Metformin as an Adjuvant to Photodynamic Therapy in Resistant Basal Cell Carcinoma Cells
"> Figure 1
<p>Cell survival after Photodynamic Therapy (PDT): Survival of P, 10 G, and 10 GT populations of (<b>a</b>) ASZ and (<b>b</b>) CSZ cell lines subjected to methyl-aminolevulinate (MAL)-PDT and evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazoliumbromide (MTT assay). MTT test was performed 24 h after PDT treatment (0.2 mM MAL for 5 h and subsequently exposed to variable doses of red light). The 10 G population showed the highest resistance to treatment in ASZ cell lines, whereas in CSZ, it was the 10 GT population. Values were represented as mean ± SD (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001) (<span class="html-italic">n</span> = 5).</p> "> Figure 2
<p>Proliferation capacity and metabolic characterization of Basal Cell Carcinoma (BCC) cells: (<b>a</b>) For the clonogenic assay, 50 cells/mL were seeded in each plate of 6 wells, and 7 days later, the colonies formed were stained with 0.2% crystal violet. Colonies were classified in relation to their diameter: small (<1 mm), medium (1–2 mm), and large (>2 mm) (<span class="html-italic">n</span> = 3). (<b>b</b>) Expression of the metabolic markers β-F1-ATPase and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) analyzed by western blot (WB); alphatubulin was used as loading control; and the ratio of β-F1-ATPase/GAPDH indicates the use of glucose by the cells, which was significantly lower in the resistant comparing to that of P cells (<span class="html-italic">n</span> = 5). (<b>c</b>) Pyruvate kinase M2 (PKM2) levels were higher in 10 G of ASZ compared to the P cells (<span class="html-italic">n</span> = 3). (<b>d</b>) Oxygen consumption rate (OCR) measurements over time (min) were determined by using an extracellular flux analyzer after the sequential addition of oligomycin (A), 2,4-Dinitrophenol (DNP) (B), and rotenone + antimycin (C) (<span class="html-italic">n</span> = 4). (<b>e</b>) Oligomycin-sensitive respiration, which represents the activity of oxidative phosphorylation (OXPHOS), was calculated as basal respiration – oligomycin respiration (<span class="html-italic">n</span> = 4). (<b>f</b>) Rates of lactate production determined spectrophotometrically (<span class="html-italic">n</span> = 6). Values were represented as mean ± SD (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>Metformin treatment: (<b>a</b>) Cell survival 24 h after Metf treatment in P and resistant populations of BCC cells evaluated by the MTT test. The P cells were dose dependent on Metf, and the resistant were less sensible than P cells. (<b>b</b>) Effect of 24 h treatment of Metf on cell cycle progression in P and resistant populations of ASZ and CSZ cells: Cell cycle distribution was analyzed by flow cytometry. Metf treatment induced a significant increase in the G1-G0 and a decrease in the S phases of all cell populations. (<b>c</b>) Mitochondrial membrane potential determined by JC-1 ratio (J-aggregate fluorescence/J-monomer fluorescence): The green and red fluorescence indicate J-monomers (low mitochondrial membrane potential) and J-aggregate (high mitochondrial membrane potential), respectively (<span class="html-italic">n</span> = 3). (<b>d</b>–<b>e</b>) Expression of the glycolytic markers (β-F1-ATPase/GAPDH ratio and PKM2) analyzed by WB in ASZ (<a href="#cancers-12-00668-f003" class="html-fig">Figure 3</a>d) and CSZ (<a href="#cancers-12-00668-f003" class="html-fig">Figure 3</a>e) cells (<span class="html-italic">n</span> = 5); alfa tubulin was used as loading control. (<b>f</b>) Real-time analysis of OCR in BCC cells after 24 h with 75 µM Metf and the sequential addition of oligomycin (A), 2,4-dinitrophenol (DNP) (B) and rotenone with antimycin (C) to the cells (<span class="html-italic">n</span> = 4). (<b>g</b>) Oligomycin sensitive respiration (OSR) after 24 h with 75 µM Metf, which represents the activity of OXPHOS, was calculated as basal respiration – oligomycin respiration (<span class="html-italic">n</span> = 4). (<b>h</b>) Rates of lactate production determined spectrophotometrically after 24 h with 75 µM Metf (<span class="html-italic">n</span> = 6). Values were represented as mean ± SD (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 4
