Clinical Response to Anti-CD47 Immunotherapy Is Associated with Rapid Reduction of Exhausted Bystander CD4+ BTLA+ T Cells in Tumor Microenvironment of Mycosis Fungoides
<p>TOX density correlates with MF disease stage. (<b>a</b>) Representative clinical images (top) and high-powered immunohistochemical TOX staining (bottom, scale bar 100 µm) for non-neoplastic normal skin compared to plaque and tumor stage MF. (<b>b</b>) Composite data illustrating the number of TOX-positive cells per field for the groups described in subfigure (<b>a</b>) (<span class="html-italic">n</span> = 3 control, <span class="html-italic">n</span> = 7 plaques, <span class="html-italic">n</span> = 4 tumors). (<b>c</b>) Experimental schematic demonstrating the pipeline for employing multispectral imaging to quantify cells of a specific phenotype. Samples undergo sequential immunohistochemical staining for a panel of several biomarkers followed by computer vision-based analysis to locate and identify cell types. (<b>d</b>) Multispectral imaging (scale bar 20 µm) from plaque and tumor stage MF stained with the indicated biomarkers. (<b>e</b>) Violin plots of composite data enumerating density of CD3<sup>+</sup>CD4<sup>+</sup>TOX<sup>+</sup> cells per multispectral field for pooled plaque (<span class="html-italic">n</span> = 5) or tumor (<span class="html-italic">n</span> = 2) MF samples. Bar plots represent mean ± SEM. Violin plots represent the median with the 25th and 75th percentiles. **, <span class="html-italic">p</span> < 0.01; ***, <span class="html-italic">p</span> < 0.001; ****, <span class="html-italic">p</span> < 0.0001 by one-way ANOVA with Sidak–Holm’s correction (panel <b>b</b>) or unpaired <span class="html-italic">t</span>-test with Welch’s correction (panel <b>e</b>).</p> "> Figure 2
<p>Microarchitecture progression from plaque to tumor stage in MF. (<b>a</b>) Representative multispectral images (top) and cell segmentation with phenotype map (bottom) from plaque and tumor stage MF stained with the indicated biomarkers (scale bar 100 µm). (<b>b</b>) Schematic diagram for enumerating all cells of a specific phenotype within a 75 μm vicinity of malignant CD3<sup>+</sup>CD4<sup>+</sup>TOX<sup>+</sup> cells. (<b>c</b>) Violin plots of composite data enumerating density of CD3<sup>+</sup>CD4<sup>+</sup>TOX<sup>−</sup>, CD3<sup>+</sup>CD8<sup>+</sup>TOX<sup>−</sup>, and CD56<sup>+</sup>CD3<sup>−</sup>TOX<sup>−</sup> cells within the vicinity of malignant cells as described in panel (<b>b</b>) for pooled plaque (<span class="html-italic">n</span> = 5) or tumor (<span class="html-italic">n</span> = 2) MF samples. At least five regions of interest were quantified for the analysis. ****, <span class="html-italic">p</span> < 0.0001 by unpaired <span class="html-italic">t</span>-test with Welch’s correction. (<b>d</b>) Normalized tissue RNA expression for the indicated genes between plaque- (<span class="html-italic">n</span> = 63) and tumor- (<span class="html-italic">n</span> = 36) stage MF samples. Bar plots represent mean ± SEM. Violin plots represent the median with 25th and 75th percentiles.</p> "> Figure 3
<p>Intercellular interactions between malignant cells and TILs. (<b>a</b>) UMAP projection of single-cell RNA sequencing from a patient with plaque-stage mycosis (left). Heat map showing relative expression (<span class="html-italic">z</span>-score) of selected genes for cells identified in subfigure (<b>a</b>) (right). (<b>b</b>) UMAP projection of single-cell RNA sequencing from three patients with tumor-stage mycosis (left). Heat map showing relative expression (<span class="html-italic">z</span>-score) of selected genes for cells identified in subfigure (<b>b</b>) (right). (<b>c</b>) Volcano plot illustrating differential tissue gene expression from BTLA<sup>−</sup> or BTLA<sup>+</sup> non-malignant CD4<sup>+</sup> T cells. (<b>d</b>) Changes in IFN-γ genes in exhausted CD4<sup>+</sup> T cells in comparison with non-exhausted CD4 T-cells. (<b>e</b>) Enrichment plots of gene set enrichment analysis for the gene expression profile of exhausted CD4<sup>+</sup> T cells using PD-1 ligation gene set. (<b>f</b>) Intercellular CellPhoneDB analysis illustrating shifts in expression of the indicated ligand-receptor complexes for malignant cells between plaque and tumor stage MF.</p> "> Figure 4
