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Abstract: Human activity recognition (HAR) systems are essential in healthcare, surveil-
lance, and sports analytics, enabling automated movement analysis. This research presents
a novel HAR system combining graph structures with deep neural networks to capture both
spatial and temporal patterns in activities. While CNN-based models excel at spatial feature
extraction, they struggle with temporal dynamics, limiting their ability to classify complex
actions. To address this, we applied the Firefly Optimization Algorithm to fine-tune the
hyperparameters of both the graph-based model and a CNN baseline for comparison.
The optimized graph-based system, evaluated on the UCF101 and Kinetics-400 datasets,
achieved 88.9% accuracy with balanced precision, recall, and F1-scores, outperforming the
baseline. It demonstrated robustness across diverse activities, including sports, household
routines, and musical performances. This study highlights the potential of graph-based
HAR systems for real-world applications, with future work focused on multi-modal data
integration and improved handling of occlusions to enhance adaptability and performance.

Keywords: human activity recognition (HAR); deep learning; firefly optimization
algorithm; graph-based models; spatial–temporal analysis

1. Introduction
Human activity recognition (HAR) has emerged as a critical area of research within the

domain of computer vision and machine learning, owing to its vast potential applications
in healthcare, smart surveillance, and human–computer interactions. HAR aims to identify
and classify human activities based on sensor data or video streams, thereby enabling
machines to interpret and respond to human actions in real time. HAR systems can provide
valuable insights for various intelligent applications. This technology has been widely
applied in fields such as home behavior analysis, video surveillance, gait analysis, and
gesture recognition.

HAR systems rely on data from active sensors or passive sensors. Active sensors emit
energy in the form of electromagnetic waves or sound to detect objects or measure environ-
mental conditions. The sensors then analyze the reflected signals to gather data. On the
other hand, passive sensors do not emit their own signals but instead detect natural energy
or signals present in the environment. These sensors measure ambient conditions or capture
data from external sources of energy, such as light or sound. Examples of active sensors are
accelerometer, gyroscope, radar, lidar, and Kinect sensors. Optical cameras, infrared cameras,
microphones, and environmental sensors are considered examples of passive sensors.

Due to the rapid development of sensor technology and ubiquitous computing, sensor-
based HAR has gained popularity, offering the advantage of privacy protection. Active
sensor-based methods have demonstrated considerable success but often require users to
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wear multiple sensors, which can be inconvenient and intrusive. Moreover, active sensor-
based approaches are susceptible to issues like sensor misalignment and varying sensitivity,
which can impact the accuracy of activity recognition. The discomfort associated with
wearing sensors and the inherent limitations of sensor power necessitate the exploration of
alternative methods. Passive sensor-based methods are considered the most comfortable
HAR method since there is no direct interaction with humans. However, passive sensors
may provide less precise or detailed data compared to active sensors, which can be a
limitation in applications requiring high accuracy or detailed analysis.

HAR technologies can be broadly categorized into two types according to their location:
approaches based on fixed sensors and mobile-based approaches.

Fixed sensor-based methods obtain information from sensors mounted at a specified
position, including acoustic sensors, radars, and other ambient-based sensors. Among these,
camera-based methods are the most popular, employing techniques such as background
subtraction, optical flow, and energy-based segmentation to extract features. For example,
image processing methods based on Kinect sensors can acquire depth image features of moving
targets. Although these activity monitoring methods can provide high recognition accuracy,
they are not suitable for many indoor environments, especially where privacy is a concern.

The other category of activity recognition methods involves using mobile sensors. In
these methods, information from various behaviors is collected using dedicated body-worn
motion sensors, such as accelerometers, gyroscopes, and magnetometers. These sensors de-
tect changes in acceleration and angular velocity corresponding to human motion, allowing
for the inference of activities. The miniaturization and flexibility of sensors enable individ-
uals to wear or carry mobile devices embedded with various sensing units, distinguishing
this approach from fixed sensor-based methods. Mobile sensors are characterized by low
cost, low power consumption, high capacity, miniaturization, and reduced dependence on
surroundings. Consequently, activity recognition based on mobile sensors has garnered
widespread attention due to its portability and high acceptance in daily life. However,
activity recognition using mobile sensors faces challenges such as high power consump-
tion, user comfort issues, and privacy concerns. Environmental interference, inconsistent
sensor placement, and lack of contextual awareness further affect accuracy. Large data
volumes and sensor calibration issues also pose difficulties. Ongoing research is needed to
improve reliability and user acceptance through advanced algorithms and integration with
additional data sources. These limitations underscore the necessity for ongoing research
to enhance the accuracy, reliability, and user acceptance of mobile sensor-based activity
recognition systems by integrating additional data sources, advancing sensor technology,
and developing sophisticated algorithms.

Recognizing the limitations of traditional sensor-based methods, researchers have
turned to deep learning techniques to improve the performance and robustness of HAR
systems. Deep learning techniques have revolutionized HAR by leveraging raw data from
video streams captured by surveillance cameras. These methods utilize convolutional
neural networks (CNNs) or Recurrent Neural Networks (RNNs) to automatically extract
and learn features from video data, eliminating the need for manual feature engineering.
This approach has proven particularly effective in recognizing complex activities and
distinguishing between normal and anomalous behaviors, making it highly applicable in
areas such as elderly care, autism monitoring, and public safety. The automatic feature
extraction capability of deep learning models significantly reduces the dependency on
domain experts and noisy data and enhances the scalability of HAR systems.

Despite the advancements brought by deep learning, challenges remain in effectively
capturing the spatial and temporal relationships inherent in human activities. Recognizing
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human activities from video data requires understanding not only the individual frames
but also the transitions between frames, which encode crucial temporal information.

In this research, we propose a novel HAR system that integrates graph structures
and deep neural networks to address these challenges. By representing human joint
movements as a graph, where each node corresponds to a joint and edges represent
the connections between them, the system can capture the intricate patterns of human
motion more comprehensively. This graph-based representation allows for a more nuanced
understanding of the spatial relationships and temporal dynamics involved in human
activities, which is of paramount importance for any HAR system.

The primary objective of this research is to investigate the effectiveness of using graph
structures derived from human joint 3D trajectories in enhancing HAR. The system will
be implemented using the OpenPose algorithm to determine the optimal approach for
recognizing actions. OpenPose is a state-of-the-art method for human pose estimation that
provides precise joint location data, which can be used to construct graph representations
of human activities. By focusing on the spatial–temporal dynamics of joint movements,
this research aims to contribute a robust and efficient method for HAR, paving the way for
more intuitive and less invasive activity recognition solutions.

Furthermore, the proposed system aims to address several key challenges in HAR,
such as recognizing activities in naturalistic environments, handling occlusions, and dif-
ferentiating between similar actions. By leveraging the graph structure, the system can
maintain the spatial integrity of joint positions, even in the presence of occlusions, and
distinguish between activities that may appear similar in individual frames but differ in
their overall movement patterns. The integration of graph structures with deep neural
networks represents a promising advancement in HAR, offering improved accuracy and
applicability in real-world scenarios. This research not only aims to enhance the technical
aspects of activity recognition but also to contribute to the development of intelligent
systems that can seamlessly integrate into daily life, providing safety and support without
compromising user comfort or privacy. By providing reliable and efficient HAR solutions,
the outcomes of this research have the potential to impact various domains, including
healthcare monitoring, smart home systems, and public safety.

2. Literature Review
The primary goal of HAR is to accurately identify and classify human activities based

on data collected from various sensors. As mentioned before, HAR has largely relied on
active or passive sensor-based methods, which involve the use of fixed or mobile sensors
to imitate human movements. These methods have paved the way for understanding the
complexities of human activity but come with their own set of limitations.