<p>Combined treatment of Metf and MAL-PDT on cell viability: Cells were treated for 24 h with Metf (25–150 µM) and then subjected to MAL-PDT (0.2 mM MAL and 7.6 J/cm<sup>2</sup> in ASZ cells and 3.8 J/cm<sup>2</sup> in CSZ cells). Cell survival was evaluated by the MTT test. (<b>a</b>) The results obtained showed a decrease in the cell survival after the combined treatment compared to that obtained after Metf or PDT alone in (<b>a</b>) ASZ and (<b>a’</b>) CSZ cell lines. (<b>b</b>) Combined treatment provided a synergistic effect on cell viability in (<b>b</b>) ASZ and (<b>b’</b>) CSZ cell lines. The synergy/antagonism parameter DL (difference in logarithm) was calculated as follows: DL = (log cell survival percentage Metf + log cell survival percentage PDT) – log cell survival percentage combination. Values were represented as mean ± SD (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001) (<span class="html-italic">n</span> = 5).</p> "> Figure 5
<p>Effect of the combined treatment of Metf and MAL-PDT on BCC cell lines: (<b>a</b>) PpIX production was evaluated by flow cytometry after incubation with Metf (24 h, 75 µM), MAL (5 h, 0.2 mM), and Metf and MAL (24 h followed by 5 h, respectively). (<b>b</b>) Expression by western blot of AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway components: pAMPK, AMPK, pAKT, AKT, p-p70S6K and p70S6K after treatments (Metf, MAL-PDT, and Metf plus MAL-PDT). A representative experiment of each marker is shown, and pAMPK/AMPK, pAKT/AKT, and p-p70S6K/p70S6K densitometry graphics of both P and resistant populations of ASZ and CSZ cells are shown. Alfa tubulin was used as loading control. For each cell population, 4 conditions were evaluated: control; 24 h after 75µM Metf; 24 h after PDT treatment (5 h incubation with MAL and 7.6 J/cm<sup>2</sup> in ASZ and 3.8 J/cm<sup>2</sup> in CSZ cells); and combination of Metf and MAL-PDT. Values were represented as mean ± SD (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 6
<p>Effect of the treatments with Metf and/or PDT of ASZ tumors induced in mice: Photographs of the tumors at the time of sacrifice and the evolution of tumor volumes over time after the treatments in (<b>a</b>) P and (<b>b</b>) 10 G ASZ tumors. At day 9, when the tumors reached a volume of 50 mm<sup>3</sup>, they were treated with Metf (200 µg/mL diluted in drinking water along the rest of the experiment). At day 17, when the untreated group reached a volume of 100–200 mm<sup>3</sup>, the tumors were subjected to PDT or to Metf-PDT (2 mM MAL injected in 50 µL PBS, 4 h of incubation, and 25 J/cm<sup>2</sup> of red light). Tumor volume was measured every two days with a caliper. Values were represented as mean ± SD (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001) (<span class="html-italic">n</span> = 3). Scale bar = 10 mm. (<b>c</b>) Representative photographs of tumor sections at the end of the experiments stained with hematoxylin and eosin (H&E) (low and high magnification) and stained with the TUNEL (terminal deoxynucleotide transferase mediated X-dUTP nick end labeling) assay. The H&E showed that the tumors were formed by atypical keratinocytes infiltrating skeletal muscle fibers (asterisk). The treatment with Metf, PDT, and especially Metf + PDT provoked an increment of red blood cell extravasation in the dermis (black arrows) and extensive areas of cell death. The cell death areas were better observed after the TUNEL staining; dead cells appeared fluorescing in green particularly after the combined treatments applied in P tumors. Nuclei were counterstained with Höechst fluorochrome and fluoresced in blue.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Cells Survival Evaluation after PDT
