Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells
"> Figure 1
<p>The transfer of Pheophorbide from PEO-PCL and PEO-PS micelles to Large Unilamellar Vesicles LUVs. (<b>a</b>) Determination of Pheo association constant, <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>a</mi> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math>, for the polymer micelles assessed by fluorescence experiments. Statistical analysis by t-test, *** = <span class="html-italic">p</span> < 0.001 (<b>b</b>). The transfer of Pheo from PBS solution (free Pheo) and Pheo loaded copolymer micelles to liposomes assessed by Förster Resonance Energy Transfer. <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>t</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math> is the constant of Pheo transfer in the different conditions. Statistical analysis by One-way Anova followed by Tukey’s multiple comparisons test. ns = non-significant; Data are represented as the mean value ± SEM.</p> "> Figure 2
<p>Pheophorbide fluorescence in human tumor cells exposed to Pheo loaded PEO-PCL and PEO-PS micelles. (<b>a</b>) Quantification by flow cytometry of Pheo fluorescence in HCT-116 when incubated over 24 h with Pheo in PBS (free Pheo) or Pheo loaded PEO-PCL or PEO-PS micelles. (<b>b</b>) Quantification by flow cytometry of Pheo fluorescence in A375 cells when incubated over 24 h with Pheo in PBS (free Pheo) or Pheo loaded PEO-PCL or PEO-PS micelles. <span class="html-italic">n</span> = 4. Data are represented as the mean value ± SEM.</p> "> Figure 3
<p>Transfer of polymers from micelles to LUVs. (<b>a</b>) Analysis of Rhodamine labelled PEO-PCL transfer from PEO-PCL micelles to NBD-LUVs, assessed by FRET. (<b>b</b>) Carboxyfluoresceine leakage from DOPC LUVs alone and DOPC LUVs challenged with free Pheo and with the PEO-PCL and PEO-PS micelles.</p> "> Figure 4
<p>Internalization of PEO-PCL by human tumor cells. (<b>a</b>) Comparison of cell penetration kinetics of Pheo loaded PEO-PCL micelles and rhodamine labelled PEO-PCL micelles, quantified by flow cytometry in HCT-116. (<b>b</b>) Comparison of cell penetration kinetics of Pheo loaded PEO-PCL micelles and rhodamine labelled PEO-PCL micelles, quantified by flow cytometry in HCT-116. <span class="html-italic">n</span> = 4. Data are represented as the mean value ± SEM.</p> "> Figure 5
<p>Analysis of Pheo loaded micelles interactions with liposomes under light irradiation. (<b>a</b>) The permeability of liposomes was quantified by fluorescence through carboxyfluoresceine (CBF) leakage. Dashed bar indicates light irradiation. LUV = Large Unilamellar Vesicle. (<b>b</b>) P = permeability constant. (<b>c</b>) Singlet oxygen quantum yield of free Pheo of Pheo loaded micelles quantified by spectrophotometric analysis. (<b>d</b>) Determination of oxidation rate constant from fitted UPLC-MS data. *** = <span class="html-italic">p</span> < 0.001.</p> "> Figure 6
<p>Assessment of tumor cell viability after PDT treatment with Pheo loaded PEO-PCL and PEO-PS micelles in 2D monolayers and flow cytometry analysis of Pheo levels in cells. (<b>a</b>) Cell viability was quantified 24 h after PDT treatment on monolayers using prestoblue assay. <span class="html-italic">n</span> = 3, <span class="html-italic">n</span> > 15. (<b>b</b> and <b>c</b>) After 30 min of incubation with Pheo loaded micelles or free Pheo, cells were analyzed by flow cytometry for positively labelled cells percentage (<b>b</b>) and the fluorescence intensity of Pheo in positively labelled cells (<b>c</b>). Statistical analysis by one-way ANOVA followed by Tukey’s multiple comparisons test. ns = non-significant; **** = <span class="html-italic">p</span> < 0.0001. Data are represented as the mean value ± SEM.</p> "> Figure 7