<p>Intercellular interactions between exhausted CD4<sup>+</sup> T cells and TME. (<b>a</b>) Percent change in the number of intercellular interactions between the indicated immune cell types for tumor compared with plaque stage MF. A positive number indicates an increase in interactions from plaque to tumor. (<span class="html-italic">n</span> = 1 patient with plaque MF and 3 patients with tumor MF) (<b>b</b>) Representative multispectral images from plaque and tumor-stage MF stained with the indicated biomarkers (top) (scale bar 50 µm; insert, scale bar 10 µm). Cell segmentation with phenotype map for malignant, CD8<sup>+</sup> T, BTLA<sup>+</sup> CD4<sup>+</sup> T, and BLTA<sup>−</sup> CD4<sup>+</sup> T cells, with inset highlighting spatial arrangement of BTLA<sup>+</sup> CD4<sup>+</sup> non-malignant cells in the immediate vicinity of malignant cells (bottom). (<b>c</b>) Violin plots of composite data enumerating the density of exhausted BTLA<sup>+</sup>CD3<sup>+</sup>CD4<sup>+</sup>TOX<sup>−</sup> cells within the immediate 75 um vicinity of malignant and non-malignant CD4<sup>+</sup> T, NK, and CD8<sup>+</sup> T cells from pooled plaque- (<span class="html-italic">n</span> = 5) or tumor- (<span class="html-italic">n</span> = 2) stage MF samples. At least five regions of interest were quantified for the analysis. Violin plots represent the median with 25th and 75th percentiles. ****, <span class="html-italic">p</span> < 0.0001 by unpaired <span class="html-italic">t</span>-test with Welch’s correction. (<b>d</b>) Volcano plots demonstrating differential gene expression between effector and exhausted CD4<sup>+</sup> T cells for plaque and tumor stage MF samples. (<b>e</b>) Intercellular CellPhoneDB analysis illustrating shifts in expression of the indicated ligand–receptor complexes for exhausted cells between plaque and tumor stage MF.</p> "> Figure 5
<p>Immunologic shifts within the tumor microenvironment induced by CD47 blockade. (<b>a</b>) Model of the Galectin-9-CD47 complex between two immune cells. (<b>b</b>) Violin plots show log-transformed, normalized expression levels of the components of the Galectin-9-CD47 complex from plaque (left) and tumor stage (right) MF samples. (<b>c</b>) Schematic for intralesional CD47 blockade with a SIRPαFc fusion decoy receptor (TTI-621) three times per week for two weeks in a cohort of 7 patients with MF. (<b>d</b>) Percent change in CAILS after treatment with CD47 blockade. Responders with at least 50% decrease in CAILS are labeled in green. Non-responders with less than 50% decrease in CAILS are labeled in gray. (<b>e</b>) Violin plots of composite data enumerating density of malignant CD3<sup>+</sup>CD4<sup>+</sup>TOX<sup>+</sup> cells per field before and after CD47 blockade for responders compared with non-responders. (<b>f</b>) Representative cell segmentation with phenotype map for malignant, CD8<sup>+</sup> T, BTLA<sup>+</sup> CD4<sup>+</sup> T, and BLTA<sup>−</sup> CD4<sup>+</sup> T cells for responders and non-responders before and after CD47 blockade (scale bar 100 µm). (<b>g</b>) Violin plots of composite data enumerating the density of exhausted BTLA<sup>+</sup>CD3<sup>+</sup>CD4<sup>+</sup>TOX<sup>−</sup> cells within the immediate 75 μm vicinity