2.2. Proliferation Capacity and Metabolic Characterization
2.3. Metformin Treatment
2.4. Combined Treatment of Metf and MAL-PDT on BCC Cell Lines
2.5. Effect of Metf and MAL-PDT on Tumor Growth Inhibition In Vivo
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Treatments
4.3. Cellular Toxicity
4.4. Cell Proliferation
4.5. Western Blots
4.6. Determination of Cellular Respiration and Rates of Glycolysis
4.7. Detection of JC-1 Fluorescence
4.8. Cell Cycle
4.9. Production of PpIX
4.10. Evaluation of the Synergistic Effect after Combined Treatment
4.11. In Vivo Experiments
4.12. Optical Microscopy
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Full Names |
AMPK | AMP-activated protein kinase |
β-F1-ATPase | β-catalytic subunit of the mitochondrial H+-ATP synthase |
BCC | Basal Cell Carcinoma |
CSP | Cell survival percentage |
DL | Difference in logarithms |
DMEM | Dulbecco’s modified Eagle’s medium high glucose |
DMSO | Dimethyl sulfoxide |
DNP | 2,4-Dinitrophenol |
FBS | Fetal bovine serum |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
JC-1 | 5,5′6,6′- tetrachloro- 1,1′,3,3′- tetraethyl- benzamidazole carbo-cyanine iodide |
MAL | Methyl-aminolevulinate |
Metf | Metformin |
mTOR | Mammalian target of rapamycin |
MTT | 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazoliumbromide |
OCR | Oxygen consumption rate |
OSR | Oligomycin sensitive respiration |
OXPHOS | Oxidative phosphorilation |
PDT | Photodynamic therapy |
PKM2 | Pyruvate kinase M2 |
PpPIX | Protoporphytin IX |
PS | Photosensitizer |
ROS | Reactive oxygen species |
References
- Verkouteren, J.; Ramdas, K.; Wakkee, M.; Nijsten, T. Epidemiology of Basal Cell Carcinoma: Scholarly Review. Br. J. Dermatol. 2017, 177, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Lucena, S.R.; Zamarrón, A.; Carrasco, E.; Marigil, M.A.; Mascaraque, M.; Fernández-Guarino, M.; Gilaberte, Y.; González, S.; Juarranz, A. Characterisation of Resistance Mechanisms Developed by Basal Cell Carcinoma Cells in Response to Repeated Cycles of Photodynamic Therapy. Sci. Rep. 2019, 9, 4835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanoue, J.; Goldenberg, G. Basal Cell Carcinoma: A Comprehensive Review of Existing and Emerging Nonsurgical Therapies. J. Clin. Aesthet. Dermatol. 2016, 9, 26–36. [Google Scholar] [PubMed]
- Collier, N.; Haylett, A.; Wong, T.; Morton, C.; Ibbotson, S.; McKenna, K.; Mallipeddi, R.; Moseley, H.; Seukeran, D.; Ward, K. Conventional and Combination Topical Photodynamic Therapy for Basal Cell Carcinoma: Systematic Review and Meta-analysis. Br. J. Dermatol. 2018, 179, 1277–1296. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Xiong, L.; Chen, W.; Zhao, X.; He, J.; Zheng, Y.; Kong, F.; Liu, X.; Zhang, Z.; Miao, X. Photodynamic Therapy for Middle-Advanced Stage Upper Gastrointestinal Carcinomas: A Systematic Review and Meta-Analysis. World J. Clin. Cases 2018, 6, 650. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Li, B. Photodynamic Therapy for Prostate Cancer: A Systematic Review and Meta-Analysis. Prostate Int. 2018, 7, 83–90. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D. Photodynamic Therapy of Cancer: An Update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Ang, J.M.; Riaz, I.B.; Kamal, M.U.; Paragh, G.; Zeitouni, N.C. Photodynamic Therapy and Pain: A Systematic Review. Photodiagn. Photodyn. 2017, 19, 308–344. [Google Scholar] [CrossRef]