With the advancement of deep learning techniques, the field of HAR has witnessed a
paradigm shift. Deep learning models, particularly CNNs and RNNs, have demonstrated
remarkable success in learning complex feature representations from raw sensor data.
These models have significantly improved the accuracy and robustness of HAR systems.

2.1. Active Sensor-Based HAR

In the early days of human activity recognition research, the field was primarily
carried out through manual observation, where researchers would closely monitor and
meticulously document the activities of study participants. This manual method, though
direct, required significant time and effort from the researchers and was prone to subjectivity
and inconsistencies inherent in human observation. The emergence of wearable sensor
technologies in the late 20th century represented a pivotal moment in the evolution of this
research area, enabling a more objective and quantifiable approach to activity recognition.
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The introduction of devices like accelerometers, radars, lidars, and gyroscopes allowed
researchers to capture detailed data on movement and orientation, providing a new lens
through which to analyze human behaviors. The first sensor designed for this purpose was
introduced in [1]. The authors discussed the development of a device designed to record
physical activity data in an ambulatory setting. This device is capable of tracking and
storing various movements throughout the day, which can then be analyzed to categorize
different types of actions in daily life. The waveforms produced by the sensors contain
hidden information about the character’s activity. As a result, researchers often use signal-
processing techniques to uncover the latent features embedded in these waveforms. The
data are first preprocessed using filters and, generally, the windowing technique is used
to perform feature extraction. Then, a signal transformation technique is applied for
HAR systems, such as Fourier transform [2], wavelet transform [3–5], and discrete cosine
transformation [6,7]. The extracted features were initially utilized with early methods that
were primarily heuristic-based. These approaches involved developing rules and applying
statistical methods to classify activities [8].

It is noteworthy that most often, the majority of sensor-based human activity recog-
nition systems have been extensively applied within Internet of Things (IoT) environ-
ments [3,6,9–11]. This prevalence is driven by the growing demand for intelligent and
responsive systems capable of monitoring and interpreting human activities in real time.

While sensor-based human activity recognition (HAR) systems offer numerous ad-
vantages, they also come with several limitations. Sensor accuracy and reliability can vary
depending on environmental factors, sensor placement, and quality, leading to potential
errors in activity detection. Battery life and energy consumption are also critical issues,
particularly for wearable devices, which require regular charging and maintenance. These
limitations highlight the need for careful consideration in the design and implementation
of sensor-based HAR systems.

2.2. Passive Sensor-Based HAR

Unlike active sensors that require active participation or feedback from users, pas-
sive sensors gather data without explicit user input, thereby providing a more seamless
and unobtrusive experience. These methods rely on sensors that monitor environmental
changes without actively emitting signals, thus preserving user privacy and comfort. Pas-
sive sensors used in human activity recognition include various types, such as surveillance
cameras, ambient light sensors, and barometric pressure sensors.

One common passive sensor used in HAR is the surveillance camera. Cameras capture
visual data that can be analyzed to identify and classify various activities based on body
movements, posture, and interactions with objects [12]. These visual data, when processed
using computer vision algorithms, provide detailed insights into complex activities, such
as distinguishing between different physical exercises or detecting abnormal behaviors.
Moreover, HAR systems that incorporate data from cameras can revolutionize education,
health monitoring, sports, and security [13].

Another type of passive sensor commonly utilized in HAR systems is the ambient light
sensor. These sensors detect changes in lighting conditions within an environment, which
can be indicative of certain activities. For instance, a sudden change in light levels might
suggest someone entering or leaving a room or the start and end of different tasks based on
lighting patterns. These types of data can complement visual data from cameras, providing
a more comprehensive understanding of the context in which activities occur [14,15].

Once the sensor data are acquired, it is necessary to adopt an appropriate approach to
analyze the data in order to extract the latent information and to identify the action correctly.
Deep learning methods are among the most widely used approaches, having established
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themselves as a prevailing direction in machine learning, outcompeting conventional
methods in several computer vision tasks. Deep learning algorithms can extract features
automatically from raw data, removing the reliance on handcrafted feature detectors and
descriptors. Among them, convolutional neural networks (CNNs), Recurrent Neural
Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Transformers are
some of the most widely used deep learning techniques for HAR systems.

Ref. [16] proposed an optical flow-based two-stream CNN that overcomes the compu-
tational inefficiency of optical flow. It substitutes optical flow with motion vectors, which
are computationally less expensive to compute and can be directly obtained from the video
stream. In an effort to alleviate the quality deterioration brought about by motion vectors,
the authors learned deeply transferred Motion Vector CNNs (DTMV-CNNs), employing a
knowledge transfer strategy from optical flow CNNs. It maintains competitive accuracy
and considerably accelerates the speed with frame rates over 390 fps, which is great for
real-time circumstances. The framework was evaluated on standard datasets like UCF101,
HMDB51, and THUMOS14, and achieved state-of-the-art accuracy and efficiency.

Ref. [17] introduced ActionXPose, a new pose-level HAR algorithm capable of per-
forming real-time HAR in everyday scenarios by CCTV-like cameras. The approach utilizes
2D poses extracted using OpenPose to classify human actions while addressing challenges
such as occlusions and missing data. ActionXPose extracts both low- and high-level fea-
tures from body poses, which are processed using a Long Short-Term Memory Neural
Network (LSTM) and a 1D convolutional neural network (CNN) for classification. The
study also introduced a new dataset, ISLD, specifically designed for realistic pose-level
HAR, and demonstrated the robustness of ActionXPose through extensive experiments
settings. The method achieves state-of-the-art performance, showing high accuracy and
robustness across various datasets.

Ref. [18] designed a 3D convolutional neural network (3DCNN) human activity recog-
nition (HAR) framework based on video. In contrast to classical 2D CNNs, which only
consider spatial information, the 3DCNN takes advantages of temporal characteristics
of input video sequences and generates a volumetric 3D activation map including spa-
tiotemporal information. The optimal architecture includes several types of layers: 3D
convolutions, MaxPooling3D, batch normalization, and fully connected layers, resulting
in high precision and robustness. On benchmarks like UCF YouTube Action and UCF101,
their test accuracies reached a whopping 85.2% and 79.9%. This model surpassed prior
motion-, static-, and hybrid-based architectures.

In [19], the authors proposed a computationally efficient HAR method based on
skeleton data generated by OpenPose. The combined CNN and LSTM Network presented
an efficient model that only requires skeleton data and does not need to convert the data
into RGB images; it achieved state-of-the-art accuracy of 94.4% on the MCAD dataset and
91.67% on the IXMAS dataset. This approach has practical applications in fields such as
video surveillance, human–computer interaction, and healthcare.

Ref. [20] proposed a unified framework of CNNs and Vision Transformers (ViTs) for
HAR. The system is based on the sequence of the MoveNet to extract the spatial features of
the image and then shape the next convolution image features with the help of ResNet-18,
EfficientNet, and other pre-trained models. The class learns spatiotemporal dependencies
and achieves 87.50% and 83.41% accuracy on UCF 101 and UCF 50, respectively. The study
showed that CNNs are usually great at improving model robustness and efficiency, while
Transformers can address some challenges associated with the actions like action ambiguity
and misclassification of similar motions.

