their comprehensive annotations make them valuable resources for developing
robust road damage detection systems.

2.4.2. Deep Learning Methods

Deep CNNs and YOLO architectures have been particularly successful in road damage
detection. Zhang et al. (2018) utilized a deep CNN to detect road cracks, achieving high
precision and recall [13]. Maeda et al. (2018) applied YOLO to detect multiple types of road
damage, demonstrating effectiveness in real-world settings [14].

2.5. Integration of GPS Data

Using GPS data enriches time series analysis with spatial context, enhancing road
damage detection and monitoring.

e  Mobile Sensor Networks. Strutu et al. (2013) proposed a mobile sensor network-based
system incorporating 3D accelerometers, GPS, and video modules for road surface
monitoring [15]. Perttunen et al. (2011) similarly demonstrated that accelerometers
and GPS on mobile phones could effectively detect road surface anomalies [16].

e  Low-Cost Systems. Tarun and Esther (2023) introduced a Raspberry Pi and GPS-based
road sign detection system, showcasing high detection precision and efficient real-time
operation [17].
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By combining sensor data with GPS coordinates, researchers can identify patterns in
road degradation related to specific routes or environmental conditions, enabling proactive
maintenance strategies.

2.6. Additional Insights from Recent Advances

Lim et al. (2023) provide a comprehensive overview of state-of-the-art traffic sign
recognition, categorizing research into conventional machine learning and deep learning
approaches [18]. Key developments include the following:

e  Preprocessing and Feature Extraction. Sophisticated techniques for data augmentation,
color normalization, and feature selection help address variations in lighting, weather,
and camera angles.

e  Model Generalization. The use of diverse training datasets is crucial to ensuring that
models remain robust under varying backgrounds and environmental conditions.

e  Predictive Maintenance. Integrating sensor data, GPS, and advanced neural network
models allows for the implementation of predictive maintenance strategies, preventing
road and sign failures before they occur [19].

2.7. Summary

Significant advancements have been made in traffic sign detection, classification, and
road damage detection using deep learning—particularly YOLO and CNN-based meth-
ods. Seminal works laid the foundation using machine learning and traditional feature
extraction, while modern approaches leverage real-time detection and classification via
YOLO variants. Damage-specific research, although still limited, suggests promising av-
enues for applying CNNs and Generative Adversarial Networks to handle imbalanced
datasets. Furthermore, the integration of GPS data offers spatial context essential for predic-
tive maintenance. Overall, these trends highlight the potential for intelligent transportation
systems to substantially enhance road safety, maintenance, and driver assistance.

3. Methodology
3.1. Experimental Workflow and Datasets

Figure 1 illustrates the overall workflow for both road sign and road damage detec-
tion/classification tasks. We begin by gathering images (from the Mapillary Vistas and
RDD 2022 datasets), then apply data quality checks and data augmentation to expand or
balance these datasets. For road signs, we perform two steps: (1) detection using YOLOVS,
and (2) classification into damaged or not damaged using a convolutional neural network
(CNN) with attention mechanisms. For road damage (treated purely as anomalies), a single
detection step via YOLOWVS is sufficient.

Mapillary Vistas

The Mapillary Vistas dataset is a large-scale, street-level imagery dataset designed for
semantic segmentation and object detection in various conditions [20].

o  C(Classes: 401.

e Images: 41,906.

e  Size: 32.8 GB.

e  Train/Validation Split: 80% /20%.
RDD 2022

The Road Damage Detection (RDD) 2022 dataset focuses on identifying and classifying
road-surface damages such as cracks and potholes [21].

e (lasses: 4.
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e Images: 34,007.
e  Size: 9.6 GB.
e  Train/Validation Split: 80%/20%.

YoloBx

Road sign Road sign status
detection classification

Damaged Mot

Surface
anomalies YoloBs
detection

Figure 1. Experimental workflow. The diagram shows how images flow from collection through
dataset expansion, data augmentation, and detection/classification.