of malignant and non-malignant CD4<sup>+</sup> T, NK, and CD8<sup>+</sup> T cells from responder or non-responders before (top) and after (bottom) CD47 blockade. Violin plots represent the median with 25th and 75th percentiles. *, <span class="html-italic">p</span> < 0.05; ****, <span class="html-italic">p</span> < 0.0001 by unpaired <span class="html-italic">t</span>-test with Welch’s correction. (<b>h</b>) Composite data comparing the density of cytotoxic NK (CD56<sup>+</sup>CD3<sup>−</sup>TOX<sup>−</sup>) and CD8<sup>+</sup> T (CD3<sup>+</sup>CD8<sup>+</sup>TOX<sup>−</sup>) cell density within the immediate 75 μm vicinity of malignant cells from responder or non-responder clinical samples. (<b>i</b>) Volcano plot illustrating differential tissue gene expression from responder or non-responder clinical samples. (<b>j</b>) Statistically significant genes up- and downregulated in responders. (<b>k</b>) Metascape gene enrichment analysis for significantly upregulated genes identified in subfigure (<b>j</b>).</p> "> Figure 6
<p>Interferon-α supplementation primes clinical response to CD47 blockade. (<b>a</b>) Schematic of the clinical trial design. (<b>b</b>) An increase of NK cells (CD3-CD16-CD56<sup>bright</sup>) in the peripheral blood of a representative patient treated with a combination of TTI-621 and pegylated IFN-α2a. Cells gated on CD3<sup>−</sup>. (<b>c</b>) Clinical images of a patient with relapsed/refractory tumor MF treated with six intra-tumoral injections of TTI-621 combined with two subcutaneous injections of PEG-IFN-α2a. The patient discontinued the treatment after the lead-in phase. The response is 4 weeks after stopping all the medications. (<b>d</b>) Multispectral fluorescent immunohistochemistry of skin biopsies before and 2 weeks after the Lead-In Phase (top panels, scale bar 100 µm). Cell segmentation with phenotype map (bottom panels, scale bar 100 µm) shows as influx of NK cells in TME after treatment and a decrease in the percentage of tumor cells.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients Treated with TTI-621
2.2. Multispectral Fluorescence Immunohistochemistry
2.3. Cell Identification
2.4. TruSeq Tissue RNA Expression Analysis
2.5. Single Cell Targeted Transcriptome Sequencing
2.6. Gene Set Enrichment Analysis (GSEA)
2.7. Statistical Analysis
3. Results
3.1. TOX+CD4+ T Cell Density Correlates with MF Progression
3.2. Immunologic Microarchitecture Shifts in MF
3.3. An Expanstion of a Population of Exchausted BTLA+ CD4+ T Cells from Plaque to Tumor MF
3.4. Exhausted BTLA+ CD4+ T Cells in Plaque and Tumor MF
3.5. Tumor Microarchitecture following CD47 Blockade
3.6. Synergistic Co-Administration of IFNα with CD47 Blockade
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willemze, R.; Jaffe, E.S.; Burg, G.; Cerroni, L.; Berti, E.; Swerdlow, S.H.; Ralfkiaer, E.; Chimenti, S.; Diaz-Perez, J.L.; Duncan, L.M. WHO-EORTC classification for cutaneous lymphomas. Blood 2005, 105, 3768–3785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.; Liu, H.L.; Mraz-Gernhard, S.; Varghese, A.; Hoppe, R.T. Long-term outcome of 525 patients with mycosis fungoides and Sezary syndrome: Clinical prognostic factors and risk for disease progression. Arch. Dermatol. 2003, 139, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Quaglino, P.; Pimpinelli, N.; Berti, E.; Calzavara-Pinton, P.; Alfonso Lombardo, G.; Rupoli, S.; Alaibac, M.; Bottoni, U.; Carbone, A.; Fava, P. Time course, clinical pathways, and long-term hazards risk trends of disease progression in patients with classic mycosis fungoides: A multicenter, retrospective follow-up study from the Italian Group of Cutaneous Lymphomas. Cancer 2012, 118, 5830–5839. [Google Scholar] [CrossRef]