Ref. [21] addressed occlusion in HAR, which is often perceptively omitted in the
literature conducted in ideal conditions. They introduced a technique that replicates
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occlusions by dropping the skeletal joints for specific body parts and trains a CNN using
both completely visible and occluded data samples. Utilizing datasets like PKU-MMD and
NTU-RGB+D, their results demonstrated how occluded samples in training significantly
improved recognition accuracy. Their research highlights the need to address real-life
challenges, such as occlusion, in developing more resilient HAR systems.

Despite the advantages of passive sensor-based HAR systems, several challenges
remain. One major concern is the variability in data quality due to environmental factors,
such as lighting changes, weather conditions, and obstructions that can affect sensor
readings. For example, the use of cameras raises significant privacy concerns and requires
substantial data storage and computational resources to process the visual information
efficiently [22]. As a result, future research in passive sensor-based HAR should focus on
the ethical implications of using passive sensors, particularly regarding privacy concerns
and the potential for misuse in surveillance [23].

3. Proposed Methodology
The proposed human activity recognition (HAR) system, as illustrated in Figure 1, is

structured to process data from input to output through a series of specialized components.
The process begins with a surveillance camera that captures video footage from public
spaces. This video is then processed frame-by-frame in the frame preprocessing stage,
where each frame is enhanced to suppress distortions and improve image clarity. Following
preprocessing, the system uses pose estimation techniques to detect human joints, identify-
ing key points on the body such as the head, shoulders, and knees. These joints are then
tracked across consecutive frames to monitor their positions over time, which is essential
for analyzing the dynamics of human activities.
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Subsequently, the system constructs a graph from the detected joints in each frame,
where a node represents a specific joint and edges denote the connections between the
same joint in two consecutive frames. This graph-based representation encapsulates both
spatial relationships and temporal dynamics, offering a detailed understanding of human
movement. Finally, a convolutional neural network (CNN) is employed to analyze these
graphs. The CNN, trained on various patterns in the graph data, classifies the observed
activities by interpreting the spatial–temporal dynamics inherent in the joint movements.
This architecture is designed to efficiently and accurately recognize human activities, mak-
ing it applicable in fields like public safety, healthcare monitoring, and smart surveillance.
By integrating graph structures with deep learning techniques, the system aims to deliver
robust and reliable activity recognition, even in complex and dynamic environments.

3.1. Camera Raw Data

The HAR system initiates its process with a surveillance camera that captures video
footage from public spaces, providing continuous video streams as the primary input data.
For HAR systems, there are mainly two types of datasets: sensor-based and vision-based
datasets. The methodology applied in this research considers vision-based datasets only.
Vision-based datasets exist for two types of actions that are static and dynamic actions. In
static-actions datasets, a description of the action using orientation and limb position in
space can be found, while dynamic action datasets are related to videos that describe the
movement of static activities [24].

Accurate recognition of human actions in videos is challenging due to variations in
background, lighting, and the dynamic nature of human movements. To address these
challenges and robustly evaluate the performance of action recognition algorithms, lever-
aging multiple datasets is essential. This research aims to measure the performance of our
proposed algorithm by using similar actions from two well-known datasets: UCF101 [25]
and Kinetics-400 [26]. By focusing on common actions across these datasets, we can ensure
a fair comparison and comprehensive assessment of our algorithm’s capabilities as well as
enhance the generalizability of the recognition model.

The UCF101 dataset consists of 101 action categories, encompassing 13,320 video
clips, mainly sourced from YouTube. It provides a rich variety of sports and everyday
activities captured in different environments. The Kinetics dataset, particularly in its
Kinetics-400 version, contains 400 action categories and approximately 306,245 video clips
from YouTube, offering an extensive collection of action scenarios. These datasets are
widely used benchmarks in the field, allowing for rigorous testing and validation of action
recognition models.

As illustrated in Table 1, we identified 59 common actions across the UCF101 and
Kinetics datasets with a total of 63,890 videos. The number of videos used from the UCF101
dataset was 7864, representing approximately 59% of the dataset, while 56,026 videos
were used from the Kinetics-400 dataset, representing approximately 18.3% of the dataset.
The selection of 59 common actions between the UCF-101 and Kinetics-400 datasets en-
sures a consistent basis for evaluating the proposed HAR system’s performance across
different settings and environments. This approach allows for a comprehensive exami-
nation of the system’s ability to generalize across datasets and recognize activities with
inherent variability.
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Table 1. List of similar actions across the UCF101 and Kinetics datasets used to evaluate the perfor-
mance of the proposed action recognition algorithm.

Similar Actions 1 Similar Actions 2 Similar Actions 3 Similar Actions 4
Archery
(1292)

Cutting In Kitchen
(1589)

Knitting
(814)

Salsa Spins
(1281)

Baby Crawling
(1282)

Diving
(1118)

Long Jump
(962)

Shaving Beard
(1142)

Band Marching
(1301)

Drumming
(1069)

Lunges
(886)

Shotput
(1131)

Basketball
(1188)

Field Hockey
Penalty
(1043)

Mopping Floor
(716)

Skateboarding
(1259)

Basketball Dunk
(1236)

Floor Gymnastics
(1268)

Playing Guitar
(1295)

Skiing
(612)

Bench Press
(1266)

Frisbee Catch
(1186)

Playing Piano
(796)

Skijet
(1240)

Biking
(1186)

Golf Swing
(975)

Playing Violin
(1242)

Sky Diving
(615)

Blowing Candles
(1259)

Haircut
(788)

Playing Cello
(1245)

Soccer Juggling
(631)

Body Weight Squats
(1260)

Hammer Throw
(1298)

Playing Flute
(630)

Surfing
(877)

Bowling
(1233)

High Jump
(1077)

Pole Vault
(1133)

Tai Chi
(1170)

Boxing Punching Bag
(646)

Horse Riding
(1295)

Pull Ups
(1221)

Throw Discus
(1234)

Breaststroke
(934)

Hula Hoop
(1254)

Punch
(1310)

Trampoline Jumping
(809)

Brushing Teeth
(1280)

Javelin Throw
(1029)

Push Ups
(716)

Volleyball Spiking
(920)

Clean and Jerk
(1014)

Juggling Balls
(1044)

Rock Climbing Indoor
(1275)

Walking With A Dog
(1268)

Cliff Diving
(1231)

Kayaking
(1287)

Rope Climbing
(532)

The decision to use only the 59 common actions shared between the UCF-101 and
Kinetics-400 datasets, despite the fact that each dataset contains a greater number of actions,
was made to ensure consistency and comparability in the evaluation. Using all the actions
from both datasets would have introduced variability and imbalance, as each dataset has
many unique activities that are not present in the other. This inconsistency could lead to
biases when comparing the model’s performance, making it difficult to establish a fair
benchmark. By focusing solely on the common actions, this study maintains a standardized
and uniform evaluation framework that allows for a more direct comparison of model
effectiveness.

Additionally, limiting the number of actions helps mitigate the risk of overfitting.
When training on an excessive and potentially unbalanced set of activities, the model may
learn specific patterns that do not generalize well beyond the dataset. Such overfitting
is particularly likely when dealing with niche or highly specific actions that are over-
represented in one dataset but absent in the other. By focusing on the common actions, the
model is trained on a balanced set of movements that are more likely to generalize well,
enhancing the applicability of the HAR system to a broader range of real-world situations.

In addition, in order to report results for comparison with other state-of-the-art meth-
ods, the proposed approach was also tested on the full UCF-101 dataset to examine the
generalization and scalability of the proposed method. This expanded perspective sheds
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light on the overall performance of the model across a wide spectrum of actions and
highlights its potential in discussing activity recognition in realistic scenarios.