3.2. YOLOwv8 Architecture

Figure 2 illustrates the YOLOvVS8 network structure, which consists of three main
components: Backbone, Neck, and Head. The Backbone (shown on the left side of the
figure) is responsible for extracting hierarchical features from the input image through a
series of convolutional layers and specialized blocks (e.g., C2f and Bottleneck). These blocks
enhance the network’s learning capacity while maintaining low computational overhead.
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Figure 2. YOLOVS architecture.
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The middle section highlights additional key details of the architecture, including
the following:

Split and Concat: Operations that split and concatenate feature maps, allowing multi-
scale information to be merged efficiently.

C2f (Cross Stage Partial Networks v2) and Bottleneck: Blocks featuring shortcut
connections that facilitate gradient flow and improve feature representation.

e  SPPF (Spatial Pyramid Pooling-Fast): A module that partitions feature maps into
regions of different sizes, enabling the network to capture multi-scale context.

The Neck (center-right) includes layers such as Upsample and Concat to fuse feature
maps at various resolutions, improving multi-scale feature representation. Finally, on the
right side is the Head, which processes detection outputs (Detect) across three different
scales (P3, P4, P5). These convolutional layers further refine the fused features to produce
final predictions for classes, bounding box coordinates, and confidence scores. The Loss
function (top-right) combines classification, bounding box regression, and objectness terms
to ensure balanced network training.

In our implementation, we used YOLOVS8 “out of the box”, i.e., with no architectural
modifications to the Ultralytics-released source code. We only customized certain training
parameters—such as the number of epochs, batch size, and learning rate—to suit our
dataset and experimental objectives. By adopting the native YOLOvVS framework, we
leveraged its official optimizations, ensuring fast inference and competitive performance
for both traffic sign detection and road damage assessment tasks.

3.3. First Phase: Detection
3.3.1. Data Preparation
Before training, data manipulation is performed to ensure optimal performance

and accuracy:

Augmentation: rotations, scaling, flips, color adjustments.
Normalization: scaling pixel values (0-1).
Label Smoothing: reducing overfitting by softening hard labels.

Anchor Box Calculation: custom anchors to improve detection of varying object sizes.

3.3.2. YOLOVSs for Road Surface Damage

We use a smaller YOLOvVS8 variant (YOLOVSs) to balance speed and accuracy for road
damage detection. Using a lightweight model is sufficient and efficient.

Parameter Value
Pretrained Yes (Ultralytics checkpoint)
Epochs 160
Image Size 640
Patience 100
Cache RAM
Device GPU
Batch Size 64

An example of road damage detection is shown in Figure 3.
YOLOVSs is used to identify anomalies (e.g., cracks, potholes) in the road surface.
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Figure 3. Road damage detection.

3.3.3. YOLOvS8x for Road Signs

For road sign detection, we employ the larger YOLOv8x model to achieve higher
precision—this is critical for correctly identifying smaller signs with varied shapes. We
prioritized accuracy over speed in this task since sign recognition demands finer resolution
and often more complex feature extraction.

Parameter Value
Pretrained Yes (Ultralytics checkpoint)
Epochs 100
Image Size 640
Patience 100
Cache RAM
Device GPU
Batch Size Auto

An example of traffic sign detection is shown in Figure 4.

Figure 4. Traffic sign detection.
YOLOVS8x locates and classifies various signs in real time with high accuracy.

3.4. Second Phase: Road Sign Classification

After YOLOVS detects road signs, we crop each sign from the frame and classify it as
damaged or not damaged. Damaged signs include those with graffiti, stickers, rust, or phys-
ical deformations. The initial dataset is unbalanced (6025 damaged vs. 34,315 undamaged).
We address this with the following:

e  Focal Loss: weighs hard-to-classify examples more, mitigating class imbalance.
e  Cutout Regularization: randomly removes sections of the image during training,
improving robustness.
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3.5. Enhanced CNN with Attention
In a subsequent step, we integrate attention mechanisms into a CNN to further im-

prove classification accuracy:

1.  Input Layer: 128 x 128 x 3 images.

2. Convolutional Blocks: Each block has Convolution — BatchNorm — ReLU, plus
Channel and Spatial Attention modules, followed by Max-Pooling.