- Khodadoust, M.S.; Rook, A.H.; Porcu, P.; Foss, F.; Moskowitz, A.J.; Shustov, A.; Shanbhag, S.; Sokol, L.; Fling, S.P.; Ramchurren, N. Pembrolizumab in relapsed and refractory mycosis fungoides and Sézary syndrome: A multicenter phase II study. J. Clin. Oncol. 2020, 38, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Lesokhin, A.M.; Ansell, S.M.; Armand, P.; Scott, E.C.; Halwani, A.; Gutierrez, M.; Millenson, M.M.; Cohen, A.D.; Schuster, S.J.; Lebovic, D. Nivolumab in patients with relapsed or refractory hematologic malignancy: Preliminary results of a phase Ib study. J. Clin. Oncol. 2016, 34, 2698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajewski, T.F.; Meng, Y.; Blank, C.; Brown, I.; Kacha, A.; Kline, J.; Harlin, H. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev. 2006, 213, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Tsujikawa, T.; Kumar, S.; Borkar, R.N.; Azimi, V.; Thibault, G.; Chang, Y.H.; Balter, A.; Kawashima, R.; Choe, G.; Sauer, D. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 2017, 19, 203–217. [Google Scholar] [CrossRef]
- Patel, S.S.; Weirather, J.L.; Lipschitz, M.; Lako, A.; Chen, P.-H.; Griffin, G.K.; Armand, P.; Shipp, M.A.; Rodig, S.J. The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4–positive T cells that are PD-1–negative. Blood J. Am. Soc. Hematol. 2019, 134, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Querfeld, C.; Leung, S.; Myskowski, P.L.; Curran, S.A.; Goldman, D.A.; Heller, G.; Wu, X.; Kil, S.H.; Sharma, S.; Finn, K.J.; et al. Primary T Cells from Cutaneous T-cell Lymphoma Skin Explants Display an Exhausted Immune Checkpoint Profile. Cancer Immunol. Res. 2018, 6, 900–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, D.; Roth, G. Adaptive thresholding using the integral image. J. Graph. Tools 2007, 12, 13–21. [Google Scholar] [CrossRef]
- Lefrançois, P.; Tetzlaff, M.T.; Moreau, L.; Watters, A.K.; Netchiporouk, E.; Provost, N.; Gilbert, M.; Ni, X.; Sasseville, D.; Duvic, M. TruSeq-Based gene expression analysis of formalin-fixed paraffin-embedded (FFPE) cutaneous T-cell lymphoma samples: Subgroup analysis results and elucidation of biases from FFPE sample processing on the TruSeq platform. Front. Med. 2017, 4, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvinov, I.V.; Tetzlaff, M.T.; Thibault, P.; Gangar, P.; Moreau, L.; Watters, A.K.; Netchiporouk, E.; Pehr, K.; Prieto, V.G.; Rahme, E. Gene expression analysis in Cutaneous T-Cell Lymphomas (CTCL) highlights disease heterogeneity and potential diagnostic and prognostic indicators. Oncoimmunology 2017, 6, e1306618. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef]
- Satija, R.; Farrell, J.A.; Gennert, D.; Schier, A.F.; Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 2015, 33, 495–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efremova, M.; Vento-Tormo, M.; Teichmann, S.A.; Vento-Tormo, R. CellPhoneDB: Inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 2020, 15, 1484–1506. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Kuehn, H.; Gould, J.; Tamayo, P.; Mesirov, J.P. GSEA-P: A desktop application for Gene Set Enrichment Analysis. Bioinformatics 2007, 23, 3251–3253. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Litvinov, I.V.; Wang, Y.; Su, M.-W.; Tu, P.; Jiang, X.; Kupper, T.S.; Dutz, J.P.; Sasseville, D.; Zhou, Y. Thymocyte selection-associated high mobility group box gene (TOX) is aberrantly over-expressed in mycosis fungoides and correlates with poor prognosis. Oncotarget 2014, 5, 4418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Yu, R.; Huang, Y.; Su, M.; Xiao, C.; Martinka, M.; Dutz, J.P.; Zhang, X.; Zheng, Z. Molecular markers of early-stage mycosis fungoides. J. Investig. Dermatol. 