<p>Assessment of tumor cell viability after PDT treatment with Pheo loaded PEO-PCL and PEO-PS micelles on 3D spheroids. (<b>a</b>) Growth curve of tumor spheroids after PDT treatment. <span class="html-italic">n</span> = 6. (<b>b)</b> Cell viability assessed 6 days after PDT treatment by intracellular ATP quantification on spheroids. <span class="html-italic">n</span> = 6. Statistical analysis by one (<b>b</b>) or two (<b>a</b>) –way ANOVA followed by Tukey’s multiple comparisons test. ns = non-significant; * = <span class="html-italic">p</span> < 0.1, ** = <span class="html-italic">p</span> < 0.05, **** = <span class="html-italic">p</span> < 0.0001. Data are represented as the mean value ± SEM.</p> "> Figure A1
<p>Morphological aspect of 2D monolayers and 3D tumor spheroids produced with human colorectal HCT-116 and human melanoma A375 cell lines.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Pheophorbide a Delivery from the Nanocarriers to Biomimetic Membranes and Human Cells
2.2. Polymer Incorporation to Biomimetic Membranes and Human Cells
2.3. Interactions of Pheophorbide-Loaded Micelles with LUVs under Light Irradiation
2.4. Pheo Loaded PEO-PCL and PEO-PS Micelles Affect Significantly and Similarly Tumor Cell Viability after PDT Treatment in 2D and 3D Cell Cultures
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of block-copolymer micelles and Large Unilamellar Vesicles
4.3. Association Constants
4.4. Förster Resonance Energy Transfer Measurements (FRET)
4.4.1. Pheo/rhodamine FRET
4.4.2. NBD/rhodamine FRET
4.5. Singlet Oxygen Quantum Yield
4.6. Leakage Experiments
4.7. Oxidation Experiments
4.8. Cell Culture
4.9. Determination by Flow Cytometry of Photosensitizer Penetration in Cells Grown in Monolayer
4.10. Determination by Flow Cytometry of Rhodamine-PEO PCL Polymer Penetration in Cells Grown in Monolayer
4.11. Cell Viability Assessement after Photodynamic Therapy of Monolayers
4.12. Photodynamic Therapy of 3D Tumor Spheroids
4.13. Cell Viability Assessement after Photodynamic Therapy of Spheroids
4.14. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Doogue, M.P.; Polasek, T.M. The ABCD of clinical pharmacokinetics. Ther. Adv. Drug Saf. 2013, 4, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Riehemann, K.; Schneider, S.W.; Luger, T.A.; Godin, B.; Ferrari, M.; Fuchs, H. Nanomedicine—Challenge and Perspectives. Angew. Chem. Int. Ed. 2009, 48, 872–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beija, M.; Salvayre, R.; Lauth-de Viguerie, N.; Marty, J.-D. Colloidal systems for drug delivery: From design to therapy. Trends Biotechnol. 2012, 30, 485–496. [Google Scholar] [CrossRef]
- Matsumura, Y.; Maeda, H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986, 46, 6387–6392. [Google Scholar] [PubMed]
- Maeda, H. Tumor-Selective Delivery of Macromolecular Drugs via the EPR Effect: Background and Future Prospects. Bioconjug. Chem. 2010, 21, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Weissig, V.; Pettinger, T.K.; Murdock, N. Nanopharmaceuticals (Part 1): Products on the Market. Available online: https://www.dovepress.com/nanopharmaceuticals-part-1-products-on-the-market-peer-reviewed-fulltext-article-IJN (accessed on 10 October 2019).