3. Fully Connected Layers: Flatten — Dense (256, ReLU) — Dropout (0.5).

4. Output Layer: Dense (1, Sigmoid).

5. Optimizer and Loss: Adam with Focal Loss to handle class imbalance.

Attention Mechanisms

e  Channel Attention: emphasizes relevant feature channels (e.g., small damages).
e  Spatial Attention: focuses on crucial areas of the sign where anomalies might appear.

Data Augmentation and Regularization

e Augmentations: flips, rotations, shifts, shear, zoom.
e  Cutout Regularization: random masking to handle occlusions.

Training and Evaluation

We train for 10 epochs (batch size 32, 80-20 train—-validation split) and use ReduceL-
ROnPlateau if validation accuracy stalls. The best model is saved via ModelCheckpoint,
yielding 90% accuracy on validation data.

3.6. Generative Al for Class Balancing (Stable Diffusion)

We further address class imbalance using Stable Diffusion v2.1 (fine-tuned) to generate
18,000 synthetic images of damaged traffic signs:

Parameter Value
Pretrained Yes (Stable Diffusion v2.1)
Epochs 50
Image Size 512 x 512
Patience 10
Cache RAM
Device GPU
Batch Size 32
Conditioning Method Image + Text Prompt Encoding
Optimization AdamW (LR 5e-5, Cosine Scheduler)
Loss Functions Contrastive + Perceptual (LPIPS)

By conditioning both on existing images and textual damage descriptions (e.g., “rust”,
“graffiti”), we generate realistic variations of damaged signs, effectively tripling the size
of the damaged class. This improves the CNN’s ability to recognize real-world dam-
aged signs. Contrastive Loss ensures generated images differ significantly between
damaged vs. undamaged categories, further aiding discrimination, while Perceptual Loss
(LPIPS) helps maintain visual realism in synthetic images.

4. Computational Experiments

This section presents the experimental setup and results for our deep learning models
applied to road sign detection (YOLOvS8x), road surface damage detection (YOLOvVSs),
and road sign classification (CNN). We first describe the computational resources uti-
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lized (Section 4.1), then detail the performance metrics and results for each model
(Sections 4.2 and 4.3).

4.1. Hardware and Training Environment
4.1.1. YOLO Models on Google Colab

GPU: NVIDIA Tesla T4.

CUDA Cores: 2560.

Tensor Cores: 320.

GPU Memory: 16 GB GDDR6.

Memory Bandwidth: 320 GB/s.

Theoretical FP32 Performance: Up to 8.1 TFLOPS.
CPU: Intel(R) Xeon(R) CPU, 2 vCPUs @ 2.3 GHz.
RAM: 12.7 GB available in Colab.

Disk: 100 GB available storage.

Google Colab’s NVIDIA Tesla T4 GPU provided ample computational capacity for
training both YOLOvV8x (used for detecting road signs) and YOLOvS8s (used for detecting
road surface damages). The hardware configuration allowed for efficient handling of large
datasets and the complex operations required by the YOLO architecture.

4.1.2. CNN on Reevo Servers
e CPU:24 vCPUs @ 2.5 GHz.
e RAM: 32 GB.

The CNN for road sign classification was trained on Reevo servers. This setup featured
more CPU cores and higher RAM, which supported the parallel data preprocessing and
training steps necessary for our classification task.

4.2. YOLO Models: Performance Metrics and Results
We evaluated YOLOvS8x (for road sign detection) and YOLOvVS8s (for road surface

damage detection) using a set of common metrics:

mAP50: Mean Average Precision at 50% IoU threshold.
mAP50-95: Mean Average Precision averaged over IoU thresholds from 50% to 95%.
Precision: The ratio of true positive detections to the total positive detections.

Recall: The ratio of true positive detections to the total number of actual positives.

Box Loss: Measures the error in bounding box predictions.
e  Object Loss: Assesses the error in distinguishing objects from the background.

Each subsection below provides a closer look at how these metrics evolved during
training, alongside commentary on the associated diagrams.