2012, 132, 1698–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimura, S.; Sugaya, M.; Suga, H.; Miyagaki, T.; Ohmatsu, H.; Fujita, H.; Asano, Y.; Tada, Y.; Kadono, T.; Sato, S. TOX expression in different subtypes of cutaneous lymphoma. Arch. Dermatol. Res. 2014, 306, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Dulmage, B.O.; Akilov, O.; Vu, J.R.; Falo, L.D.; Geskin, L.J. Dysregulation of the TOX-RUNX3 pathway in cutaneous T-cell lymphoma. Oncotarget 2019, 10, 3104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, M.A.; Mohamed, A.; Soltan, M.Y. Thymocyte selection-associated high-mobility group box as a potential diagnostic marker differentiating hypopigmented mycosis fungoides from early vitiligo: A pilot study. Indian J. Dermatol. Venereol. Leprol. 2019, 87, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Luo, Y.; Liu, J.; Liu, Y.; Sun, Q. TOX acts an oncological role in mycosis fungoides. PLoS ONE 2015, 10, e0117479. [Google Scholar] [CrossRef]
- Alberti-Violetti, S.; Talpur, R.; Schlichte, M.; Sui, D.; Duvic, M. Advanced-stage mycosis fungoides and Sézary syndrome: Survival and response to treatment. Clin. Lymphoma Myeloma Leuk. 2015, 15, e105–e112. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tham, D.; Wei, W.; Shin, Y.S.; Ma, C.; Ahmad, H.; Shi, Q.; Yu, J.; Levine, R.D.; Heath, J.R. Quantitating cell–cell interaction functions with applications to glioblastoma multiforme cancer cells. Nano Lett. 2012, 12, 6101–6106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borcherding, N.; Voigt, A.P.; Liu, V.; Link, B.K.; Zhang, W.; Jabbari, A. Single-cell profiling of cutaneous T-cell lymphoma reveals underlying heterogeneity associated with disease progression. Clin. Cancer Res. 2019, 25, 2996–3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinney, E.F.; Lee, J.C.; Jayne, D.R.; Lyons, P.A.; Smith, K.G. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 2015, 523, 612–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.; Huang, Z.-L.; He, M.; Gao, Z.; Kuang, D.-M. BTLA identifies dysfunctional PD-1-expressing CD4+ T cells in human hepatocellular carcinoma. Oncoimmunology 2016, 5, e1254855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, K.; Kansas, G.S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat. Rev. Immunol. 2004, 4, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Cordero, O.J.; Salgado, F.J.; Nogueira, M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol. Immunother. 2009, 58, 1723–1747. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, M.; Trabulo, S.; Hidalgo, M.; Costello, E.; Greenhalf, W.; Erkan, M.; Kleeff, J.; Sainz, B.; Heeschen, C. Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms. Clin. Cancer Res. 2015, 21, 2325–2337. [Google Scholar] [CrossRef] [Green Version]
- Edinger, J.T.; Clark, B.Z.; Pucevich, B.E.; Geskin, L.J.; Swerdlow, S.H. CD30 expression and proliferative fraction in non-transformed mycosis fungoides. Am. J. Surg. Pathol. 2009, 33, 1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folkes, A.S.; Feng, M.; Zain, J.M.; Abdulla, F.; Rosen, S.T.; Querfeld, C. Targeting CD47 as a cancer therapeutic strategy—The cutaneous T cell lymphoma experience. Curr. Opin. Oncol. 2018, 30, 332. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.D.; Banerjee, S.; Kruglov, O.; Viller, N.N.; Horwitz, S.M.; Lesokhin, A.; Zain, J.; Querfeld, C.; Chen, R.; Okada, C.; et al. Targeting CD47 in Sézary syndrome with SIRPαFc. Blood Adv. 2019, 3, 1145–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, E.A.; Whittaker, S.; Kim, Y.H.; Duvic, M.; Prince, H.M.; Lessin, S.R.; Wood, G.S.; Willemze, R.; Demierre, M.-F.; Pimpinelli, N. Clinical end points and response criteria in mycosis fungoides and Sézary syndrome: A consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J. Clin. Oncol. 2011, 29, 2598. [Google Scholar]