- Maeda, H.; Tsukigawa, K.; Fang, J. A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy—Problems, Solutions, and Prospects. Microcirculation 2016, 23, 173–182. [Google Scholar] [CrossRef]
- Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 2016, 27, 2225–2238. [Google Scholar] [CrossRef]
- Nel, A.; Ruoslahti, E.; Meng, H. New Insights Into “Permeability” as in the Enhanced Permeability and Retention Effect of Cancer Nanotherapeutics; ACS Publications: Washington, DC, USA, 2017; ISBN 1936-0851. [Google Scholar]
- Matsumoto, Y.; Nichols, J.W.; Toh, K.; Nomoto, T.; Cabral, H.; Miura, Y.; Christie, R.J.; Yamada, N.; Ogura, T.; Kano, M.R. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 2016, 11, 533. [Google Scholar] [CrossRef]
- Bertrand, N.; Leroux, J.-C. The journey of a drug-carrier in the body: An anatomo-physiological perspective. J. Control. Release 2012, 161, 152–163. [Google Scholar] [CrossRef]
- Meng, H.; Leong, W.; Leong, K.W.; Chen, C.; Zhao, Y. Walking the line: The fate of nanomaterials at biological barriers. Biomaterials 2018, 174, 41–53. [Google Scholar] [CrossRef]
- Mohammad-Hadi, L.; MacRobert, A.J.; Loizidou, M.; Yaghini, E. Photodynamic therapy in 3D cancer models and the utilisation of nanodelivery systems. Nanoscale 2018, 10, 1570–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Master, A.; Livingston, M.; Gupta, A.S. Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. J. Control. Release 2013, 168, 88–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Yan, L. Functional polymer nanocarriers for photodynamic therapy. Pharmaceuticals 2018, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Meier, D.; Botter, S.M.; Campanile, C.; Robl, B.; Gräfe, S.; Pellegrini, G.; Born, W.; Fuchs, B. Foscan and foslip based photodynamic therapy in osteosarcoma in vitro and in intratibial mouse models. Int. J. Cancer 2017, 140, 1680–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obaid, G.; Broekgaarden, M.; Bulin, A.-L.; Huang, H.-C.; Kuriakose, J.; Liu, J.; Hasan, T. Photonanomedicine: A convergence of photodynamic therapy and nanotechnology. Nanoscale 2016, 8, 12471–12503. [Google Scholar] [CrossRef] [PubMed]
- Gibot, L.; Lemelle, A.; Till, U.; Moukarzel, B.; Mingotaud, A.-F.; Pimienta, V.; Saint-Aguet, P.; Rols, M.-P.; Gaucher, M.; Violleau, F.; et al. Polymeric Micelles Encapsulating Photosensitizer: Structure/Photodynamic Therapy Efficiency Relation. Biomacromolecules 2014, 15, 1443–1455. [Google Scholar] [CrossRef] [PubMed]
- Montis, C.; Till, U.; Vicendo, P.; Roux, C.; Mingotaud, A.-F.; Violleau, F.; Demazeau, M.; Berti, D.; Lonetti, B. Extended photo-induced endosome-like structures in giant vesicles promoted by block-copolymer nanocarriers. Nanoscale 2018, 10, 15442–15446. [Google Scholar] [CrossRef] [Green Version]
- Till, U.; Gibot, L.; Mingotaud, C.; Vicendo, P.; Rols, M.-P.; Gaucher, M.; Violleau, F.; Mingotaud, A.-F. Self-assembled polymeric vectors mixtures: Characterization of the polymorphism and existence of synergistic effects in photodynamic therapy. Nanotechnology 2016, 27, 315102. [Google Scholar] [CrossRef]
- Till, U.; Gibot, L.; Vicendo, P.; Rols, M.-P.; Gaucher, M.; Violleau, F.; Mingotaud, A.-F. Crosslinked polymeric self-assemblies as an efficient strategy for photodynamic therapy on a 3D cell culture. RSC Adv. 2016, 6, 69984–69998. [Google Scholar] [CrossRef] [Green Version]
- Figarol, A.; Gibot, L.; Golzio, M.; Lonetti, B.; Mingotaud, A.-F.; Rols, M.-P. A journey from the endothelium to the tumor tissue: Distinct behavior between PEO-PCL micelles and polymersomes nanocarriers. Drug Deliv. 2018, 25, 1766–1778. [Google Scholar] [CrossRef] [Green Version]