4.2.1. YOLOvS8x for Road Sign Detection

1.  Accuracy Metrics

Refer to Figure 5 for the training curves of mAP50, mAP50-95, precision, and recall:

e mAP50: Progressively increases and stabilizes around 0.9, reflecting high accu-
racy in detecting road signs at a 50% IoU threshold.

e  mAP50-95: Improves more gradually, stabilizing near 0.7, demonstrating robust-
ness across varying IoU thresholds.

e  Precision: Fluctuates initially but trends upward, indicating fewer false positives
over time.

e Recall: Increases steadily to about 0.8, reflecting the model’s ability to detect
actual positive instances effectively.
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Interpretation: The consistently high mAP50 confirms the model’s strong detection
capabilities, while the gradual rise in mAP50-95 indicates good performance even with
more stringent IoU thresholds.

2. Box Loss

Refer to Figure 6 for the box loss curve:

e  The box loss decreases sharply during the initial epochs before stabilizing.
e Lower values imply more precise bounding box predictions.

Interpretation: As training progresses, YOLOv8x refines its bounding box coordinates,
leading to improved localization of road signs.

3. Object Loss

Refer to Figure 7 for the object loss curve.

e  Object loss drops rapidly in early epochs and then plateaus.
e Lower values indicate improved capability in distinguishing objects from
the background.

Interpretation: YOLOv8x becomes increasingly effective at differentiating road signs
from the surrounding environment, boosting overall detection performance.

4.2.2. YOLOVSs for Road Surface Damage Detection

1. Accuracy Metrics

Refer to Figure 8 for the training curves of mAP50, mAP50-95, precision, and recall.

e  All metrics show steady improvement, indicating the model’s growing profi-
ciency in detecting road surface damages.

Interpretation: As with YOLOv8x, YOLOv8s demonstrates robust and consistent
accuracy improvements, verifying its suitability for identifying damaged road surfaces.

2.  Box Loss

Refer to Figure 9 for the box loss curve.
e  The box loss decreases over time, highlighting enhanced precision in bounding
box predictions for damaged regions.

Interpretation: The model learns to localize damaged sections more accurately with
each epoch.

3. Object Loss

Refer to Figure 10 for the object loss curve.

e Like YOLOVS8X, the object loss shows a downward trend, reflecting improved
discrimination between damaged and undamaged surfaces.

Interpretation: YOLOv8s becomes more reliable at identifying genuine damage, re-
ducing false positives on intact road surfaces.

4.3. CNN for Road Sign Classification

After detecting road signs, we employed a CNN to classify them into specific cate-
gories. Refer to Figure 11 for the evolution of training and validation metrics (accuracy,
precision, and recall):

e  Training Accuracy (blue line): Rises rapidly in the early epochs and converges at
around 90%, indicating effective feature learning on the training set.

e  Precision (green line): Remains consistently high, demonstrating the model’s ability to
correctly identify positive instances.
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Validation Metrics (orange, red, pink lines): Closely follow the training metrics, reflect-
ing stable model performance and strong generalization.

Interpretation:

The CNN attains approximately 90% classification accuracy on the validation set,

underscoring its robust performance in identifying various road sign types.

4.4. Fiqures and Their Descriptions

Below are placeholders for each figure referenced in the above subsections. Insert the

actual images and descriptions once they are ready.

Figure 5 presents the accuracy metrics of the YOLOv8x model during training, evalu-

ated on the validation set. The key metrics displayed include the following:

Model accuracy measured on validation set

mAP50 (dark blue line): This metric steadily increases, stabilizing around 0.9, indicat-
ing high accuracy in detecting road signs at a 50% IoU threshold.

mAP50-95 (orange line): Shows a gradual increase over epochs, stabilizing near 0.7,
demonstrating the model’s robustness across varying IoU thresholds.

Precision (cyan line): Initially fluctuates but trends upwards, suggesting improved
true positive detections while reducing false positives.

Recall (pink line): Shows a steady upward trend, reaching around 0.8, confirming the
model’s effectiveness in capturing actual positive instances.