- Calixto, G.; Bernegossi, J.; de Freitas, L.; Fontana, C.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules 2016, 21, 342. [Google Scholar] [CrossRef]
- Cohen, D.; Lee, P. Photodynamic Therapy for Non-Melanoma Skin Cancers. Cancers 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuezva, J.M.; Krajewska, M.; de Heredia, M.L.; Krajewski, S.; Santamaria, G.; Kim, H.; Zapata, J.M.; Marusawa, H.; Chamorro, M.; Reed, J.C. The Bioenergetic Signature of Cancer: A Marker of Tumor Progression. Cancer Res. 2002, 62, 6674–6681. [Google Scholar] [PubMed]
- Lopez-Rios, F.; Sanchez-Arago, M.; Garcia-Garcia, E.; Ortega, A.D.; Berrendero, J.R.; Pozo-Rodriguez, F.; Lopez-Encuentra, A.; Ballestin, C.; Cuezva, J.M. Loss of the Mitochondrial Bioenergetic Capacity Underlies the Glucose Avidity of Carcinomas. Cancer Res. 2007, 67, 9013–9017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, B.; Mohd Omar, M.F.; Soong, R. The Warburg Effect and Drug Resistance. Br. J. Pharmacol. 2016, 173, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Aragó, M.; Cuezva, J.M. The Bioenergetic Signature of Isogenic Colon Cancer Cells Predicts the Cell Death Response to Treatment with 3-Bromopyruvate, Iodoacetate Or 5-Fluorouracil. J. Transl. Med. 2011, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Santamaría, G.; Martínez-Diez, M.; Fabregat, I.; Cuezva, J.M. Efficient Execution of Cell Death in Non-Glycolytic Cells Requires the Generation of ROS Controlled by the Activity of Mitochondrial H -ATP Synthase. Carcinogenesis 2005, 27, 925–935. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.; Mao, Q.; Xia, W.; Xu, Y.; Wang, J.; Xu, L.; Jiang, F. PKM2 and Cancer: The Function of PKM2 Beyond Glycolysis. Oncol. Lett. 2016, 11, 1980–1986. [Google Scholar] [CrossRef] [Green Version]
- Courtnay, R.; Ngo, D.C.; Malik, N.; Ververis, K.; Tortorella, S.M.; Karagiannis, T.C. Cancer Metabolism and the Warburg Effect: The Role of HIF-1 and PI3K. Mol. Biol. Rep. 2015, 42, 841–851. [Google Scholar] [CrossRef]
- Yecies, J.L.; Manning, B.D. mTOR Links Oncogenic Signaling to Tumor Cell Metabolism. J. Mol. Med. 2011, 89, 221–228. [Google Scholar] [CrossRef]
- Coyle, C.; Cafferty, F.; Vale, C.; Langley, R. Metformin as an Adjuvant Treatment for Cancer: A Systematic Review and Meta-Analysis. Ann. Oncol. 2016, 27, 2184–2195. [Google Scholar] [CrossRef]
- Heckman-Stoddard, B.M.; DeCensi, A.; Sahasrabuddhe, V.V.; Ford, L.G. Repurposing Metformin for the Prevention of Cancer and Cancer Recurrence. Diabetologia 2017, 60, 1639–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Checkley, L.A.; Rho, O.; Angel, J.M.; Cho, J.; Blando, J.; Beltran, L.; Hursting, S.D.; DiGiovanni, J. Metformin Inhibits Skin Tumor Promotion in Overweight and Obese Mice. Cancer Prev. Res. 2014, 7, 54–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osaki, T.; Yokoe, I.; Takahashi, K.; Inoue, K.; Ishizuka, M.; Tanaka, T.; Azuma, K.; Maruhata, Y.; Tsuka, T.; Itoh, N.; et al. Metformin enhances the cytotoxicity of 5-aminolevulinic acid-mediated photodynamic therapy in vitro. Oncol. Lett. 2017, 14, 1049–1053. [Google Scholar] [CrossRef]
- Nenu, I.; Popescu, T.; Aldea, M.D.; Craciun, L.; Olteanu, D.; Tatomir, C.; Bolfa, P.; Ion, R.M.; Muresan, A.; Filip, A.G. Metformin associated with photodynamic therapy–a novel oncological direction. J. Photochem. Photobiol. B 2014, 138, 80–91. [Google Scholar] [CrossRef]
- So, P.; Langston, A.W.; Daniallinia, N.; Hebert, J.L.; Fujimoto, M.A.; Khaimskiy, Y.; Aszterbaum, M.; Epstein, E.H., Jr. Long-term Establishment, Characterization and Manipulation of Cell Lines from Mouse Basal Cell Carcinoma Tumors. Exp. Dermatol. 2006, 15, 742–750. [Google Scholar] [CrossRef]