- Knop, K.; Mingotaud, A.-F.; El-Akra, N.; Violleau, F.; Souchard, J.-P. Monomeric pheophorbide(a)-containing poly(ethyleneglycol-b-ε-caprolactone) micelles for photodynamic therapy. Photochem. Photobiol. Sci. 2009, 8, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Ehrhart, J.; Mingotaud, A.-F.; Violleau, F. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly (ethyleneglycol-b-ɛ-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy. J. Chromatogr. A 2011, 1218, 4249–4256. [Google Scholar] [CrossRef] [PubMed]
- Roeder, B.; Wabnitz, H. Time-resolved fluorescence spectroscopy of hematoporphyrin, mesoporphyrin, pheophorbide a and chlorin e6 in ethanol and aqueous solution. J. Photochem. Photobiol. B 1987, 1, 103–113. [Google Scholar] [CrossRef]
- Kuzelova, K.; Brault, D. Kinetic and equilibrium studies of porphyrin interactions with unilamellar lipidic vesicles. Biochemistry 1994, 33, 9447–9459. [Google Scholar] [CrossRef] [PubMed]
- Kerdous, R.; Sureau, F.; Bour, A.; Bonneau, S. Release kinetics of an amphiphilic photosensitizer by block-polymer nanoparticles. Int. J. Pharm. 2015, 495, 750–760. [Google Scholar] [CrossRef]
- Tanielian, C.; Wolff, C.; Esch, M. Singlet oxygen production in water: Aggregation and charge-transfer effects. J. Phys. Chem. 1996, 100, 6555–6560. [Google Scholar] [CrossRef]
- Pashkovskaya, A.; Kotova, E.; Zorlu, Y.; Dumoulin, F.; Ahsen, V.; Agapov, I.; Antonenko, Y. Light-Triggered Liposomal Release: Membrane Permeabilization by Photodynamic Action. Langmuir 2010, 26, 5726–5733. [Google Scholar] [CrossRef]
- Simulation et Ajustement. Available online: http://cinet.chim.pagesperso-orange.fr/tele_sa/install_Sa.html (accessed on 18 December 2019).
- Maehara, Y.; Anai, H.; Tamada, R.; Sugimachi, K. The ATP assay is more sensitive than the succinate dehydrogenase inhibition test for predicting cell viability. Eur. J. Cancer Clin. Oncol. 1987, 23, 273–276. [Google Scholar] [CrossRef]
- Van Nostrum, C.F. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv. Drug Deliv. Rev. 2004, 56, 9–16. [Google Scholar] [CrossRef]
- Ding, J.; Chen, L.; Xiao, C.; Chen, L.; Zhuang, X.; Chen, X. Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem. Commun. 2014, 50, 11274–11290. [Google Scholar] [CrossRef]
- Till, U.; Gibot, L.; Mingotaud, A.-F.; Ehrhart, J.; Wasungu, L.; Mingotaud, C.; Souchard, J.-P.; Poinso, A.; Rols, M.-P.; Violleau, F.; et al. Drug Release by Direct Jump from Poly(ethylene-glycol-b-ε-caprolactone) Nano-Vector to Cell Membrane. Molecules 2016, 21, 1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glavas, L.; Olsén, P.; Odelius, K.; Albertsson, A.-C. Achieving Micelle Control through Core Crystallinity. Biomacromolecules 2013, 14, 4150–4156. [Google Scholar] [CrossRef] [PubMed]
- Kubát, P.; Henke, P.; Raya, R.K.; Stepanek, M.; Mosinger, J. Polystyrene and Poly (ethylene glycol)-b-Poly (ε-caprolactone) Nanoparticles with Porphyrins: Structure, Size, and Photooxidation Properties. Langmuir 2019, 36, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Wang, L.; Lin, J. Interaction Pathways between Plasma Membrane and Block Copolymer Micelles. Biomacromolecules 2017, 18, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, S.; Redhead, M.; Mantovani, G.; Alexander, C.; Bosquillon, C.; Carbone, P. Interactions of PEO–PPO–PEO block copolymers with lipid membranes: A computational and experimental study linking membrane lysis with polymer structure. Soft Matter 2012, 8, 6744. [Google Scholar] [CrossRef]