@ 2P50(8) @ maPs0-95(8) (@ precision(s) (@) recall(B)

I R A U RIS

PRERSA PSSO I PR RSL PRI LSOV PR L PSP D PP P

Figure 5. YOLOv8Xx accuracy.

The graph highlights how the YOLOv8x model progressively improves its accuracy

across different IoU thresholds, making it a reliable solution for road sign detection.

Figure 6 illustrates the box loss values for the YOLOv8x model during training, show-

ing the difference between predicted and actual bounding boxes for detected objects. The
two curves represent the following:

Training Box Loss (dark blue line): The loss decreases significantly within the initial
epochs and continues to decline gradually, indicating that the model is learning to
predict bounding box coordinates more accurately.

Validation Box Loss (orange line): Initially higher, this value also decreases over time,
though it stabilizes at a slightly higher level than the training loss.
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Difference between predicted and true boxes

O R D P PR DD P D DO D DD G PRP O D PEROAA O DS P PE DD PP P

@tan @2l

Figure 6. YOLOv8x box loss.

The declining trend in both training and validation box loss suggests that the model is
effectively refining its bounding box predictions, leading to improved localization of road
signs over successive training epochs.

Figure 7 presents the object loss values for the YOLOv8x model during training, which
measures the model’s ability to correctly distinguish between background and objects of
interest. The two curves indicate the following;:

e  Training Object Loss (dark blue line): The loss decreases significantly in the early
epochs and continues to decline steadily, demonstrating improved model confidence
in object detection.

e  Validation Object Loss (orange line): Initially higher, this loss follows a similar decreas-
ing trend, though it stabilizes slightly above the training loss.

The detected objects

20

PP PR PO RSP PRSI STELEIPNL LTRSS PP ® DS P PP P

Figure 7. YOLOv8x object loss.

The overall downward trend in object loss confirms that YOLOv8x is learning to
better differentiate road signs from the background, leading to more reliable and accurate
detections over successive training epochs.

Figure 8 presents the accuracy metrics of the YOLOvS8s model during training, evalu-
ated on the validation set. The key metrics displayed include the following:

e  mAP50 (dark blue line): This metric gradually increases and stabilizes around 0.65,
indicating a reasonable level of accuracy in detecting road surface damages at a
50% IoU threshold.

e  mAP50-95 (orange line): Exhibits a slower but steady improvement, stabilizing around
0.35, reflecting the model’s performance across a broader range of IoU thresholds.

e Precision (cyan line): Shows fluctuations but follows an overall increasing trend,
indicating progressive improvements in reducing false positives.
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e  Recall (pink line): Consistently trends upwards, stabilizing around 0.55, confirming
the model’s ability to detect most instances of road damage.

@ m1P50B) @ mAP50-95(8) (@ precision(s) (@) recall(B)

Figure 8. YOLOVS8s accuracy.

The graph demonstrates that YOLOVSs effectively improves its accuracy over training
epochs, successfully detecting road surface damages while adapting to different IoU thresholds.

Figure 9 illustrates the box loss evolution during training for the YOLOv8s model,
which quantifies the accuracy of the model’s bounding box predictions for detected road
surface damages. The trends observed indicate a clear and steady improvement in localiza-
tion precision:

e  Training Box Loss (dark blue line): Shows a consistent downward trend, demonstrating
that the model is progressively learning to refine its bounding box predictions and
more accurately delineate damaged road areas.

e Validation Box Loss (orange line): Initially fluctuates but gradually stabilizes,
remaining slightly higher than the training loss. This behavior suggests that
while the model continues to improve, it maintains a balance between training
and real-world generalization.

0
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Figure 9. YOLOvS8s box loss.

The overall reduction in box loss confirms that YOLOvS8s effectively optimizes its
bounding box localization, ensuring precise and reliable detection of road surface damages
across different conditions.