3.2. Frame Preprocessing

Given the diverse range of videos in the dataset used for this research, each frame
must undergo preprocessing to standardize the visual quality. This involves adjusting
illumination and contrast to ensure consistent frame quality. Preprocessing not only
enhances frame quality but also reduces training time and improves model accuracy. In
this research, several preprocessing techniques are applied, including mean normalization,
histogram equalization, and data rescaling. These techniques help to normalize the data
and enhance the overall effectiveness of the HAR system.

3.2.1. Mean Normalization

Mean normalization is a preprocessing technique used to standardize data by adjusting
their scale and distribution. The equation for mean normalization is Equation (1).

F(x) = (x − µ)/R (1)

where x represents the original data point, µ is the mean of the dataset, and R is the range,
calculated as the difference between the maximum and minimum values in the dataset.

This technique is particularly useful in reducing the influence of outliers and ensuring
that the data are centered around zero, which can enhance the performance of machine
learning models by improving convergence during training.

3.2.2. Histogram Equalization

Histogram equalization is a technique used to enhance the contrast of an image by re-
distributing its intensity values. The process is mathematically represented by Equation (2).

Sk =

(
L − 1
MN

) k

∑
i=0

ni (2)

where Sk denotes the new intensity value for the k-th pixel in the equalized image. In
this equation, L represents the total number of possible intensity levels, M and N are the
dimensions of the image, indicating the total number of pixels, and ni is the number of
pixels with the intensity value i in the original image. The term ∑k

i=0 ni calculates the
cumulative distribution function (CDF) up to intensity level k. By adjusting the pixel
values based on the CDF, histogram equalization spreads out the intensity values over
the available range, thus enhancing the contrast of the image. This technique is especially
useful for images with poor contrast, allowing more details to be visible by broadening the
range of pixel intensities.

3.2.3. Data Rescaling

Data rescaling, commonly referred to as min–max normalization, is a method used to
adjust the range of data values to a specific scale, typically between 0 and 1 or −1 and 1.
This technique is represented by Equation (3).

x′ = (x − xmin)/(xmax − xmin) (3)

where x′ is the normalized value, x is the original data value, and xmin and xmax are the
minimum and maximum values of the dataset, respectively. By applying this formula, the
data are scaled so that the minimum value becomes 0 and the maximum value becomes
1. Min–max normalization is particularly useful in machine learning as it ensures that
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different features contribute proportionately to the model’s training process, preventing
features with larger scales from disproportionately influencing the model’s outcomes.

3.3. Pose Estimation

In this research, the OpenPose algorithm was employed for pose estimation, a crucial
step in understanding and analyzing human activities. OpenPose is a state-of-the-art
algorithm designed to detect human poses from images and videos by identifying key
points on the human body, such as the head, shoulders, elbows, wrists, hips, knees, and
ankles. The algorithm provides a detailed skeleton-like representation for each individual
in the scene, capturing the spatial relationships between joints. This capability makes
OpenPose particularly suitable for complex scenarios involving multiple individuals or
dynamic movements.

The process begins by feeding video frames into the OpenPose system, where each
frame is processed independently. OpenPose uses a two-branch multi-stage CNN architec-
ture. The first branch predicts confidence maps for the location of each key point, while
the second branch predicts part affinity fields—vector fields that encode the location and
orientation of limbs. These outputs are combined to construct a coherent representation of
the pose for each person in the image. The system iteratively refines its predictions through
several stages, enhancing the accuracy of joint detection and association. This iterative
refinement is crucial for ensuring high precision, especially in environments where joints
are partially occluded.

OpenPose is known for its accuracy and robustness, performing well on multiple
people with occlusions. Its iterative multi-stage convolutional neural network architec-
ture progressively fine-tunes pose predictions, facilitating very efficient performance on
challenging HAR problems in highly populated scenes. On the other hand, Mediapipe
performs very well in real time and requires fewer computations; therefore, it is better
suited for mobile and embedded systems. OpenPose is highly validated through academic
research topics and offers better multi-person support and more integration flexibility, but
it is much more complex to set up and requires high-performance hardware. Mediapipe,
on the other hand, aims for simplicity and speed in the deployment, providing fast pose
estimation of a single person without state-of-the-art accuracy—known as Mediapipe
Pose—primarily for cases where other people may block the view. OpenPose performs
well for research-oriented HAR or where a detailed multi-person analysis of its output
is needed as a preprocessing step to model input, while Mediapipe is more suitable for
real-time and resource-constrained tasks.

By applying OpenPose, this research achieved a high level of accuracy in pose estima-
tion, which was essential for subsequent stages of analysis. The detailed representation
of joint positions and the relationships between them enabled a comprehensive under-
standing of human movement patterns. These data formed the basis for constructing
the graph-based representations used in this study to analyze and classify activities. The
robustness of OpenPose in handling varying scales, orientations, and occlusions makes it a
reliable tool for real-world applications, ranging from healthcare monitoring and sports
analysis to security and surveillance. The algorithm’s ability to work with standard video
inputs without the need for specialized equipment further enhances its practicality and
accessibility for various research and applications.

3.4. Joint Tracking

Capturing the temporal information in a video is very challenging. However, this can
be obtained by tracking joints. The objective of joint tracking is to continuously monitor
and analyze human body movements throughout the video frames. This process involves
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identifying and following the positions of key body joints—such as the head, shoulders,
elbows, hips, knees, and ankles—across consecutive frames in a video sequence. By
accurately tracking these joints, the system can map the trajectory of each joint over time,
capturing the dynamic aspects of human movement. This temporal information is essential
for understanding activities, as it allows the system to differentiate between various actions
based on the patterns and sequences of joint movements. Joint tracking also plays a pivotal
role in handling occlusions and other visual challenges as it maintains the continuity of
motion data even when some joints are temporarily not visible. This capability is crucial
for applications in sports analysis, healthcare monitoring, and surveillance, where precise
and reliable tracking of body movements is necessary.

In Figure 2, the coordinates of the right wrist and nose of a person waving their right
hand in a video are illustrated over time. The top left subplot depicts the X coordinate
of the right wrist, featuring both the original and smoothed data series. Similarly, the
top right subplot shows the Y coordinate of the right wrist. The bottom left and right
subplots display the X and Y coordinates of the nose, respectively, also with both original
and smoothed data series.
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Figure 2. Temporal evolution of right wrist and nose coordinates during a waving motion.

The original data, depicted in the top subplots of Figure 2, exhibit noticeable variability,
indicating potential noise or rapid movements. In contrast, the smoothed version offers a
clearer depiction of the overall movement patterns by reducing the influence of noise. This
smoothing effect is particularly evident in the right wrist coordinates, where fluctuations
are significantly attenuated.

The visualization effectively communicates the temporal evolution of these coordi-
nates, facilitating the analysis of movement patterns. The distinction between the original
and smoothed data underscores the importance of data processing in motion analysis,
highlighting the utility of smoothing techniques in revealing underlying trends amidst
noisy data.
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3.5. Graph Construction

Graph construction is the heart of the proposed HAR system as it involves transform-
ing the spatial and temporal data of human joints into a structured format suitable for deep
learning analysis. In this process, each human joint detected in the pose estimation phase
is represented as a node in the graph. The connections between these nodes, known as
edges, represent the anatomical connections between the joints. These edges capture both
the spatial proximity and the sequential movement patterns of the joints throughout the
video, providing a comprehensive view of the body’s configuration and dynamics.