- Itri, R.; Junqueira, H.C.; Mertins, O.; Baptista, M.S. Membrane changes under oxidative stress: The impact of oxidized lipids. Biophys. Rev. 2014, 6, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Bacellar, I.O.; Oliveira, M.C.; Dantas, L.S.; Costa, E.B.; Junqueira, H.C.; Martins, W.K.; Durantini, A.M.; Cosa, G.; Di Mascio, P.; Wainwright, M. Photosensitized membrane permeabilization requires contact-dependent reactions between photosensitizer and lipids. J. Am. Chem. Soc. 2018, 140, 9606–9615. [Google Scholar] [CrossRef]
- Yakavets, I.; Millard, M.; Lamy, L.; Francois, A.; Scheglmann, D.; Wiehe, A.; Lassalle, H.-P.; Zorin, V.; Bezdetnaya, L. Matryoshka-type liposomes offer the improved delivery of temoporfin to tumor spheroids. Cancers 2019, 11, 1366. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.L. Three-dimensional in vitro cancer spheroid models for photodynamic therapy: Strengths and opportunities. Front. Phys. 2015, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Hansen, C.B.; Allen, T.M.; Miller, G.G.; Moore, R.B. Distribution of photosensitizers in bladder cancer spheroids: Implications for intravesical instillation of photosensitizers for photodynamic therapy of bladder cancer. J. Pharm. Pharm. Sci. 2005, 8, 536–543. [Google Scholar]
- Bigelow, C.E.; Mitra, S.; Knuechel, R.; Foster, T.H. ALA-and ALA-hexylester-induced protoporphyrin IX fluorescence and distribution in multicell tumour spheroids. Br. J. Cancer 2001, 85, 727. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.L.; Abu-Yousif, A.O.; Park, Y.J.; Klein, O.J.; Celli, J.P.; Rizvi, I.; Zheng, X.; Hasan, T. Killing hypoxic cell populations in a 3D tumor model with EtNBS-PDT. PLoS ONE 2011, 6, e23434. [Google Scholar] [CrossRef] [Green Version]
- Klein, O.J.; Bhayana, B.; Park, Y.J.; Evans, C.L. In vitro optimization of EtNBS-PDT against hypoxic tumor environments with a tiered, high-content, 3D model optical screening platform. Mol. Pharm. 2012, 9, 3171–3182. [Google Scholar] [CrossRef] [Green Version]
- Frandsen, S.K.; Gibot, L.; Madi, M.; Gehl, J.; Rols, M.-P. Calcium Electroporation: Evidence for Differential Effects in Normal and Malignant Cell Lines, Evaluated in a 3D Spheroid Model. PLoS ONE 2015, 10, e0144028. [Google Scholar] [CrossRef] [Green Version]
- Chauvin, J.; Gibot, L.; Griseti, E.; Golzio, M.; Rols, M.-P.; Merbahi, N.; Vicendo, P. Elucidation of in vitro cellular steps induced by antitumor treatment with plasma-activated medium. Sci. Rep. 2019, 9, 4866. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibot, L.; Demazeau, M.; Pimienta, V.; Mingotaud, A.-F.; Vicendo, P.; Collin, F.; Martins-Froment, N.; Dejean, S.; Nottelet, B.; Roux, C.; et al. Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers 2020, 12, 384. https://doi.org/10.3390/cancers12020384
Gibot L, Demazeau M, Pimienta V, Mingotaud A-F, Vicendo P, Collin F, Martins-Froment N, Dejean S, Nottelet B, Roux C, et al. Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers. 2020; 12(2):384. https://doi.org/10.3390/cancers12020384
Chicago/Turabian StyleGibot, Laure, Maxime Demazeau, Véronique Pimienta, Anne-Françoise Mingotaud, Patricia Vicendo, Fabrice Collin, Nathalie Martins-Froment, Stéphane Dejean, Benjamin Nottelet, Clément Roux, and et al. 2020. "Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells" Cancers 12, no. 2: 384. https://doi.org/10.3390/cancers12020384
APA StyleGibot, L., Demazeau, M., Pimienta, V., Mingotaud, A. -F., Vicendo, P., Collin, F., Martins-Froment, N., Dejean, S., Nottelet, B., Roux, C., & Lonetti, B. (2020). Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers, 12(2), 384. https://doi.org/10.3390/cancers12020384