Figure 10 illustrates the object loss progression during training for the YOLOv8s model,
which measures how well the model differentiates between damaged and undamaged road
surfaces. The trends observed indicate a significant improvement in the model’s ability to
correctly classify areas of interest:

e  Training Object Loss (dark blue line): Displays a steady decline, indicating that the
model is continuously refining its ability to distinguish road surface damages from
the background.
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e  Validation Object Loss (orange line): While initially higher, it gradually stabilizes
over time, suggesting that the model maintains its capability to generalize to unseen
validation data.

@an @ al
Figure 10. YOLOv8s object loss.

The overall decreasing trend in object loss confirms that YOLOvVS8s is becoming in-
creasingly effective at detecting road damage, reducing classification errors, and enhancing
detection reliability.

Figure 11 presents the evolution of key performance metrics for the CNN model
during training, showcasing both training and validation results. The trends indicate high
classification accuracy and stability across epochs:

e  Training Accuracy (blue line): Rapidly increases and stabilizes around 90%, confirming
the model’s strong learning capability.

e Validation Accuracy (yellow line): Closely follows the training accuracy, indicating
robust generalization on unseen data.

e  Training Precision (green line): Maintains a high and stable value, demonstrating the
model’s effectiveness in correctly classifying positive instances.

e  Validation Precision (red line): Shows some fluctuations but remains consistently high,
reinforcing the model’s reliability in classification.

e  Training Recall (dark purple line): Approaches 1.0, ensuring minimal false negatives.

e  Validation Recall (light purple line): Also remains high, further confirming the model’s
ability to correctly identify road sign classes.

Training and Validation Metrics
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Figure 11. CNN training and validation metrics.
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The figure highlights the CNN's strong classification capabilities, achieving approxi-
mately 90% accuracy while maintaining reliable precision and recall scores. This perfor-
mance confirms the model’s effectiveness in correctly classifying detected road signs.

4.5. Summary of Findings

YOLOvV8x (Road Sign Detection): Achieves high mAP50 (~0.9), reflecting strong
detection capabilities. Box loss and object loss trends confirm efficient learning for both
localization and foreground /background separation.

YOLOvS8s (Road Surface Damage Detection): Shows steady improvement in accu-
racy metrics, with reduced box and object loss over time, confirming its effectiveness in
identifying damaged road surfaces.

CNN (Road Sign Classification): Reaches approximately 90% accuracy, indicating
reliable classification of road signs once they are detected by the YOLO models.

Overall, the proposed models demonstrate promising performance for detecting and
classifying road signs, as well as identifying road surface damage. Future work will focus on
expanding the dataset, refining hyperparameters, and exploring advanced regularization
techniques to further enhance performance.

Tables 1-3 clearly summarize the achieved results:

Table 1. Final performance metrics for YOLOv8x (road sign detection).

Metric Final Value (Approx.)
mAP (50) 0.92
mAP (50-95) 0.78
Precision 0.88
Recall 0.85
Box Loss (Training) 0.30
Box Loss (Validation) 0.45
Object Loss (Training) 0.70
Object Loss (Validation) 0.90

Table 2. Final performance metrics for YOLOVSs (road surface damage detection).

Metric Final Value (Approx.)
mAP (50) 0.75
mAP (50-95) 0.35
Precision 0.90
Recall 0.80
Box Loss (Training) 0.70
Box Loss (Validation) 1.80
Object Loss (Training) 0.80
Object Loss (Validation) 1.60

Table 3. Final performance metrics for CNN (road sign classification).

Metric Training (Approx.) Validation (Approx.)
Accuracy 0.95 0.88
Precision 0.85 0.80

Recall 1.00 0.90
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5. Challenges, Solutions, and Integration with Municipal
Maintenance Applications

In this section, we report the practical issues that were encountered during the design
and implementation of our system and the implemented solutions to such issues. Then, we
show how the trained model has been integrated with the tools available to the municipality.

The first issue in the application is the imbalance in the dataset, as most images are
classified as “not damaged”. This was managed by implementing the Focal Loss function,
which helps to down-weight the loss assigned to well-classified examples, thus focusing
more on the difficult, minority class. We also applied CutOut data augmentation to enhance
the robustness of the model.