The graph construction process begins with the definition of nodes and edges. Each
node corresponds to a specific joint, such as the head, shoulders, elbows, wrists, hips, knees,
or ankles. The edges between nodes are defined based on the natural anatomical connec-
tions (e.g., shoulder to elbow, elbow to wrist) and are weighted to reflect the significance or
strength of these connections. The weights determine the relative velocity between two
joints in the video.

To construct the graph, the joint positions are first normalized to a consistent scale to
account for variations in camera angles, distances, and subject sizes. This normalization
ensures that the graph accurately represents the relative positions and movements of the
joints, regardless of external factors. The nodes and edges are then instantiated, with edges
being annotated with weights corresponding to the relative velocity between two joints to
capture temporal dynamics between them during the activity.

To calculate the relative velocity between the joints, we applied Equation (4), as follow:

vrelative = vjoint_i − vjoint_j (4)

where vjoint_i and vjoint_j are the velocity vectors of joint i and joint j. The output is a vector
that represents how fast and in what direction joint_i moves relative to joint_j in the video.
The velocity vector of a joint is calculated by deriving the first derivative of the position
data over time, as in Equation (5). This provides insights into the speed and movement
direction of the joint for all video frames.

v(t) =
dp(t)

dt
=

(
dx(t)

dt
,

dy(t)
dt

)
(5)

where p(t) = (x(t), y(t)) is the position vector as a function of time t. After finding the
relative velocity between two joints, we find the relative velocity magnitude and represent
this value as the edge weight between the incorporated joints. The calculation of relative
velocity magnitude is found using Equation (6) as the function M(vrelative).

For two joints with positions (x1, y1) and (x2, y2) at time t, and their positions
(

x′1, y′1
)

and (x′2, y′2) at time t + ∆t, the relative velocity magnitude can be calculated as

M(vrelative) =

√((
x′1 − x1

)
−

(
x′2 − x2

))2
+

((
y′1 − y1

)
−

(
y′2 − y2

))2

∆t
(6)

This calculation shows how the relative position between the two joints changes over
the time interval ∆t, providing a measure of their relative motion.

The resulting graph encapsulates both the spatial configuration and temporal evo-
lution of the body, allowing for robust recognition and classification of human activities
based on complex movement patterns. By utilizing this structured representation, the
system can better handle variations in human poses and movements, improving accuracy
and robustness in real-world applications. It is noteworthy to mention that in the case of
occlusions, the magnitude between an existing joint and the occluded joint is set to zero.
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Figure 3 illustrates the graph structure as a heatmap, visualizing the average relative
velocities between different joint pairs during a human waving their right hand. Using a
color gradient from dark red to yellow, where dark red indicates lower relative velocities
and yellow indicates higher relative velocities, the heatmap offers a clear depiction of joint
activity. The diagonal elements are black, reflecting that the relative velocity of a joint
with itself is zero. Notably, the brightest areas (yellow) highlight higher relative velocities
between the right shoulder, right elbow, and right wrist, consistent with the waving motion.
Conversely, the lower body joints display darker colors, indicating minimal movement. An
asymmetry is evident, with higher velocities on the right side of the body, aligning with the
right-hand waving action. This heatmap effectively showcases the dynamic coordination
between body joints during the activity, providing valuable insights into joint movement
and synchronization.
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Although pose-based data typically lend themselves to capturing spatial and temporal
relationships simultaneously, graph representations are perfect for preserving the non-
Euclidean topology of data. Different from Transformers with self-attention mechanisms or
Temporal Convolutional Networks (TCNs) with fixed temporal scopes, graphs encode joint
connectivity and temporal hierarchies in skeletal movements, allowing interpretable and
effective modeling of human activities. Moreover, they allow for a concise and regularized
representation of pose data with lower computational load (in contrast to the large feature
maps created from Transformers or the sequential progression of TCNs) since location
landmarks provide a minimal description of the human body compared to different archi-
tectures used. Such efficiency renders graph-based methods exceptionally applicable to
real-time tasks.

Graphs naturally only represent the joints present in the data and their interconnec-
tions, making them immune to missing or occluded data, whereas Transformers and TCNs
might require different imputation or padding strategies that may introduce noise and
potentially reduce the accuracies in harder scenarios.
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3.6. Convolution Neural Network

The classification model used in this research starts with an input layer designed to
receive 17 × 17 (17 joints considered in this research) matrix with a single channel that
represents the graph structure describe in Section 3.5. Figure 4 illustrates the architecture of
the CNN model. The input layer feeds into a series of convolutional layers, each followed
by a max pooling layer. Equation (7) provides the mathematical formula of a convolution
layer, and Equation (8) provides the mathematical formula of the max pooling layer. The
first convolutional layer consists of 32 filters with a kernel size of 3 × 3 and uses the ReLU
activation function, which introduces non-linearity by outputting the input directly if it is
positive and zero otherwise. This layer is followed by a max pooling layer with a 2 × 2 pool
size, which reduces the spatial dimensions of the feature maps by taking the maximum
value over each 2 × 2 block, thus reducing the number of parameters and computation in
the network.

(I ∗ K)(i, j) =
M

∑
m=1

N

∑
n=1

I(i + m, j + n)·K(m, n) (7)

where I is the input matrix, K is the convolution kernel, and M and N are the dimensions
of the kernel.

P(i, j) = max{I(i + 2, j + 2)} (8)
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Figure 4. Architecture of the CNN model.

Next, a second convolutional layer with 64 filters, a 3 × 3 kernel, and ReLU activation
is added. This layer employs “same” padding to ensure that the output feature map
has the same spatial dimensions as the input. Another max pooling layer with a 2 × 2
pool size follows, further reducing the spatial dimensions of the feature maps. The third
convolutional layer comprises 128 filters, also with a 3 × 3 kernel size and ReLU activation,
and uses “same” padding to maintain the spatial dimensions of the feature maps.

Following the convolutional layers, the feature maps are flattened into a one-
dimensional vector, which serves as the input to the fully connected (dense) layers. The
first dense layer contains 128 neurons and uses the ReLU activation function to introduce
non-linearity. The second dense layer also has a number of neurons (optimized during
hyperparameter tuning) and uses the ReLU activation function. The final dense layer is the
output layer, containing 59 neurons (corresponding to the number of classes in the dataset),
and uses the softmax activation function. The softmax function converts the output scores
into probabilities, facilitating the classification of the input images into one of the five
classes.

3.7. Hyperparameter Optimization Using the Firefly Algorithm

The CNN model described in Section 3.6 is a traditional architecture with three convo-
lutional layers, where the number of filters increases in each subsequent layer. Specifically,
the first convolutional layer uses 32 filters, the second uses 64 filters, and the third uses
128 filters. These filter counts are commonly used in simple CNN models to progressively
capture more complex features from the input data, and each layer refines the features
extracted by the previous layers.
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The accuracy of such a model is significantly influenced by the chosen hyperparame-
ters, including the number of filters in each convolutional layer, learning rate, number and
size of dense layers, batch size, and the number of neurons in the dense layers. To enhance
the performance of the CNN model in this research, hyperparameters were optimized
using the Firefly Optimization Algorithm [27].

The Firefly Optimization Algorithm is a metaheuristic optimization technique that
simulates the behavior of fireflies, where the attractiveness and movement of fireflies are
governed by their brightness. The key idea behind the Firefly Algorithm is that each firefly
is attracted to brighter fireflies, with the brightness being proportional to the objective
function being optimized.

In this research, the Firefly Algorithm was employed to optimize the hyperparameters
of the CNN model, including the number of neurons in the dense layers, learning rate, batch
size, and number of filters in the convolutional layers. The optimization process involved
using 10 fireflies over 20 iterations, allowing for effective exploration of the hyperparameter
space to find optimal values. The steps of the Firefly Algorithm are as follows:

1. Initialization.

Initialize a population of fireflies with random positions in the search space. Each
firefly represents a potential solution. In this research, the initial number of fireflies was 10,
with 20 iterations.