- Kuonen, F.; Surbeck, I.; Sarin, K.Y.; Dontenwill, M.; Rüegg, C.; Gilliet, M.; Oro, A.E.; Gaide, O. TGFβ, Fibronectin and Integrin α5β1 Promote Invasion in Basal Cell Carcinoma. J. Investig. Dermatol. 2018, 138, 2432–2442. [Google Scholar] [CrossRef] [Green Version]
- Morton, C.; Szeimies, R.; Sidoroff, A.; Wennberg, A.; Basset-Seguin, N.; Calzavara-Pinton, P.; Gilaberte, Y.; Hofbauer, G.; Hunger, R.; Karrer, S. European Dermatology Forum Guidelines on Topical Photodynamic Therapy. Eur. J. Dermatol. 2015, 25, 296–311. [Google Scholar] [CrossRef]
- Sun, L.; Suo, C.; Li, S.; Zhang, H.; Gao, P. Metabolic Reprogramming for Cancer Cells and their Microenvironment: Beyond the Warburg Effect. BBA Rev. Cancer 2018, 1870, 51–66. [Google Scholar] [CrossRef]
- Grasso, C.; Jansen, G.; Giovannetti, E. Drug Resistance in Pancreatic Cancer: Impact of Altered Energy Metabolism. Crit. Rev. Oncol. Hemat. 2017, 114, 139–152. [Google Scholar] [CrossRef]
- Morandi, A.; Indraccolo, S. Linking Metabolic Reprogramming to Therapy Resistance in Cancer. BBA Rev. Cancer 2017, 1868, 1–6. [Google Scholar] [CrossRef]
- Rosa, R.; Monteleone, F.; Zambrano, N.; Bianco, R. In Vitro and in Vivo Models for Analysis of Resistance to Anticancer Molecular Therapies. Curr. Med. Chem. 2014, 21, 1595–1606. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, C.; Sfakianaki, M.; Lagoudaki, E.; Giagkas, G.; Ioannidis, G.; Trypaki, M.; Tsakalaki, E.; Voutsina, A.; Koutsopoulos, A.; Mavroudis, D. PKM2 as a Biomarker for Chemosensitivity to Front-Line Platinum-Based Chemotherapy in Patients with Metastatic Non-Small-Cell Lung Cancer. Br. J. Cancer 2014, 111, 1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Cenizo, L.; Formentini, L.; Aldea, M.; Ortega, A.D.; Garcia-Huerta, P.; Sanchez-Arago, M.; Cuezva, J.M. Up-Regulation of the ATPase Inhibitory Factor 1 (IF1) of the Mitochondrial H+-ATP Synthase in Human Tumors Mediates the Metabolic Shift of Cancer Cells to a Warburg Phenotype. J. Biol. Chem. 2010, 285, 25308–25313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Gu, J.; Zhou, Q. Review of Aerobic Glycolysis and its Key Enzymes–new Targets for Lung Cancer Therapy. Thorac. Cancer 2015, 6, 17–24. [Google Scholar] [CrossRef]
- Thirupathi, A.; Chang, Y. Role of AMPK and its Molecular Intermediates in Subjugating Cancer Survival Mechanism. Life Sci. 2019, 227, 30–38. [Google Scholar] [CrossRef]
- Bensinger, S.J.; Christofk, H.R. New Aspects of the Warburg Effect in Cancer Cell Biology. Semin. Cell Dev. Biol. 2012, 23, 352–361. [Google Scholar] [CrossRef]
- Faubert, B.; Vincent, E.E.; Poffenberger, M.C.; Jones, R.G. The AMP-Activated Protein Kinase (AMPK) and Cancer: Many Faces of a Metabolic Regulator. Cancer Lett. 2015, 356, 165–170. [Google Scholar] [CrossRef]
- Alimova, I.N.; Liu, B.; Fan, Z.; Edgerton, S.M.; Dillon, T.; Lind, S.E.; Thor, A.D. Metformin Inhibits Breast Cancer Cell Growth, Colony Formation and Induces Cell Cycle Arrest in Vitro. Cell Cycle 2009, 8, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Isakovic, A.; Harhaji, L.; Stevanovic, D.; Markovic, Z.; Sumarac-Dumanovic, M.; Starcevic, V.; Micic, D.; Trajkovic, V. Dual Antiglioma Action of Metformin: Cell Cycle Arrest and Mitochondria-Dependent Apoptosis. Cell. Mol. Life Sci. 2007, 64, 1290. [Google Scholar] [CrossRef]
- Vancura, A.; Bu, P.; Bhagwat, M.; Zeng, J.; Vancurova, I. Metformin as an Anticancer Agent. Trends Pharmacol. Sci. 2018, 39, 867–878. [Google Scholar] [CrossRef]