Another issue with the classification of a sign to be damaged or not is that often it
is required to identify subtle details such as small stickers or scratches. To address this,
we incorporated attention mechanisms (Spatial and Channel Attention) within the CNN
architecture, enabling the model to focus on regions of interest within each image.

Furthermore, we had to consider that the images in the dataset varied significantly in
terms of lighting conditions, angles, and weather. To counteract this, we applied extensive
data augmentation techniques such as rotations, shifts, and brightness variations. Addition-
ally, we included a diverse set of images in the dataset to improve model generalization.

We also observed signs of overfitting in the model during training. To mitigate this,
we employed Dropout layers and BatchNormalization, and implemented early stopping
based on validation performance to prevent the model from memorizing the training data.

Finally, the training of such deep learning models on large datasets requires sig-
nificant computational power. We leveraged High-Performance Computing (HPC) and
cloud resources to accelerate the training process, making use of powerful GPUs and
distributed computing.

Model Integration with the Municipal Maintenance Applications

The software has been developed so that it can be seamlessly integrated into a mo-
bile application tailored for municipal maintenance operators. Through this application,
maintenance teams can access real-time information on road and traffic sign anomalies
detected by the system. The key feature of the application is the use of georeferencing
to display layers of defective road surfaces and traffic signs on a GIS map, allowing for
immediate visualization and action planning. Our approach combines top-down and
bottom-up strategies. In addition to centralized monitoring, we encourage citizen reports,
which contribute to the dataset of damaged traffic signs through a mobile application.
These reports help balance the dataset classes and improve the accuracy and precision
metrics of the convolutional neural network (CNN) through a continuous training process.

The application is designed with an intuitive user interface, enabling users to filter
anomalies by type (e.g., potholes, damaged signs). As shown in Figure 12, the dashboard
displays icons for different types of anomalies:

e Road Damage: Potholes, cracks, and other surface issues.
e  Traffic Sign Damage: Defaced, rusty, or obstructed signs.

Each icon on the map provides detailed information about the anomaly, including its
exact location, description, and images captured by the detection system.

Furthermore, the solution is designed to be easily replicable across municipalities of
different sizes and can be implemented on smartphones. By leveraging cloud computing
and scalable data storage, the system can manage large volumes of data and provide
real-time updates to maintenance teams. This adaptability makes it suitable for application
in any urban area, allowing municipalities to efficiently monitor and maintain their road
infrastructure. Users can submit reports of damaged traffic signs, including GPS location
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and an image of the sign. This information is used to update the dataset in real time and
prioritize maintenance interventions, ensuring a timely and efficient response.
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Figure 12. Dashboard showing georeferenced layers of road and traffic sign anomalies in the urban

area of Campobasso, as explained by warning symbols.
The application is also designed to include additional features in the future, such as
predictive maintenance algorithms, to analyze historical data to forecast potential road
and traffic sign issues before they occur. This will enable municipalities to transition from
reactive to proactive maintenance strategies, reducing costs and improving road safety.

6. Conclusions
In this study, we successfully developed and trained YOLO models for road sign
detection and CNN models for classifying road signs as damaged or not damaged. Our
approach utilized data augmentation and cutout regularization techniques to enhance
the robustness and generalization of our models. Computational experiments conducted
on Google Colab and Reevo servers demonstrated the effectiveness of our methods in

handling large datasets and complex computations.
For future work, we propose the following extensions to enhance the capabilities and

applications of our models:

e Incorporating Retroreflectivity Factors: To further refine the classification of road signs,
we plan to include retroreflectivity factors in our analysis. This involves detecting
and classifying faded or discolored signs, which can significantly impact road safety.
Developing models that can identify such signs will be crucial for timely maintenance

and replacement.
Leveraging Generative Al for Data Labeling: The process of manually labeling large
datasets is time-consuming and prone to human error. By employing generative

Al techniques, we can automate the labeling process, thereby reducing the time and
effort required. This will also enable us to handle larger datasets more efficiently.

By implementing these extensions, we aim to improve the accuracy and reliability of

road sign detection and classification systems. This will contribute to better road safety and

maintenance practices, ultimately benefiting road users and maintenance authorities.
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