2. Attractiveness.

The light intensity I of a firefly at a particular location x is determined by the objective
function f (x). The attractiveness β of a firefly is given by Equation (9):

β(r) = β0e−γr2
(9)

where β0 is the maximum attractiveness, γ is the light absorption coefficient, and r is the
distance between two fireflies. In this research, γ was set to 1.0.

3. Distance Calculation.

The distance rij between two fireflies i and j at positions xi and xj is calculated using
the Euclidean distance, as in Equation (10):

rij =
∥∥xi − xj

∥∥ (10)

4. Movement.

A firefly i moves towards a more attractive (brighter) firefly j. The movement is
determined by Equation (11):

xi = xi + β0e−γr2
ij
(
xj − xi

)
+ α(rand − 0.5) (11)

where α is a randomized parameter and is rand a random number uniformly distributed
between 0 and 1.

The value of β0 used in this research was set to 0.2, and the value of α was 0.5. The term

β0e−γr2
ij
(

xj − xi
)

ensures that fireflies move towards each other based on their attractive-

ness, which is stronger for closer and brighter fireflies. The exponential factor e−γr2
ij ensures

that the influence decreases with distance, making distant fireflies less attractive. The term
α(rand − 0.5) introduces stochastic behavior, preventing the algorithm from getting stuck
in local optima and enhancing the exploration of the search space.
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3.8. Evaluation Metrics

To assess the performance of the proposed human activity recognition (HAR) system,
the following evaluation metrics were used:

Accuracy: Measures the proportion of correctly classified samples to the total number
of samples:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively.

Precision: Evaluates the proportion of correctly predicted positive samples out of all
predicted positive samples:

Precision =
TP

TP + FP

Recall (Sensitivity): Measures the ability of the model to correctly identify all actual
positive samples:

Recall =
TP

TP + FN

F1-Score: Provides a balance between precision and recall by computing their har-
monic mean:

F1 − score = 2· Precision·Recall
Precision + Recall

These metrics were chosen to provide a comprehensive evaluation of the model’s
performance, addressing both classification accuracy and the trade-offs between precision
and recall.

The importance of using these metrics to validate machine learning models was
emphasized in [28].

4. Results
In this section, we present the outcomes of our experiments, demonstrating the effec-

tiveness of our proposed human activity recognition (HAR) system that integrates graph
structures and deep neural networks. The evaluation is conducted in comparison with
traditional HAR methods, with a focus on several performance metrics: accuracy, precision,
recall, and F1-score. These metrics provide a comprehensive view of the algorithm’s ability
to correctly identify human activities while minimizing false detections.

4.1. Experimental Setup

To evaluate the performance of the proposed HAR system, we utilized two well-known
datasets: UCF-101 and Kinetics-400. We selected 59 common actions shared between these
datasets to ensure consistency in evaluating our system’s ability to generalize across dif-
ferent environments and contexts. The use of only common actions helped maintain a
balanced training dataset, reducing the risk of overfitting and ensuring a more representa-
tive assessment of the model’s capabilities.

The experiments were conducted in a controlled environment using a standard com-
putational setup. We applied preprocessing techniques including mean normalization,
histogram equalization, and data rescaling to enhance the quality of video frames and
facilitate the efficient training of the deep learning model. The OpenPose algorithm was
used for pose estimation, allowing us to detect and track the 3D trajectories of human joints,
which were then represented as graph structures.

To facilitate a more detailed analysis of the results, the 59 selected actions were
categorized into four groups based on the movement speed of human joints during the
actions: Sports and Athletics, Household and Routine Activities, Musical and Performing
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Arts, and Outdoor and Adventure Activities. Table 2 illustrates the actions of each group.
It is important to note that the model’s final layer consists of 59 outputs, with each output
corresponding to a specific action. To determine the accuracy for each group, we calculated
the average accuracy of all actions within that group.

Table 2. Categorization of actions with corresponding total video counts across the four defined
categories.

Category Total No. Videos Actions

Household and Routine
Activities 8870

Blowing Candles, Brushing Teeth, Cutting In
Kitchen, Knitting, Mopping Floor, Shaving
Beard, Baby Crawling, Haircut

Musical and Performing
Arts 10,127

Band Marching, Drumming, Floor Gymnastics,
Playing Cello, Playing Flute, Playing Guitar,
Playing Piano, Playing Violin, Salsa Spins

Outdoor and Adventure 15,477

Biking, Kayaking, Rope Climbing, Skijet,
Walking With A Dog, Sky Diving, Frisbee Catch,
Skate Boarding, Skiing, Surfing, Tai Chi, Cliff
Diving, Hula Hoop, Push Ups, Juggling Balls

Sports and Athletics 29,416

Archery, Basketball, Basketball Dunk, Bench
Press, Body Weight Squats, Bowling, Boxing
Punching Bag, Diving, Field Hockey Penalty,
Golf Swing, Hammer Throw, High Jump, Horse
Riding, Javelin Throw, Long Jump, Lunges, Pole
Vault, Pull Ups, Shotput, Throw Discus,
Trampoline Jumping, Volleyball Spiking, Punch,
Rock Climbing Indoor, Breaststroke, Clean and
Jerk, Soccer Juggling

4.2. Hyperparameter Optimization Using the Firefly Algorithm

After designing the initial architecture of the HAR system, the Firefly Optimization
Algorithm, as described in Section 3.7, was applied to fine-tune the model’s hyperparameters.
The primary objective of this optimization was to enhance the model’s overall performance
by determining the most effective combination of hyperparameters, such as the learning rate,
batch size, and number of neurons in the dense layers, which are known to have a significant
impact on the model’s ability to generalize and accurately classify human activities.

The results before and after optimization are summarized in Table 3. The application of
the Firefly Algorithm resulted in a significant improvement in all key performance metrics.
The overall accuracy of the system increased from 85.1% to 88.9%, precision improved
from 83.3% to 86.4%, recall increased from 84.6% to 87.0%, and the F1-score rose from
83.5% to 86.7%. This demonstrates the effectiveness of the Firefly Optimization Algorithm
in fine-tuning the model to achieve higher classification accuracy while maintaining a
balanced trade-off between precision and recall.

Table 3. Hyperparameters before and after firefly optimization.

Hyperparameter Initial Value Optimized Value
Learning Rate 0.001 0.0005
Batch Size 32 128
Kernel Size 3 × 3 5 × 5
Number of Filters (Conv1) 32 46
Number of Filters (Conv2) 64 96
Number of Filters (Conv3) 128 148
Number of Neurons (Dense1) 128 512
Number of Neurons (Dense2) 128 256
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The hyperparameters tuned during the optimization process are listed in Table 4.
The most significant changes were seen in the learning rate, the number of filters in the
convolutional layers, and the number of neurons in dense layers. The optimized model with
these tuned hyperparameters demonstrated improved learning efficiency and convergence,
as reflected in the final performance metrics.

Table 4. Comparison of model performance before and after optimization.