- Fuertes, M.B.; Kacha, A.K.; Kline, J.; Woo, S.-R.; Kranz, D.M.; Murphy, K.M.; Gajewski, T.F. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 2011, 208, 2005–2016. [Google Scholar] [CrossRef] [Green Version]
- Querfeld, C.; Thompson, J.A.; Taylor, M.H.; DeSimone, J.A.; Zain, J.M.; Shustov, A.R.; Johns, C.; McCann, S.; Lin, G.H.Y.; Petrova, P.S.; et al. Intralesional TTI-621, a novel biologic targeting the innate immune checkpoint CD47, in patients with relapsed or refractory mycosis fungoides or Sezary syndrome: A multicentre, phase 1 study. Lancet Haematol. 2021, 8, e808–e817. [Google Scholar] [CrossRef]
- Oldenborg, P.A. CD47: A Cell Surface Glycoprotein Which Regulates Multiple Functions of Hematopoietic Cells in Health and Disease. ISRN Hematol. 2013, 2013, 614–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sick, E.; Jeanne, A.; Schneider, C.; Dedieu, S.; Takeda, K.; Martiny, L. CD47 update: A multifaceted actor in the tumour microenvironment of potential therapeutic interest. Br. J. Pharmacol. 2012, 167, 1415–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Tan, M.; Zhang, S.; Li, X.; Gao, J.; Zhang, D.; Hao, Y.; Gao, S.; Liu, J.; Lin, B. Expression and significance of CD44, CD47 and c-met in ovarian clear cell carcinoma. Int. J. Mol. Sci. 2015, 16, 3391–3404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaiswal, S.; Jamieson, C.H.; Pang, W.W.; Park, C.Y.; Chao, M.P.; Majeti, R.; Traver, D.; van Rooijen, N.; Weissman, I.L. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009, 138, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Willingham, S.B.; Volkmer, J.P.; Gentles, A.J.; Sahoo, D.; Dalerba, P.; Mitra, S.S.; Wang, J.; Contreras-Trujillo, H.; Martin, R.; Cohen, J.D.; et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. USA 2012, 109, 6662–6667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, T.L.; Murphy, K.M. Slow down and survive: Enigmatic immunoregulation by BTLA and HVEM. Annu. Rev. Immunol. 2010, 28, 389–411. [Google Scholar] [CrossRef] [PubMed]
- Anzengruber, F.; Ignatova, D.; Schlaepfer, T.; Chang, Y.T.; French, L.E.; Pascolo, S.; Contassot, E.; Bobrowicz, M.; Hoetzenecker, W.; Guenova, E. Divergent LAG-3 versus BTLA, TIGIT, and FCRL3 expression in Sezary syndrome. Leuk. Lymphoma 2019, 60, 1899–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.L.; Lin, H.W.; Chien, C.L.; Lai, Y.L.; Sun, W.Z.; Chen, C.A.; Cheng, W.F. BTLA blockade enhances Cancer therapy by inhibiting IL-6/IL-10-induced CD19(high) B lymphocytes. J. Immunother. Cancer 2019, 7, 313. [Google Scholar] [CrossRef] [PubMed]
- Kamijo, H.; Miyagaki, T.; Takahashi-Shishido, N.; Nakajima, R.; Oka, T.; Suga, H.; Sugaya, M.; Sato, S. Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47. Leukemia 2020, 34, 845–856. [Google Scholar] [CrossRef]
- Del Prete, G.; De Carli, M.; Almerigogna, F.; Daniel, G.; Delios, M.; Zancuoghi, G.; Vinante, F.; Pizzolo, G.; Romagnani, S. Preferential expression of CD30 by human CD4+ T cells producing Th2-type cytokines. FASEB J. 1995, 9, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Chilosi, M.; Facchetti, F.; Notarangelo, L.D.; Romagnani, S.; Del Prete, G.; Almerigogna, F.; De Carli, M.; Pizzolo, G. CD30 cell expression and abnormal soluble CD30 serum accumulation in Omenn’s syndrome: Evidence for a T helper 2-mediated condition. Eur. J. Immunol. 1996, 26, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Caligaris-Cappio, F.; Bertero, M.; Converso, M.; Stacchini, A.; Vinante, F.; Romagnani, S.; Pizzolo, G. Circulating levels of soluble CD30, a marker of cells producing Th2-type cytokines, are increased in patients with systemic lupus erythematosus and correlate with disease activity. Clin. Exp. Rheumatol. 1995, 13, 339–343. [Google Scholar]