- Harada, K.; Ferdous, T.; Harada, T.; Ueyama, Y. Metformin in Combination with 5-Fluorouracil Suppresses Tumor Growth by Inhibiting the Warburg Effect in Human Oral Squamous Cell Carcinoma. Int. J. Oncol. 2016, 49, 276–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos Guimarães, I.; Ladislau-Magescky, T.; Tessarollo, N.G.; dos Santos, D.Z.; Gimba, E.R.P.; Sternberg, C.; Silva, I.V.; Rangel, L.B.A. Chemosensitizing Effects of Metformin on Cisplatin-and Paclitaxel-Resistant Ovarian Cancer Cell Lines. Pharmacol. Rep. 2018, 70, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Guo, X. Combinational Strategies of Metformin and Chemotherapy in Cancers. Cancer Chemother. Pharmacol. 2016, 78, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.Z.; Dias, M.M.; Ropelle, E.R.; Osorio-Costa, F.; Rossato, F.A.; Vercesi, A.E.; Saad, M.J.; Carvalheira, J.B. Metformin Amplifies Chemotherapy-Induced AMPK Activation and Antitumoral Growth. Clin. Cancer Res. 2011, 17, 3993–4005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honjo, S.; Ajani, J.A.; Scott, A.W.; Chen, Q.; Skinner, H.D.; Stroehlein, J.; Johnson, R.L.; Song, S. Metformin Sensitizes Chemotherapy by Targeting Cancer Stem Cells and the mTOR Pathway in Esophageal Cancer. Int. J. Oncol. 2014, 45, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Iliopoulos, D.; Hirsch, H.A.; Struhl, K. Metformin Decreases the Dose of Chemotherapy for Prolonging Tumor Remission in Mouse Xenografts Involving Multiple Cancer Cell Types. Cancer Res. 2011, 71, 3196–3201. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Hu, D.; Hu, S.; Yan, M.; Sun, Z.; Chen, F. In Vitro and in Vivo Anti-Tumor Effect of Metformin as a Novel Therapeutic Agent in Human Oral Squamous Cell Carcinoma. BMC Cancer 2012, 12, 517. [Google Scholar] [CrossRef] [Green Version]
- Tudor, D.; Nenu, I.; Filip, G.A.; Olteanu, D.; Cenariu, M.; Tabaran, F.; Ion, R.M.; Gligor, L.; Baldea, I. Combined Regimen of Photodynamic Therapy Mediated by Gallium Phthalocyanine Chloride and Metformin Enhances Anti-Melanoma Efficacy. PLoS ONE 2017, 12, e0173241. [Google Scholar] [CrossRef]
- Elefantova, K.; Lakatos, B.; Kubickova, J.; Sulova, Z.; Breier, A. Detection of the Mitochondrial Membrane Potential by the Cationic Dye JC-1 in L1210 Cells with Massive Overexpression of the Plasma Membrane ABCB1 Drug Transporter. Int. J. Mol. Sci. 2018, 19, 1985. [Google Scholar] [CrossRef] [Green Version]
- Foucquier, J.; Guedj, M. Analysis of Drug Combinations: Current Methodological Landscape. Pharmacol. Res. Perspect. 2015, 3, e00149. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascaraque, M.; Delgado-Wicke, P.; Nuevo-Tapioles, C.; Gracia-Cazaña, T.; Abarca-Lachen, E.; González, S.; Cuezva, J.M.; Gilaberte, Y.; Juarranz, Á. Metformin as an Adjuvant to Photodynamic Therapy in Resistant Basal Cell Carcinoma Cells. Cancers 2020, 12, 668. https://doi.org/10.3390/cancers12030668
Mascaraque M, Delgado-Wicke P, Nuevo-Tapioles C, Gracia-Cazaña T, Abarca-Lachen E, González S, Cuezva JM, Gilaberte Y, Juarranz Á. Metformin as an Adjuvant to Photodynamic Therapy in Resistant Basal Cell Carcinoma Cells. Cancers. 2020; 12(3):668. https://doi.org/10.3390/cancers12030668
Chicago/Turabian StyleMascaraque, Marta, Pablo Delgado-Wicke, Cristina Nuevo-Tapioles, Tamara Gracia-Cazaña, Edgar Abarca-Lachen, Salvador González, José M. Cuezva, Yolanda Gilaberte, and Ángeles Juarranz. 2020. "Metformin as an Adjuvant to Photodynamic Therapy in Resistant Basal Cell Carcinoma Cells" Cancers 12, no. 3: 668. https://doi.org/10.3390/cancers12030668
APA StyleMascaraque, M., Delgado-Wicke, P., Nuevo-Tapioles, C., Gracia-Cazaña, T., Abarca-Lachen, E., González, S., Cuezva, J. M., Gilaberte, Y., & Juarranz, Á. (2020). Metformin as an Adjuvant to Photodynamic Therapy in Resistant Basal Cell Carcinoma Cells. Cancers, 12(3), 668. https://doi.org/10.3390/cancers12030668