Metric Before Optimization After Optimization
Accuracy 85.1% 88.9%
Precision 83.3% 86.4%
Recall 84.6% 87.0%
F1-Score 83.5% 86.7%

The training and validation before and after optimization are depicted in Figure 5.
Before optimization, the training accuracy steadily increased and plateaued at around
85.1%, indicating that the model was learning effectively but had reached its performance
limit. The validation accuracy, however, reached only about 81.7%, suggesting that the
model’s performance on unseen data was weaker compared to the training data. The
noticeable gap between training and validation accuracies before optimization indicates
that the model was prone to overfitting and had limited generalization capability.
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After optimization, the training accuracy improved more rapidly, reaching a final
accuracy of 88.9%, demonstrating the significant impact of the optimization process. Sim-
ilarly, the validation accuracy saw a substantial improvement, rising to 88.8%, closely
matching the training accuracy. This indicates that the optimization not only enhanced the
model’s training performance but also significantly improved its generalization ability. The
optimization process successfully boosted both training and validation accuracy, making
the model more robust and less prone to overfitting.

4.3. Overall System Performance

The optimized system’s overall performance was measured using four key metrics:
accuracy, precision, recall, and F1-score. As illustrated in Figure 6, the system achieved an
overall accuracy of 88.9% across all actions, demonstrating its effectiveness in recognizing
a wide range of human activities.
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The precision, which measures the proportion of correctly identified actions out of all
predicted actions, was recorded at 86.4%. This indicates that the system was able to avoid
a significant number of false positives. The recall, which indicates the system’s ability to
correctly identify all actual instances of an action, was 87.0%. The F1-score, a harmonic
mean of precision and recall, was 86.7%, showing a balanced performance between correctly
identifying activities and minimizing false detections and highlighting the system’s overall
reliability in dealing with both complex and simpler activities.

4.4. Performance by Action Category

As mentioned before, we evaluated the system’s performance across four distinct
action categories: Household and Routine Activities, Musical and Performing Arts, Outdoor
and Adventure Activities, and Sports and Athletics. The actions in these categories differ
significantly in terms of joint dynamics, complexity, and movement patterns, making them
ideal for testing the versatility of the system. The system’s performance in each category is
summarized in Figure 6.
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• Household and Routine Activities.

In this category, which includes actions such as mopping the floor, brushing teeth,
and cutting in the kitchen, the system achieved an accuracy of 90.4%, the highest among
non-dynamic action categories. The system’s precision was 86.6%, and recall was 88.2%,
demonstrating its capability to correctly identify most routine activities with relatively
low false positives and false negatives. The F1-score of 87.4% highlights the system’s
balanced performance in recognizing routine actions that involve subtle joint movements.
This category’s strong performance indicates that the system is well-suited to handle less
dynamic but repetitive activities.

• Musical and Performing Arts.

The system faced more challenges in this category, where actions such as playing
the cello, playing the guitar, or performing floor gymnastics are characterized by more
intricate joint movements. The system achieved an accuracy of 82.4%, the lowest among
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all categories. The precision was 86.2%, but the recall was lower at 80.5%, reflecting the
difficulty in detecting all instances of these actions, likely due to the interaction with tools
(e.g., musical instruments) complicating joint movement recognition. The F1-score of 83.2%
underscores the need for further refinement in handling complex tool-based activities.

• Outdoor and Adventure Activities.

The system performed exceptionally well in this category, achieving the highest
accuracy of 92.1%. This category includes dynamic activities such as rope climbing, Tai
Chi, and skiing, where distinct and large joint movements are common. The precision was
85.9%, and the recall was 90.2%, indicating the system’s ability to accurately detect most of
these activities with minimal false negatives. The F1-score of 87.9% further emphasizes the
system’s robust performance in fast-paced, high-movement actions. The clear distinction
in movement patterns for outdoor activities likely contributed to the system’s superior
performance in this group.

• Sports and Athletics.

For actions such as basketball, archery, and weightlifting, the system achieved an
accuracy of 88.9%. The precision was 86.7%, and the recall was 87.1%, demonstrating con-
sistent performance in recognizing physically intensive sports that involve both upper and
lower body coordination. The F1-score of 86.9% highlights the system’s balanced handling
of these activities, with only minor challenges in actions involving rapid transitions or
simultaneous movements. The system’s success in recognizing individual and team sports
activities showcases its flexibility and adaptability to a range of athletic actions.

4.5. Comparative Performance Against Baseline and State-of-the-Art Methods

To further assess the effectiveness of the proposed HAR system, we compared its
performance with a traditional baseline method, specifically, a CNN-based model, which is
widely used for HAR tasks.

The baseline CNN model consists of three consecutive convolutional layers with 32,
64, and 128 filters, respectively, followed by max pooling layers and two fully connected
layers. This architecture was chosen as the representative standard for HAR tasks. The
baseline model demonstrates the standard approach in which video frames are processed
directly without any extraction of features of joint movements via OpenPose, as proposed
in the method. Given that the input was a video file that we only processed to 64 × 64 size,
the input layer was set to 64 × 64. As the baseline model does not employ pose-based
features for feature extraction, it operates solely on raw video data, thus allowing for an
evaluation of the proposed graph-based method.

The Firefly Optimization Algorithm was applied to fine-tune the hyperparameters of
both the baseline CNN model and the graph-based HAR system to ensure a fair comparison.
CNN-based models are commonly adopted in HAR due to their ability to automatically
extract spatial features from video streams. However, while CNNs excel at capturing spatial
relationships within individual frames, they are less effective at modeling the temporal
dynamics inherent in videos. The results of the comparison are illustrated in Figure 7.

In our experiments, the proposed graph-based HAR system outperformed the stan-
dard CNN model across all key performance metrics. The overall accuracy of the graph-
based system was 88.9%, which exceeded the CNN-based model’s accuracy of 83.7%.
This improvement in accuracy can be attributed to the graph structure’s ability to capture
both spatial and temporal relationships between human joints more effectively than tra-
ditional models that process video frames sequentially without explicitly modeling these
connections.



Computers 2025, 14, 9 21 of 24

Computers 2025, 14, x FOR PEER REVIEW 21 of 25 
 

of these activities with minimal false negatives. The F1-score of 87.9% further emphasizes 
the system’s robust performance in fast-paced, high-movement actions. The clear distinc-
tion in movement patterns for outdoor activities likely contributed to the system’s supe-
rior performance in this group. 

• Sports and Athletics. 

For actions such as basketball, archery, and weightlifting, the system achieved an 
accuracy of 88.9%. The precision was 86.7%, and the recall was 87.1%, demonstrating con-
sistent performance in recognizing physically intensive sports that involve both upper 
and lower body coordination. The F1-score of 86.9% highlights the system’s balanced han-
dling of these activities, with only minor challenges in actions involving rapid transitions 
or simultaneous movements. The system’s success in recognizing individual and team 
sports activities showcases its flexibility and adaptability to a range of athletic actions. 

4.5. Comparative Performance Against Baseline and State-of-the-Art Methods 

To further assess the effectiveness of the proposed HAR system, we compared its 
performance with a traditional baseline method, specifically, a CNN-based model, which 
is widely used for HAR tasks. 

The baseline CNN model consists of three consecutive convolutional layers with 32, 
64, and 128 filters, respectively, followed by max pooling layers and two fully connected 
layers. This architecture was chosen as the representative standard for HAR tasks. The 
baseline model demonstrates the standard approach in which video frames are processed 
directly without any extraction of features of joint movements via OpenPose, as proposed 
in the method. Given that the input was a video file that we only processed to 64 × 64 size, 
the input layer was set to 64 × 64. As the baseline model does not employ pose-based 
features for feature extraction, it operates solely on raw video data, thus allowing for an 
evaluation of the proposed graph-based method. 