- Geskin, L.J.; Viragova, S.; Stolz, D.B.; Fuschiotti, P. Interleukin-13 is overexpressed in cutaneous T-cell lymphoma cells and regulates their proliferation. Blood J. Am. Soc. Hematol. 2015, 125, 2798–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadin, M.E.; Pavlov, I.Y.; Delgado, J.C.; Vonderheid, E.C. High soluble CD30, CD25, and IL-6 may identify patients with worse survival in CD30+ cutaneous lymphomas and early mycosis fungoides. J. Investig. Dermatol. 2012, 132, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Goyal, A.; Hordinsky, M.; Lazaryan, A. Impressive response of CD30-negative, treatment-refractory mycosis fungoides to brentuximab vedotin. Dermatol. Ther. 2019, 32, e12835. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Tavallaee, M.; Sundram, U.; Salva, K.A.; Wood, G.S.; Li, S.; Rozati, S.; Nagpal, S.; Krathen, M.; Reddy, S. Phase II investigator-initiated study of brentuximab vedotin in mycosis fungoides and Sézary syndrome with variable CD30 expression level: A multi-institution collaborative project. J. Clin. Oncol. 2015, 33, 3750. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.B. Converting cold into hot tumors by combining immunotherapies. Cell 2017, 170, 1055–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient | Sex | Diagnosis (Dx) | Age at Dx (y) | Stage at Dx | Age at Sample Collection | TTI-621 Clinical Trial | TNMB at Enrollment | Studies Performed | Prior Treatment(s) |
---|---|---|---|---|---|---|---|---|---|
MF01 | F | MF | 62 | IB | 70 | Yes | T3N0M0B0 | MSI, scRNA-seq * | bexarotene, NB-UVB, IFN, LEBT, ECP, brentuximab vedotin |
MF02 | M | MF | 66 | IIB | 68 | Yes | T3N0M0B0 | MSI | LEBT |
MF03 | F | MF | 42 | IA | 64 | Yes | T2bN0M0B0 | MSI | ECP, chlormethine, PUVA, bexarotene, MTX, pralatrexate, romidepsin |
MF04 | F | MF | 39 | IVA1 | 63 | Yes | T3N1M0B0 | MSI | ECP, IFN, allogeneic HSCT, LEBT, brentuximab vedotin, vbortezomib |
MF05 | M | MF | 60 | IB | 63 | Yes | T3N1M0B0 | MSI | bexarotene, IFN |
MF06 | M | MF | 59 | IA | 72 | Yes | T3N0M0B0 | MSI | LEBT, NB-UVB, bexarotene, IFN, chlormethine, pralatrexate |
MF07 | M | MF | 52 | IIB | 61 | Yes | T1bN0M0B0 | MSI, scRNA-seq * | LEBT, MTX, bexarotene, chlormethine |
MF08 | M | MF | 72 | IB | 72 | Yes | T1bN0M0B0 | MSI | None |
MF09 | F | MF | 66 | IIB | 72 | No | - | scRNA-seq | chlormethine, IFN, bexarotene, brentuximab vedotin, romidepsin, pralatrexate |
MF10 | F | MF | 83 | IIB | 83 | No | - | scRNA-seq | NB-UVB, pralatrexate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, T.T.; Kruglov, O.; Lin, G.H.Y.; Minic, A.; Jordan, K.; Uger, R.A.; Wong, M.; Shou, Y.; Akilov, O.E. Clinical Response to Anti-CD47 Immunotherapy Is Associated with Rapid Reduction of Exhausted Bystander CD4+ BTLA+ T Cells in Tumor Microenvironment of Mycosis Fungoides. Cancers 2021, 13, 5982. https://doi.org/10.3390/cancers13235982
Jiang TT, Kruglov O, Lin GHY, Minic A, Jordan K, Uger RA, Wong M, Shou Y, Akilov OE. Clinical Response to Anti-CD47 Immunotherapy Is Associated with Rapid Reduction of Exhausted Bystander CD4+ BTLA+ T Cells in Tumor Microenvironment of Mycosis Fungoides. Cancers. 2021; 13(23):5982. https://doi.org/10.3390/cancers13235982
Chicago/Turabian StyleJiang, Tony T., Oleg Kruglov, Gloria H. Y. Lin, Angela Minic, Kimberly Jordan, Robert A. Uger, Mark Wong, Yaping Shou, and Oleg E. Akilov. 2021. "Clinical Response to Anti-CD47 Immunotherapy Is Associated with Rapid Reduction of Exhausted Bystander CD4+ BTLA+ T Cells in Tumor Microenvironment of Mycosis Fungoides" Cancers 13, no. 23: 5982. https://doi.org/10.3390/cancers13235982
APA StyleJiang, T. T., Kruglov, O., Lin, G. H. Y., Minic, A., Jordan, K., Uger, R. A., Wong, M., Shou, Y., & Akilov, O. E. (2021). Clinical Response to Anti-CD47 Immunotherapy Is Associated with Rapid Reduction of Exhausted Bystander CD4+ BTLA+ T Cells in Tumor Microenvironment of Mycosis Fungoides. Cancers, 13(23), 5982. https://doi.org/10.3390/cancers13235982