The Firefly Optimization Algorithm was applied to fine-tune the hyperparameters of 
both the baseline CNN model and the graph-based HAR system to ensure a fair compar-
ison. CNN-based models are commonly adopted in HAR due to their ability to automat-
ically extract spatial features from video streams. However, while CNNs excel at captur-
ing spatial relationships within individual frames, they are less effective at modeling the 
temporal dynamics inherent in videos. The results of the comparison are illustrated in 
Figure 7. 

 

Figure 7. Results of the optimized graph-based model and baseline CNN model. Figure 7. Results of the optimized graph-based model and baseline CNN model.

The precision and recall metrics followed similar trends. The graph-based approach
achieved a precision of 86.4% and recall of 87.0%, compared to 83.0% precision and 82.5%
recall for the CNN model. These results demonstrate the graph-based system’s enhanced
capability to reduce false positives while maintaining a higher recall rate, allowing it to
better detect human activities, even in complex scenarios.

The F1-score of 86.7% achieved by the graph-based HAR system also outperformed
the CNN’s F1-score of 82.7%. This indicates that the proposed system offers a balanced
performance between precision and recall, which is crucial for practical applications where
minimizing both false positives and false negatives is important.

A key reason for the superior performance of the proposed system lies in its use of a
graph structure to model human joint movements, which enables the capture of both spatial
relationships (the position of joints relative to one another) and temporal relationships (the
movement of joints over time). This graph-based representation allows the system to better
understand and classify complex actions that involve joint transitions, interactions with
objects, and multi-step movements, which are challenging for conventional models that
treat video frames independently.

Moreover, to evaluate the efficacy of the proposed method, we compared it against
several state-of-the-art (SOTA) approaches in human activity recognition (HAR), including
CNN–Transformer hybrid models, 3D convolutional neural networks (3DCNNs), and
deeply transferred Motion Vector CNNs (DTMV-CNNs) using the UCF-101 dataset. Table 5
summarizes the results across metrics such as accuracy, precision, recall, and F1-score. Our
proposed method, a graph-based CNN (GB-CNN), achieved the highest accuracy of 89.6%,
outperforming CNN-Transformer models (87.5%, Shi & Liu, 2024 [20]), 3DCNNs (79.9%,
Vrskova et al., 2022 [18]), and DTMV-CNNs (86.4%, B. Zhang et al., 2018 [16]).

Table 5. Comparison of the proposed graph-based CNN (GB-CNN) with state-of-the-art methods on
the UCF-101 dataset.

Reference Method Accuracy Precision Recall F1-Score
[20] CNN+ Transform 87.5%
[18] 3DCNN 79.9%
[16] DTMV-CNN 86.4%

Proposed Approach GB-CNN 89.6% 88.3% 87.9% 88.1%

Additionally, the proposed GB-CNN achieved superior performance across all eval-
uated metrics, including a precision of 88.3%, a recall of 87.9%, and an F1-score of 88.1%.
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This highlights the effectiveness of leveraging pose-based graph structures, which offer
enhanced robustness to occlusions and variability in joint movements. By focusing on both
spatial and temporal relationships between joints, the proposed approach demonstrated
improved generalization capabilities and computational efficiency compared to other SOTA
methods. These results establish the proposed method as a reliable and efficient solution
for HAR tasks.

In addition, we performed statistical analyses including a paired t-test to compare
the accuracy, precision, recall, and F1-score achieved by the proposed GB-CNN method to
the accuracy, precision, recall, and F1-score of the baseline models and the state-of-the-art
approaches, which validate the significance of the improvement achieved by the pro-
posed method. The test p-values indicate that all improvements are statistically significant
(p < 0.05) across all metrics.

4.6. Computational Cost and Real-Time Feasibility

The computational complexity of the proposed system was analyzed to evaluate its
scalability and feasibility. Table 6 below summarizes the time complexity of the key stages
in the system, including preprocessing, graph construction, model training, and inference.

Table 6. Computational complexity of the proposed system.

Phase Complexity
Preprocessing (Pose Estimation) O(F·W·H·D)

Graph Construction O(F·N2)
Model Training O(E·F·N2·Dc)

Inference O(F·N2·Dc)

Here, F represents the number of video frames, W·H denotes the frame resolution, N
is the number of keypoints in the pose graph, D and Dc are the network depths for pose
estimation and the graph-based CNN, respectively, and E is the number of training epochs.

Preprocessing by OpenPose is the heaviest process by far among the steps as it depends
on the resolution of the input frame (W·H), and model training is second, which is realized
by the number of epochs (E) and graph nodes (N). Graph construction, while quadratic in
complexity with respect to N, is manageable due to the limited number of joints in typical
datasets. The inference step is computationally efficient, making the system feasible for
real-time applications, especially with optimized hardware. This breakdown provides a
clear understanding of the system’s scalability and practical implementation requirements.

Real-time implementation of the proposed system was investigated on a computer
with NVIDIA RTX 3050 GPU, Intel i5 11th Generation Processor, and 16 GB RAM. The
timings reported demonstrate a total of about 45 ms/frame (30 ms/frame for preprocessing–
pose estimation using OpenPose; 5 ms/frame for graph construction; 10 ms/frame for
inference). The processing speed of about 22 frames per second (FPS) is more than needed
for real-time applications such as video surveillance and human–computer interactions.

The results demonstrate that the system is capable of operating in real-time on a
moderately powerful computer, balancing computational efficiency with high accuracy.
These findings confirm the system’s practicality for deployment in real-world scenarios.

5. Conclusions
This research introduced a novel human activity recognition (HAR) system that in-

tegrates graph structures and deep neural networks to address the challenges inherent
in activity recognition. By leveraging graph representations, we captured both spatial
relationships and temporal dynamics of joint movements, resulting in a more nuanced
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understanding of human activities. The application of the Firefly Optimization Algorithm
further enhanced the system’s performance by fine-tuning critical hyperparameters, leading
to significant improvements in accuracy, precision, recall, and F1-score.

The experimental results demonstrated the effectiveness of the proposed graph-based
HAR system, achieving superior performance compared to traditional CNN-based models.
Our system achieved an overall accuracy of 88.9%, with robust performance across diverse
action categories, including sports, routine activities, and musical performances. The
optimized system not only improved training accuracy but also minimized the gap between
training and validation performance, highlighting its enhanced generalization ability and
reduced overfitting.

Additionally, the categorization of actions revealed that the system performed ex-
ceptionally well in dynamic activities, such as outdoor sports and adventure, while still
maintaining reliable performance in more intricate activities involving tools, such as musi-
cal performances. These results emphasize the versatility and adaptability of the proposed
approach for real-world applications.

The effectiveness of the proposed GB-CNN model is further confirmed by comparing
it with state-of-the-art methods, which show higher accuracy and precision, recall, and
F1-score on the UCF-101 dataset. The proposed method is both occlusion- and joint-
movement-robust while being efficiently computable by using pose-based graphs. The
results highlight the potential utility of the presented approach in many actual world
applications like surveillance, healthcare, and human–computer interactions. The system’s
ability to process frames at 22 FPS on a moderately equipped computer confirms its
feasibility for real-time applications, making it suitable for scenarios such as surveillance,
healthcare, and human–computer interactions.

The findings of this research contribute to the growing body of knowledge in the
field of HAR by presenting a system that offers both accuracy and robustness. Future
work could explore further refinements to the graph-based model, such as incorporating
multi-modal data sources or enhancing the handling of occlusions in complex scenarios.
With continued development, the proposed HAR system holds the potential to impact
various fields, including healthcare monitoring, smart surveillance, and sports analytics,
enabling safer, more intuitive, and privacy-preserving activity recognition solutions.
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